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The Vlasov-Poisson system

Consider a plasma under the effect of a self-induced electric field E

Of+v-Vif+(E ) -V,f=0,
E(t,X) = (125 * p)(t, %),

p(t,x) = [f(t,x,v)dv,
f:]0, T] x R® x R® — R, density of particles in the plasma,
p:[0, T] x R® — R, spatial density,

E : [0, T] x R® — R3 time-dependent self-induced electric field
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The Vlasov-Poisson system

Consider a plasma under the effect of a self-induced electric field E
Of +v-Vif+(E )-Vuf=0,
E(t,x) = (2 * Pt %),
p(t,x) = [f(t,x,v)dv,

f:]0, T] x R® x R® — R, density of particles in the plasma,

p:[0, T] x R® — R, spatial density,

E : [0, T] x R® — R3 time-dependent self-induced electric field

Well posedness:
Okabe & Ukai, Bardos & Degon, Pfaffelmoser, Lions & Perthame, ...
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The Vlasov-Poisson system with point-charge

Of+v -Vif+(E+~F) - V,f=0,
E(t,X) = (% % p)(t,X),

p(t,x) = [ f(t.x,v)dv.

_ox=¢(t
F(t.x) = i

f(t, x, v) mass distribution of the plasma and ¢(t) position of the point charge

{ E(t) =n(1), £(0) = &,
n(t) = E(t,£(1), n(0) = o
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The Vlasov-Poisson system with point-charge

Of+v -Vif+(E+~F) - V,f=0,
E(t,X) = (% % p)(t,X),

p(t,x) = [ f(t.x,v)dv.

F(t.X) = =i
f(t, x, v) mass distribution of the plasma and ¢(t) position of the point charge
{ E(t) = (1), £(0) = o,

(t) = E(t,£(1)), n(0) =10

~ = 1: the charge has the same sign of the plasma.

~v = —1: heavy charged particle which evolves in a sea of light particles
of opposite sign.
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V-P system with point-charge: repulsive case

Well posedness:

@ Caprino, Marchioro (2d)

@ Marchioro, Miot, Pulvirenti (3d): existence and uniqueness provided the
initial datum fy € L' N L>°(R®) has compact support and satisfies

min {|x — &| : (x,Vv) € supp(fo)} > do
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V-P system with point-charge: repulsive case

Well posedness:

@ Caprino, Marchioro (2d)

@ Marchioro, Miot, Pulvirenti (3d): existence and uniqueness provided the
initial datum fy € L' N L>°(R®) has compact support and satisfies

min {|x — &| : (x,Vv) € supp(fo)} > do

@ Desvillettes, Miot, S. (3d): existence of weak solutions for initial data
fo € L' N L>°(R®) such that there exists my > 6

1 m/2
//(|v_,70|2+|x_§0|) fo(x,v)dx dv < oo Vm< m
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V-P system with point-charge: repulsive case

Well posedness:

@ Caprino, Marchioro (2d)

@ Marchioro, Miot, Pulvirenti (3d): existence and uniqueness provided the
initial datum fy € L' N L>°(R®) has compact support and satisfies

min {|x — &| : (x,Vv) € supp(fo)} > do

@ Desvillettes, Miot, S. (3d): existence of weak solutions for initial data
fo € L' N L>°(R®) such that there exists my > 6

1 m/2
//(|vno|2+ ) f(x,v)dxdv<oco Vm<m

Ix — &ol
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V-P system with point-charge: repulsive case

Well posedness:

@ Caprino, Marchioro (2d)

@ Marchioro, Miot, Pulvirenti (3d): existence and uniqueness provided the
initial datum fy € L' N L>°(R®) has compact support and satisfies

min {|x — &| : (x,Vv) € supp(fo)} > do

@ Desuvillettes, Miot, S. (3d): existence of weak solutions for initial data
fo € L' N L>°(R®) such that there exists my > 6

1 m/2
//(|V770|2+ ) f(x,v)dxdv<oco Vm<m

Ix — &ol

Price to pay:
the solution is no longer known to be unique and Lagrangian.
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Lagrangian solutions

Goal: to recover the relation between the Eulerian and the Lagrangian picture
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Lagrangian solutions

Goal: to recover the relation between the Eulerian and the Lagrangian picture

System of characteristics

{ X(t, x,v) = V(t,x,v), X(0,x,v) =x
V(t,x,v) = E(t, X(t,x,v)) + F(t, X(t,x,v)), V(0,x,v)=v

Chiara Saffirio (UZH) CIRM 2017 Luminy, November 31, 2017 5/10



Lagrangian solutions

Goal: to recover the relation between the Eulerian and the Lagrangian picture

System of characteristics

{ X(t, x,v) = V(t,x,v), X(0,x,v) =x
V(t,x,v) = E(t,X(t,x,v))+ F(t, X(t,x,v)), V(0,x,v)=v

We define Lagrangian solution a plasma density f(t) and a trajectory
(&(1),n(t)) of the point charge such that

KX V) = (X (£ ) (V) V() (2 V)|
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Lagrangian solutions

