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Overview

We move on from the covariant Poisson bracket theory of
Marsden et al. [Ann. Phys. 169, 29 (1986)], which uses a
noncanonical bracket to perform constrained variations of an action
functional.

In this article this approach is used in order to obtain “Poisson
brackets that are spacetime covariant [..] for a variety of relativistic
field theories” including “electromagnetism, general relativity, and
general relativistic fluids and plasmas in Eulerian representation”.

Here we follow a similar line of reasoning in order to construct a
covariant action principle for ideal relativistic magnetohydrodynamics
(MHD) in terms of natural Eulerian field variables.
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General framework

In the approach of Marsden et al. the field equations are shown to be
equivalent to equations of the form

{F , S } = 0

with F an arbitrary function of the fields and S an action integral.

For the Relativistic Maxwell-Vlasov equations the particle
Hamiltonian in an external electromagnetic field Fµν con be written as

H = (m/2)uµ uµ = 1/(2m)(Pµ −qAµ/c)(Pµ −qAµ/c)

with Pµ the canonical momentum conjugate to xµ and Aµ the
4-potential, leading to the Hamilton equations

dxµ/dτ = ∂H/∂Pµ , dPµ/dτ =−∂H/∂xµ = (q/c)uν
∂Aν/∂xµ .



General framework, particles

The relativistic plasma distribution function in 8-D phase space
f (x,P)d4xd4P is constant along its particle world lines

d f/dτ +uµ
∂ f/∂xµ +(q/c)(uν

∂Aν/∂xµ)∂ f/∂Pµ = 0

or, in different notation, { f ,H}x,P = 0
with { f ,g}x,P = (∂ f/∂xµ)(∂g/∂Pµ) − (∂g/∂xµ)(∂ f/∂Pµ)

The basic field for the Vlasov theory is the plasma phase space
distribution function f . Marsden et al. define the bracket of two
functionals F ,G of f in the Lie-Poisson form

{F ,G }( f ) =
∫

f {(δF/δ f ) , (δG /δ f )}x,P d4xd4P

Define S [ f ] =
∫

f (x,P)H(x,P) d4xd4P, so that δS /δ f = H.
Then, the covariant bracket equation

{F ,S }( f ) = 0 for all F

is equivalent to the relativistic Vlasov equation.



General framework, particles + fields

The fields in the relativistic Maxwell-Vlasov equations are the triples
(Aµ , πµν , f ) where πµν = Fµν are covariant momentum variables.
Including the Maxwell fields dynamics in action variables (not
illustrated in this presentation) the bracket of two functions of A,π, f is

{F ,G }V (A,π, f ) =
∫

f {(δF/δ f ) , (δG /δ f )}x,P d4xd4P

+
∫ (

(δF/δAµ) (δG /δπ
µν)− (δG /δAµ) (δF/δπ

µν)
)

V ν d4x.

with V µ an arbitrary vector field1. Setting the total action

S (A,n, f ) =
∫ (

π
µν Aµ,ν − (1/4)π

µν
πµν

)
d4x

+
∫

f (x,P)/(2m)(Pµ −qAµ/c)(Pµ −qAµ/c) d4xd4P,

the full field equations are {F ,S }V (A,π, f ) = 0 for all F ,V.

1 it corresponds to the arbitrariness in the choice of the direction of time and to the lapse in a 3+1 formulation



MHD equations

First we recall the equations of ideal nonrelativisitic ideal MHD

∂v
∂ t

+(v ·∇)v =−∇p
ρ

+
1

4πρ

[
(∇×B)×B

]
=−∇p

ρ
+

1
4πρ

∇ ·
(
I B2/2−B⊗B

)
∂B
∂ t

= ∇× (v×B) =−B∇ ·v+B ·∇v−v ·∇B

∂ρ

∂ t
+∇ · (ρv) = 0,

∂ s
∂ t

+v ·∇s = 0 .

Here ρ is the fluid density, p its pressure, s its specific entropy, v the
velocity field, B the magnetic field, I the identity tensor2.
Should one wish to add displacement current back into MHD, as is done in the most prevalent version of relativistic
MHD, the momentum equation would have to be altered as follows:

∂v
∂ t

+(v ·∇)v =−∇p
ρ

+
1

4πρ

[(
∇×B+

∂

∂ t

( v
c2 ×B

))
×B
]
.

2The current j and electric field E have been eliminated from these equations, but they can be recovered from
the ideal Ohm’s Law, E+(v/c)×B = 0, and Ampére’s Law, j = (c/4π)∇×B



Relativistic MHD

The 4-vector field uµ will denote the plasma 4-velocity3 at each point
in spacetime; at each such point, this quantity will define a reference
frame with locally vanishing 3-velocity.

