The isochrone model : a fundamental state for self-gravitating systems

<u>Jérôme Perez</u>⁽¹⁾ – Alicia **S**imon-Petit⁽¹⁾ – Guillaume **D**uval⁽²⁾

⁽¹⁾ ENSTA ParisTech Paris Saclay University – Applied Mathematics Lab.

⁽²⁾ INSA Rouen – Mathematics & Informatics Lab.

Collisionless Boltzmann (Vlasov) Equation and Modeling of Self-Gravitating Systems and Plasmas – CIRM Luminy – October 29th to November 3rd 2017

Outline

1) Astrophysical systems in the context of the Vlasov-Poisson system

2) Isochrony & Self-gravitating systems (details & proofs in SPD 2017 Com. Math. Phys.)

3) The fundamental isochrone state

2) Isochrony & Self-gravitating systems (details & proofs in SPD 2017 Com. Math. Phys.)

3) The fundamental isochrone state

Globular clusters

Spherical systems with $N=10^{4-5}$ particles

~ isolated systems in the galactic potential

« Standard model » King = truncated isothermal sphere

 $f(E) \propto e^{-\beta E} \times 1_{E < E_{\ell}}$

Evolution effect due to dissipation other long time scales : $N T_{\rm d} / \ln(N)$

Low Surface Brightness(LSB): 90% of all galaxies Core Halo structure Isolated systems

Theorized 1972 – 1st obs. 1986 – Large catalogue for 10 years

CDM Simulations & High Surface Brightness (HSB)

Spherical systems including the dark matter halo ? $N = 10^{\;9\mbox{--}12} \; {\rm particles}$

Galaxies

(@ z=0)

Triple power law structure

with cusp

Non isolated system

Hierachical formation

process

Theory not so restrictive !

Equilibrium

f(E) or $f(E, L^2)$: spherical in the position space by Gidas, Ni, Niremberg 1984 Theorem (e.g. P&Aly, 1996)

f(E, I) : it depends on I

Violent relaxation : not clear yet...

A clever remark by Michel Hénon in 1958 ...

Stability analysis

Jeans' instability for homogeneous too dense systems

Decreasing spherical systems generally stable if not too radial (See Binney&Tremaine)

Gravothermal catastrophe to understand long time evolution (ask P.H. Chavanis)

2) Isochrony & Self-gravitating systems (details & proofs in SPD 2017 Com. Math. Phys.)

3) The fundamental isochrone state

A few words about isochrony (Hénon, 1958; SPD 2017 Com. Math. Phys.)

Spherical system : $\psi = \psi(|\vec{r}|)$ Each test particle with $E = m\xi$ and $\vec{L} = m\vec{\Lambda}$ moves in a plane.

Orbital equation

$$\frac{1}{2}\left(\frac{dr}{dt}\right)^2 = \xi - \psi(r) - \frac{\Lambda^2}{2r^2}$$

r(t) is periodic for bounded & non radial orbits

$$\forall t, \quad r(t) = r(t + \tau_r)$$
$$\tau_r = 2 \int_{r_a}^{r_p} \frac{dr}{\sqrt{2[\xi - \psi(r)] - \frac{\Lambda^2}{r^2}}}$$

generally depends on ξ and Λ

Def. An orbit is isochrone if $\tau_r = \tau_r(\xi)$ A potential is isochrone if all bounded & non radial orbits are isochrone. Orbital plane for a given star

ISOCHRONE CLASSIFICATION : there are 4 classes of isochrone potentials ...

$$\frac{1}{2}\left(\frac{dr}{dt}\right)^2 = \xi - \psi(r) - \frac{\Lambda^2}{2r^2} \qquad \begin{array}{c} \text{Hénon variables} \\ x = 2r^2, y(x) = x\psi(x) \end{array} \qquad \begin{array}{c} \frac{1}{16}\left(\frac{dx}{dt}\right)^2 = \xi x - y(x) - \Lambda^2 \end{array}$$

Thm. A potential is **isochrone** iff the graph of y(x) is a **parabola**.

