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Long-range interactions
Potentials ∝ r−α with α < D for large r (D the spatial dimension).

Violent relaxation → Quasi-stationary state →
Thermodynamic equilibrium (finite N).

Dynamics in the N →∞ limit:

H =
N∑
i=1

p2i
2mi

+
1

2N

N∑
i ,j=1

v(ri − rj).

Vlasov equation:

d

dt
f (p, r, t) =

(
∂

∂t
+ v · ∂

∂r
+ F · ∂

∂p

)
f (p, r, t) = 0.

F(r, t) = − ∂

∂r
U(r, t), U(r) =

∫
f (p, r, t)v(r−r′)dp′dr′.

The violent relaxation is described by the Vlasov equation for
N sufficiently large.



One-Dimensional Models

Simpler but yet retaining many of the important physical
aspects.

The Vlasov equation can be solved numerically, e. g. using a
semi-Lagrangian method on a GPU.

A direct comparison of the numeric solution of the Vlasov
Equation and Molecular Dynamics simulations is thus possible.



The Ring model

Sota (2001): self-gravitating particles of unit mass on a ring of
radius R

q q

´1-cos( )q-q

´

H =
N∑
i=1

p2i
2
− 1

N

N∑
i<j=1

1√
2
√

1− cos(θi − θj) + ε
.

(t →
√
Nt).



The Hamiltonian Mean Field model → ε� 1
Antony and Ruffo (1995)

Obtained in the limit with ε large:

H =
N∑
i=1

p2i
2
− 1

N

N∑
i<j=1

[1− cos(θi − θj)] .

Exactly solvable:

M = (Mx ,My ) =
1

N

N∑
i=1

(cos θi , sin θi ).

feq(p, θ) =

√
β

(2π)3/2 I0(β)
e−β(p2/2−M cos(θ)), M =

I1(βM)

I0(βM)
.

Simulations scale with N, and not with N2 as in
self-gravitating systems:

Fi = − sin(θi )Mx + cos(θi )My .



Caloric curve for the ring model

Variational method (Tatekawa et al. 2005):
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Convergence to the Vlasov equation
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Figure: Left Panel: Entropy for the HMF model from MD, N = 131 072,
waterbag initial condition ∆p = 1.0 and ∆θ = 2.0. Right Panel: Entropy
from the Vlasov equation with grid resolutions n × n.



Numerical solution of the Vlasov Eq. and MD
Ring model: N = 20 480, ∆θ = 3.0, ∆p = 1.0

t = 0
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t = 0.3
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t = 0.5

-4 -2  0  2  4

 0

 1

 2

 3

 4

 5

 6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0

 1

 2

 3

 4

 5

 6

-4 -2  0  2  4



t = 1.0
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t = 2.5

-4 -2  0  2  4

 0

 1

 2

 3

 4

 5

 6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0

 1

 2

 3

 4

 5

 6

-4 -2  0  2  4



t = 5.0
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t = 10.0
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t = 20.0
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t = 50.0
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Convergence to the Vlasov equation
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Figure: Solution of Vlasov Eq. and MD for the Ring Model ε = 10−3.
µk = 〈pk〉.
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Figure: Comparison of Vlasov solution and MD for the Ring Model
ε = 10−4.



Although the intermediate step can deviate significantly from
Vlasov equation solution, the state from Vlasov dynamics
after the violent relaxation coincides with good accuracy to
Molecular Dynamics (at least for N not too small).

This can be explained from the Core-Halo approach (Levin et
al. 2008) with a maximum (coarse grained) entropy principle
(Rocha Filho 2016):

fQS(q, p) = ηΘ (εF − e(p, θ))+χΘ (e(p, θ)− εF ) Θ (εH − e(p, θ)) ,

e(p, θ) = p2

2 + U(θ).

Four parameters: η (core phase value), χ (Halo phase), εF
(core maximum energy) and εH (halo energy).

Determined from: Value of the phase of initial distribution,
total energy, normalization and maximization of entropy.



Finite N corrections – Homogeneous states

Liouville Equation:

∂fN
∂t

+ {fN ,H} = 0.

BBGKY hierarchy:

∂

∂t
fs =

s∑
j=1

L̂0j fs +
1

N

s∑
j<k=1

L̂′jk fs +
s∑

j=1

∫
d(s + 1) L̂′j ,s+1fs+1.

L̂0i ≡ −~vi ·
∂

∂~ri
,

L̂′ij ≡ −
1

m
~F (~ri −~rj) · (

∂

∂~vi
− ∂

∂~vj
),



Two-particle correlation:

f2(1, 2; t) = f (1; t)f (2; t) + g2(1, 2; t).

Kinetic equation

∂t f (1; t) = L01f (1; t) +

∫
d2 L′12 g2(1, 2; t),

with (up to dominant terms in N−1):

∂

∂t
g2(1, 2; t) =

[
L̂01 + L̂02

]
g2(1, 2; t)

+L̂′12
[
g2(1, 2; t) + f (1; t) f (2; t)

]
+

∫
d3
{
L̂′13f (1; t)g2(2, 3; t) + L̂′23f (2; t)g2(1, 3; t)

}
.



Splitting the integrals in the previous equation in a small
region where the force is more important (divergence), and
the rest of the space, we have∫

d2 L′12 g2(1, 2; t) = I1 + I2,

where I1 is of order 1/N correction (see previous talk), and I2
is the usual Balescu-Lenard collisional integral, which vanishes
exactly for a 1D homogeneous states. The next term in the
expansion is of order N−2 (Rocha Filho 2014).

There are two well separated time scales: the 1/N
contribution of the divergence of the potential from I1, and
the 1/N2 contribution from the collisional integral I2.
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Figure: a) µ4 with ε = 1.0 for a homogeneous waterbag initial condition,
∆p = 1.0 and ∆t = 1.0. (b) Same as (a) but with t → t/N2. (c) and
(d) same as (a) and (b), but for µ6.
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Figure: a) µ4 with ε = 10−6 for a few particle numbers for a
homogeneous waterbag initial condition with ∆p = 10.0 and time step
∆t = 10−5. (b) Same as (a) but with the time rescaled as t → t/N. (c)
Same as (a) but with the time rescaled as t → t/N2.



Conclusions

Convergence of particle dynamics to Vlasov equation is much
slower in the presence of a diverging potential.

Although intermediate states during violent relaxation, the
final states seem to coincide with the final state from Vlasov
equation which seems to be related to a maximum (coarse
grained) entropy principle.

Finite N corrections to the Vlasov equation depends strongly
on the behavior of the potential at short distances.

Although some progress have been made since Lynden-Bell
theory (1967), a complete and consistent theory for violent
relaxation is still lacking.



Thank You for Your Attention!