The fluid density is now ρ = mn(1+ ε), where n is the baryon number
density, m is the fluid rest mass per baryon and ε is the internal
energy per baryon, normalized to m.

Instead of the specific entropy s we will use the entropy density
σ = ns.

We will suppose that the energy can be written as ε(n,σ), hence
ρ(n,σ), in which case the pressure is given in terms of n and σ by
p = n∂ρ/∂n+σ∂ρ/∂σ −ρ , and T ds = d(ρ/n)+ pd(1/n).

3We use signature and units such that uµ uµ = gµν uµ uν = 1, where the
Minkowski metric gµν is given by dia(1,−1,−1,−1)



4-vector electromagnetic field representation

Given uµ , one can also define the two 4-vectors

Bµ ≡F µν uν = γ(v ·B,B−v×E)

Eµ ≡ Fµν uν = γ(v ·E,E+v×B)

where Fµν = εµναβ Fαβ/2 is the dual of Fµν . In terms of the 4-vectors
Bµ and Eµ the field tensor has the decomposition4

Fµν = ε
µνλσ Bλ uσ +(uµ Eν −uν Eµ) ,

a form valid for any timelike 4-vector uµ . Different values of Bµ and Eµ

can correspond to the same field tensor, for one can add any quantity
proportional to uµ to either 4-vector while leaving the field tensor
unchanged; however the representation is unique if the constraints
Eλ uλ = Bλ uλ = 0 are imposed.

4Bi = Bi and Ei = E i in the reference frame defined by uµ



Relativistic ideal MHD magnetic 4-vector

In MHD one eliminates the electric field from the theory.
In a relativistic context, this is done by setting Eµ = Fµλ uλ = 0, which
gives E+v×B = 0 and, in a given reference frame,

Bµ = γ
(
v ·B, B/γ2 +v (v ·B)

)
, Bµ Bµ =−(B ·B)/γ2 +(v ·B)2) =−B2

rest.

For convenience bµ ≡ Bµ/
√

4π will be used, in which case the MHD
field tensor and its dual have the forms

Fµν =
√

4π ε
µνλσ bλ uσ

F µν =
√

4π (bµ uν −uµ bν) .

The restriction bλ uλ = 0, can be lifted by defining a family of vectors

hµ = bµ +α uµ

where α is an arbitrary scalar field and now, in general, hµ uµ = α 6= 0.
The field tensor Fµν and its dual F µν are unchanged when written in
terms of hµ .



Relativistic ideal MHD equations

Each equation of relativistic MHD can be written as the vanishing of a
divergence:

∂µ(nuµ) = 0, ∂µ(σuµ) = 0, ∂µ T µν = 0 ,

∂µ F µν = 0, ⇒ ∂ν(bµ uν −uµ bν) = ∂ν(hµ uν −uµ hν) = 0

The stress-energy tensor T µν = T µν

f l +T µν

EM is considerably more
complex when written in terms of hµ rather than bµ

T µν

f l = (ρ + p)uµ uν − pgµν ,

T µν

EM =
1

4π

(
Fµλ F ν

λ
+

1
4

gµν Fλσ Fλσ

)
=−bµ bν −

(
bλ bλ

)
uµ uν +

1
2

gµν bλ bλ

=−hµ hν −
(

hλ hλ
)

uµ uν +
(

hλ uλ
)(

hµ uν +uµ hν
)
+

1
2

gµν

(
hλ hλ −

(
hλ uλ

)2
)
.

Note that T µν

EM does not depend on the choice of α. The field part T µν

EM
depends on bµ or hµ only through the tensor Fµν in which α cancels out.
This system preserves bµ uµ = 0 and uµ uµ = 1.



Covariant Poisson bracket formulation

The covariant Poisson bracket formalism requires two parts:
i) an action S that is a covariant functional of the field variables and
ii) a covariant Poisson bracket { , } defined on functionals of the fields.
Instead of the usual extremization δS = 0, the theory arises from
setting {F,S}= 0 for all functionals F .

A general Poisson bracket for fields Ψ has the form

{F,G}=
∫

dz(δF/δΨ)J (δG/δΨ),

where δF/δΨ is the functional derivative, dz is an appropriate spacetime
measure, and J is a cosymplectic operator that provides {F,G} with the
properties of antisymmetry and the Jacobi identity.

Thus {F,S}= 0 ∀ F ⇒ J δS/δΨ = 0 .