2 parameters for the orbital equation, i.e. ξ and Λ : $\begin{bmatrix} \text{If } \xi \to \xi + \epsilon \text{ then } (x, y) \to (x, y + \epsilon x) & (\text{Transvection}) \\ \text{If } \Lambda^2 \to \Lambda^2 + \lambda^2 \text{ then } (x, y) \to (x, y + \lambda^2) & (y-\text{Translation}) \end{bmatrix}$

Fundamental isochrone group : $\mathbb{A} = \left\{ (\epsilon, \lambda) \in \mathbb{R}^2, \ (x, y) \to (x, y + \epsilon x + \lambda^2) \right\} \simeq (\mathbb{R}^2, +)$

... because there are 4 group orbits under A-action on parabolas !

A reference frame for each isochrone parabola

Def. $\mathscr{R} = \left(O, \vec{i}, \vec{j}\right)$ is the reference frame of the parabola \mathcal{P}

Using the affine coordinate system $\vec{w} = [\xi x, y]$ the orbital equation writes

$$\frac{1}{16} \begin{bmatrix} \frac{d}{d\tau} \left(\vec{w} | \vec{i} \right) \end{bmatrix}^2 = \left(\vec{w} | \vec{i} - \vec{j} \right) + \left(\vec{w}_{\Lambda} | \vec{j} \right)$$

$$\frac{d\tau = \xi dt}{\text{Proper time}} \qquad \frac{1}{16} \left(\frac{dx}{dt} \right)^2 = \xi x - y(x) - \Lambda^2$$

Look for the more general *linear* transformation *B* such that (D. Lynden-Bell idea)

if
$$\vec{w}' = B(\vec{w})$$
 then $\xi' x' - y'(x') = \xi x - y(x)$

B generalizes the Bohlin-Levi-Civita Transformation to all isochrones : if \vec{w} is an isochrone orbit in the isochrone ψ then $\vec{w'}$ is an isochrone orbit in the isochrone ψ'

if $\mathcal P$ is the keplerian parabola, ψ is the keplerian potential ψ' is generally not keplerian in $\mathscr R$ but it is always keplerian in $\mathscr R'$

$$\frac{1}{16} \left[\frac{a}{d\tau'} \left(\vec{w'} | \vec{u} \right) \right] = \left(\vec{w'} | \vec{u} - \vec{v} \right) + \left(\vec{w'}_{\Lambda} | \vec{v} \right)$$

The isochrony property is relative to a frame Isochrone theory of relativity

Consequence of the isochrone relativity

3 other fundamental isochrones

2) Isochrony & Self-gravitating systems (details & proofs in SPD 2017 Com. Math. Phys.)

3) The fundamental isochrone state (SPP in prep.)

Hénon's proposition 1958

The isochrone model (Hénon) is the fundamental state in which an isolated self-gravitating system settles down after a violent relaxation (which was not yet described in 1958...).

Mechanism invoked : resonance (Physical proof needed...)

Forgotten because ...

- This proposition was published at the very end of the paper in french...
- Because globular clusters evolve and donnot stay in this initial fundamental state;
- The mechanism of this evolution was poorly known at this epoch;
- The « hand-made » King(1966) model (with 3 free parameters !) fits very well the data (mass density profile);
- LSB galaxies were theorized to exist in 1976 and studied in detail since 2000 ...
- This proposition doesn't apply to HSB galaxies, which are the most studied and simulated : non isolated systems

Mass density analysis

Isochrony analysis

(n = 200 orbits analyzed)

Isochrony analysis

2) Isochrony & Self-gravitating systems (details & proofs in SPD 2017 Com. Math. Phys.)

3) The fundamental isochrone state

Isochrony appears to be fundamental for dynamics in self-gravitating systems (For physicists as well as for mathematicians)

Understand the resonance Hénon mecanism seems crucial !

Pay more attention to LSB galaxies to understand HSB ones...

Thank you for your attention