Generalized symplectization of Vlasov dynamics

Robert Axel Neiss

Universität zu Köln rneiss@math.uni-koeln.de

October 30, 2017

Generalized symplectization of Vlasov dynamics

Hamiltonian formalism (symplectization) in finite dimensional systems helps to investigate questions about, e.g., **stability, perturbations, and geometric aspects**.

An example of the formalism has been explicitly found by **Fröhlich, Knowles, and Schwartz**, and it could be generalized for any Vlasov dynamics.

phase	Hamiltonian	symplectic	Hamiltonian
space	(energy)	form	equation
ΓN	$H(\vec{z})$	J	$\dot{\vec{z}} = J \nabla H(\vec{z})$
$\mathcal{L}^1(\Gamma)$	$\mathcal{H}(f)$???	$\dot{f} = [H, f]$
$\mathcal{L}^2(\Gamma)$	$\mathcal{H}_{VI.}(lpha)$	i	$\dot{\alpha} = [H, \alpha] +$
			img.
	space Γ^N	space (energy) $ \Gamma^{N} \qquad H(\vec{z}) $ $ \mathcal{L}^{1}(\Gamma) \qquad \mathcal{H}(f) $	space (energy) form $ \Gamma^{N} \qquad H(\vec{z}) \qquad \qquad J $ $ \mathcal{L}^{1}(\Gamma) \mathcal{H}(f) \qquad \qquad ??? $

where $\mathcal{H}_{VL}(\alpha) = \frac{1}{2}\Im D^1 \mathcal{H}(|\alpha|^2) \{[\bar{\alpha}, \alpha]\}.$