If J is nondegenerate the covariant Poisson bracket formalism reproduces
the conventional variational principle. MHD when written in terms of
Eulerian variables possesses noncanonical Poisson brackets for which J
possess degeneracy that is reflected in the existence of “Casimirs”.
In such a case the Poisson bracket naturally enforces constraints.



Covariant Action S[n,σ ,u,F ]

S[n,σ ,u,F ] =
∫

d4x
(

1
2
(

p+ρ
)
uλ uλ +

1
2
(

p−ρ
)
− 1

16π
Fλσ Fλσ

)
⇒ S[n,σ ,u,b] =

1
2

∫
d4x
((

p+ρ−bλ bλ
)
uλ uλ + p−ρ

)
⇒ S[n,σ ,u,h] =

1
2

∫
d4x

((
p+ρ−hσ hσ

)
uλ uλ +

(
hλ uλ

)2
+ p−ρ

)
.

As in Marsden et al. the action is the sum of the fluid action together with the
standard expression for the electromagnetic action5.
Note that the EM term has an opposite sign than usual, and the coupling term is missing, because they have been
combined via an integration by parts:∫

d4x
(

jµ Aµ +
1

16π
Fλσ Fλσ

)
=
∫

d4x
(

1
4π

Aµ ∂ν Fµν +
1

16π
Fλσ Fλσ

)
=
∫

d4x
(
− 1

4π
Fµν

∂ν Aµ +
1

16π
Fλσ Fλσ

)

=
∫

d4x
(
− 1

16π
Fµν Fµν

)
, using ∂ν Aµ = (∂ν Aµ −∂µ Aν )/2+(∂ν Aµ +∂µ Aν )/2.

5The integrand when evaluated on the constraint uλ uλ = 1 is the total pressure p+ |bλ bλ |/2.



Momentum variable. uµ , bµ ⇔ mµ , hµ

From the action one derives a momentum mµ by functional
differentiation,

mµ =
δS

δuµ
= (p+ρ−hσ hσ )uµ +

(
hλ uλ

)
hµ ≡ µuµ +αhµ .

The quantity µ = p+ρ−hλ hλ is a modified enthalpy density.

α = hλ uλ and uµ = (mµ −αhµ)/µ imply α = hλ mλ/(µ +hσ hσ ) . Then

uµ =
mµ

µ
− hλ mλ

µ(µ +hσ hσ )
hµ

bµ = hµ

(
1+

(hλ mλ )2

µ(µ +hσ hσ )2

)
− hλ mλ

µ(µ +hσ hσ )
mµ .



Action in momentum variables

Express the action in terms of the variables mµ and hµ which will turn
out to be the appropriate variables for the covariant Poisson bracket:

S[n,σ ,m,h] =
1
2

∫
d4x

(
mλ mλ

µ
−

(
hλ mλ

)2

µ(µ +hσ hσ )
+ p−ρ

)
.

After taking variations of the action, one may impose the constraint uλ uλ = 1. In terms of the momentum mµ , this
constraint becomes

1 = uλ uλ =
1

µ2

mλ mλ −2

(
hλ mλ

)2

µ +hσ hσ
+

(
hλ mλ

)2

(µ +hσ hσ )2

(
hτ hτ

) . (1)

All functional derivatives of the action can be reduced to simple expressions, provided 1 = uλ uλ is applied only after
functional differentiation.

δS
δn

=

−mλ mλ

2µ2 +

(
hλ mλ

)2

2µ2(µ +hσ hσ )
+

(
hλ mλ

)2

2µ (µ +hσ hσ )2

 ∂ µ

∂n
+

1
2

∂ p
∂n
− 1

2
∂ρ

∂n
=− ∂ρ

∂n
.



Action in momentum variables

δS
δσ

=− ∂ρ

∂σ
.

δS
δmν

=
mν

µ
− (hλ mλ )

µ(µ +hτ hτ )
hν = uν ,

δS
δhν

=
mλ mλ

µ2 hν −

(
hλ mλ

)2

µ2(µ +hσ hσ )
hν −

(hλ mλ )

µ(µ +hσ hσ )
mν =

1+

(
hλ mλ

)2

µ(µ +hσ hσ )2

hν −
(hλ mλ )

µ(µ +hσ hσ )
mν = bν .

The relationship δS/δhν = bν gives a meaning to hν : it is a conjugate
to bν , just as mν is to uν .