Goal: to recover the relation between the Eulerian and the Lagrangian picture

System of characteristics

{ X(t, x,v) = V(t,x,v), X(0,x,v) =x
V(t,x,v) = E(t,X(t,x,v))+ F(t, X(t,x,v)), V(0,x,v)=v

We define Lagrangian solution a plasma density f(t) and a trajectory
(&(1),n(t)) of the point charge such that

KX V) = (X (£ ) (V) V() (2 V)|

Difficulties:
@ control on large velocities;
@ the singular field F is a singular integral of measures.
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Theorem 1 (Crippa, Ligabue, S. 2017 )
Let fy € L' N L>(R®), such that the initial total charge

/ fo(x, v) dxdv < 1

and the total energy

2 2
//"foxv)dxvar‘no| 2//p°(Xp° dxdy+//|p°

is finite. Assume that there exists my > 6 such that for all m < mqy the energy

moments
1 m/2
// <|v—n0|2+ |X—§o|> fo(x, v)dxdv < oo

Then there exists a global Lagrangian solution to the VP system with point
charge.

Chiara Saffirio (UZH) CIRM 2017 Luminy, November 31, 2017 6/10



Strategy of the proof

Generalised notion of flow: p-Regular Lagrangian Flow
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Strategy of the proof

Generalised notion of flow: p-Regular Lagrangian Flow

Given an absolutely continuous measure ¢ with bounded density, a vector
field b(s,z) : [0, T] x R® — R® and t € [0, T), a map

Z € C([0, T]; Lo (R®, dp)) N L([0, T]; log log Lioc(R®, du))

is a p-regular Lagrangian flow in the renormalized sense starting at time ¢
relative to b if the equation

05(B(Z(s, 2))) = B'(Z(s, 2))b(s, Z(s, 2))
holds in D'((0, T)) for u-a.e. z, for every function 3 € C'(R®; R) that satisfies

Clz|

15(2)] < C(1-+log(1+10g(1+12P))) and I5'()] < 4oy + oa (T 1 2)
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Strategy of the proof

Generalised notion of flow: p-Regular Lagrangian Flow

Given an absolutely continuous measure ¢ with bounded density, a vector
field b(s,z) : [0, T] x R® — R® and t € [0, T), a map

Z € C([0, T]; Lo (R®, dp)) N L([0, T]; log log Lioc(R®, du))

is a p-regular Lagrangian flow in the renormalized sense starting at time ¢
relative to b if the equation

05(B(Z(s, 2))) = B'(Z(s, 2))b(s, Z(s, 2))
holds in D'((0, T)) for u-a.e. z, for every function 3 € C'(R®; R) that satisfies

Clz|

15(2)] < C(1-+log(1+10g(1+12P))) and I5'()] < 4oy + oa (T 1 2)

’ — Uniqueness and compactness for the row‘
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Strategy of the proof

Extension of the standard theory for transport equations. Main ingredients:

(H1) Superlevels: for all u-regular Lagrangian flows relative to a vector field b,
the A-superlevels are controlled by a function g(A) — 0 as A — oc;

(H2) Structure of the vector field:
b(t7 X, V) = (b1 ) b2)(ta X, V) = (b1 (V)a b2(t7 X))
with
m
by € Lip(R?’) 8le2 = Z Sjkmjk

k=1
Si singular integrals on R® and mj € L'((0, T); M(R?));

(H3) Local integrability of the vector field:

bel?

loc

([0, T] x R®) for some p > 1.
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Strategy of the proof

In the context of the plasma-charge model:

b(t,x,v) = (v, E(t,x) + F(t, x))
(H1) Superlevels: the superlevels are bounded with respect to i = £,£;
(H2) Structure of the vector field:
b(t, x,v) = (b1(v), ba(t, X)) = (v, E(t, x) + F(t, X))
with

1
b1(t7 V) =ve Llp(R3)7 a)(,bZ(t7 X) = W * (p+ 5E(f))(t7 X)

(H3) Local integrability of the vector field:

b(t, x,v) = (v, E(t,x) + F(t,x)) € LP ([0, T] x R®) forp = g
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fé’(X, V) = fO(Xa V) 1{(x,v)e]R6:n—‘<|x—§o|<n, |v—no|<n}
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15 (X, V) i= fo(X, V) 1{(x,v)ere - -1 <|x—go| <n, [v—no|<n}

there exists a unique classical Lagrangian solution ", (£"(t), n"(t))

(¢, X"(t, x,v), V'(t, x,v)) = f§(x, V)
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15/ (X, V) := 100X, V) 1 (x,v)ers : n=1 < |x—go| <n, [v—mo]<n}

there exists a unique classical Lagrangian solution ", (£"(t),n"(t))

(¢, X"(t, x,v), V'(t, x,v)) = f§(x, V)

Compactness + uniform estimates = existence of a Lagrangian solution

f(t, X(t, x,v), V(t,x,v)) = fo(x, V)
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Perspectives

@ remove assumption [ fy(x, v) dx dv < 1 (work in progress);
@ uniqueness ?

@ attractive case ?
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Perspectives

@ remove assumption [ fy(x, v) dx dv < 1 (work in progress);
@ uniqueness ?

@ attractive case ?

Thank you for your attention!
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