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Long-range interactions
Potentials oc r=® with o < D for large r (D the spatial dimension).

@ Violent relaxation — Quasi-stationary state —
Thermodynamic equilibrium (finite N).
@ Dynamics in the N — oo limit:
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Vlasov equation:

d 0 0 0
dtf(p’r7t)_<81-+v8.—+F8p)f(p’r7t)_0
F(r,t) = _8ar U(r, t), U(r) = / f(p,r,t)v(r—r")dp'dr.

@ The violent relaxation is described by the Vlasov equation for
N sufficiently large.



One-Dimensional Models

@ Simpler but yet retaining many of the important physical
aspects.

@ The Vlasov equation can be solved numerically, e. g. using a
semi-Lagrangian method on a GPU.

@ A direct comparison of the numeric solution of the Vlasov
Equation and Molecular Dynamics simulations is thus possible.



The Ring model

Sota (2001): self-gravitating particles of unit mass on a ring of
radius R




The Hamiltonian Mean Field model — ¢ > 1
Antony and Ruffo (1995)

@ Obtained in the limit with € large:

N p2 1 N
H:Zé—N.Z [1 — cos(6; — 6;)] .
i=1 i<j=1
o Exactly solvable:
N
M = (M, M,) Z cos B;,sin ;).
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@ Simulations scale with N, and not with N? as in
self-gravitating systems:

Fi = —sin(0;) My + cos(8;) M, .



Caloric curve for the ring model

Variational method (Tatekawa et al. 2005):




Convergence to the Vlasov equation
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Figure: Left Panel: Entropy for the HMF model from MD, N = 131 072,
waterbag initial condition Ap = 1.0 and A8 = 2.0. Right Panel: Entropy
from the Vlasov equation with grid resolutions n x n.



Numerical solution of the Vlasov Eq. and MD
Ring model: N =20480, A9 =3.0, Ap=1.0
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Convergence to the Vlasov equation
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Figure: Solution of Vlasov Eq. and MD for the Ring Model ¢ = 1073,

fk = (p").

50



50 0 10 20 30 40

Figure: Comparison of Vlasov solution and MD for the Ring Model
e=10"*



Although the intermediate step can deviate significantly from
Vlasov equation solution, the state from Vlasov dynamics
after the violent relaxation coincides with good accuracy to
Molecular Dynamics (at least for N not too small).

This can be explained from the Core-Halo approach (Levin et

al. 2008) with a maximum (coarse grained) entropy principle
(Rocha Filho 2016):

fas(q, p) = 1O (er — e(p,8))+x© (e(p,0) — er) © (en — e(p, b)),

2
e(p.0) = % + U(D).
Four parameters: n (core phase value), x (Halo phase), e
(core maximum energy) and €y (halo energy).

Determined from: Value of the phase of initial distribution,
total energy, normalization and maximization of entropy.



Finite N corrections — Homogeneous states

@ Liouville Equation:

Ofn

a +{fN,H}_0.
o BBGKY hierarchy:
o A 1 5
tfs:ZLj?fs+ kf+2/ (s+1) L 1y fasr
j=1 j<k=1
A 0
LOE__’Iia
i Vi afl»
N 9 0



@ Two-particle correlation:
f(1,2;t) = f(1;£)F(2; t) + g2(1, 2; t).

@ Kinetic equation
Oef(1;t) = L9F(1;t) + /dZ L5 82(1,2;1),

with (up to dominant terms in N~1):

0 rg @
7:21.20) = [+ B]ex(1.2:1)

+112[g2(1,2:8) + F(1; 1) £(2; 1))
+/d3 {“’13f(1; £)g2(2,3; t) + Lhaf(2; t)ea(1, 3; t)}.



@ Splitting the integrals in the previous equation in a small
region where the force is more important (divergence), and
the rest of the space, we have

/d2 L/12 g2(1,2; t) =h+ IQ,

where /; is of order 1/N correction (see previous talk), and b
is the usual Balescu-Lenard collisional integral, which vanishes
exactly for a 1D homogeneous states. The next term in the
expansion is of order N=2 (Rocha Filho 2014).

@ There are two well separated time scales: the 1/N
contribution of the divergence of the potential from /1, and
the 1/N? contribution from the collisional integral /.
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Figure: a) p4 with e = 1.0 for a homogeneous waterbag initial condition,
Ap =1.0and At =1.0. (b) Same as (a) but with t — t/N2. (c) and
(d) same as (a) and (b), but for pe.



1801

1601 -

b h»WWm

N n‘wﬂu“\wy&w,“ywh )

0 20 40 60 80 100 0 0.05 0.1 0.15 02
t tN

!

N~
Figure: a) s with € = 107° for a few particle numbers for a
homogeneous waterbag initial condition with Ap = 10.0 and time step
At =107°. (b) Same as (a) but with the time rescaled as t — t/N. (c)
Same as (a) but with the time rescaled as t — t/N2.



Conclusions

Convergence of particle dynamics to Vlasov equation is much
slower in the presence of a diverging potential.

Although intermediate states during violent relaxation, the
final states seem to coincide with the final state from Vlasov
equation which seems to be related to a maximum (coarse
grained) entropy principle.

Finite N corrections to the Vlasov equation depends strongly
on the behavior of the potential at short distances.

Although some progress have been made since Lynden-Bell
theory (1967), a complete and consistent theory for violent
relaxation is still lacking.



Thank You for Your Attention!