The covariant Poisson bracket for relativistic MHD is obtained by
extending the nonrelativistic bracket of Ref. P. J. Morrison and J. M.
Greene, Phys. Rev. Lett. 45, 790 (1980) to spacetime.
A difficulty arises in choosing the equivalent of the nonrelativistic
momentum and field, because the 4-vectorial equivalents of M = ρv
and B will no longer produce the correct equations.



Relativistic MHD bracket

The 4-vectors mν and hν provide the appropriate replacements, giving
the relativistic MHD bracket

{F,G}=
∫

d4x
(

n
(

δF
δmµ

∂µ

δG
δn
− δG

δmµ

∂µ

δF
δn

)
+σ

(
δF

δmµ

∂µ

δG
δσ
− δG

δmµ

∂µ

δF
δσ

)

+mν

(
δF

δmµ

∂µ

δG
δmν

− δG
δmµ

∂µ

δF
δmν

)
+hν

(
δF

δmµ

∂µ

δG
δhν
− δG

δmµ

∂µ

δF
δhν

)

+hµ

[(
∂µ

δF
δmν

)
δG
δhν
−
(

∂µ

δG
δmν

)
δF
δhν

])
.

The bracket is complicated, but one can derive the equations of
motion fairly quickly thanks to the simple functional derivatives

δS
δn

=−∂ρ

∂n
;

δS
δσ

=− ∂ρ

∂σ
;

δS
δmν

= uν ;
δS
δhν

= bν ,

where uµ and bµ here are shorthands for their expressions in terms of
the fields mµ and hµ .



Resulting field equations. Setting of ∂µhµ = 0

Using F =
∫

d4x n(x)δ 4(x− x0) in {F,S}= 0 gives, after an integration
by parts, ∂µ(nuµ) = 0 , which is the continuity equation6. In the same
manner one finds the adiabaticity equation from a σ variation.
The hµ variation gives

∂ν(hµ uν)−hν
∂ν uµ = 0 .

The above equation does not coincide with Maxwell’s equations7

since they correspond to £uhµ = 0, the Lie-dragging of the
four-dimensional vector density hµ by uµ . The theory obtained from
the variational principle can be viewed as a family of theories, only
some of which correspond to physical systems. However, if ∂µ hµ = 0,
then one obtains the usual form of relativistic MHD.

6evaluated implicitly at x0; however, since that point is arbitrary, the result holds for the entire spacetime
7although they are analogous to the nonrelativistic equation ∂B/∂ t =−B∇ ·v+B ·∇v−v ·∇B



Resulting field equations. Setting of ∂µhµ = 0

The situation is analogous to that in nonrelativistic Hamiltonian MHD
formalism which can describe systems with ∇ ·B 6= 0: in both cases, the
physical systems are a subset of the full class of systems described by the
formalism. In the nonrelativistic case the condition ∇ ·B = 0 is maintained by
the dynamics and the similar situation8 arises for hµ .
With hµ thus specified, we recover the usual form of Maxwell’s
equations (for Eµ = 0) ∂µ(hµ uν −uµ hν) = 0.

The mλ variation gives momentum equation

0 = n∂
µ

(
∂ p
∂n

)
+σ∂

µ

(
∂ p
∂σ

)
+mν ∂

µ
(
uν
)
+∂ν

(
mµ uν

)
+ hν ∂

µ
(
bν
)
−∂ν

(
hν bµ

)
= ∂ν

((
ρ + p−

(
hλ hλ

))
uµ uν +gµν

[
− p+

1
2

(
hλ hλ −

(
hλ uλ

)2
)]
− hµ hν +

(
hλ uλ

)(
hµ uν +uµ hν

))
,

Once derived it can be replaced with the simpler, equivalent version involving bµ .

8There also exists an alternative bracket that builds in ∂µ hµ = 0 where the constraint is enforced by the
bracket’s Jacobi identity. An extensive discussion how to impose ∂µ hµ = 0 as an “initial condition” is given in
D’Avignon et al. Phys. Rev. D, 91, 084050 (2015)



Conclusions

The relativistic ideal MHD equations have been cast into a covariant
action formalism using a noncanonical bracket.
Given a relativistic MHD problem posed in terms of (uµ ,bµ), we must
determine the associated problem in terms of (mµ ,hµ), this requires
the determination9 of α such that ∂µ hµ = 0.

Features that remain to be covered:
3+1 reductions,
additional Casimirs (magnetic helicity),
the relation to Lagrangian action principles, brackets in systems
possessing extra symmetry (e.g. spherical or toroidal).

Thank you for your attention

9See procedure in Eric D’Avignon, P. J. Morrison, F. Pegoraro Physical Review D, 91, 084050 (2015)


