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Goal: Explain and prove a Krein-like theorem (G. Hagstrom) for
instabilities that emerge from continuous spectra in a large class of
Hamiltonian Eulerian matter models including the Vlasov-Poisson
(VP) system.
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Goal: Explain and prove a Krein-like theorem ... .
and obtain weakly nonlinear Hamiltonian theory for Viasov
and other systems by a procedure called beatification.



Beatification: Flattening Poisson Brackets

Q: What does this mean?

A: Transfer of nonlinearity from Poisson bracket to Hamiltonian.



What is Hamiltonian Hopf (Krein) bifurcation?



Charged Particle on Slick Mountain
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Falls and Rotates = Precession



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization — plasma mirror machine.

LLagrangian:

L=%(¢2+y2)+§(yx—:by)+g(x2+y2)

Hamiltonian:
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Two frequencies:

eB K
CUL:% and wo = E



Hamiltonian Hopf Bifurcation - Krein Crash
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Stable Normal Form

For large enough B system is stable and 4 a coordinate change,
a canonical transformation (¢,p) — (Q, P), to

H= (2 1 02) - (2 4 )

Slow mode is a negative energy mode (NEM) — a stable oscillation
that lowers the energy relative to the equilibrium state.

NEM Normal Form: Weierstrass (1894), Williamson (1936), ... .

Krein: Bifurcation to quartet only possible if modes have opposite
signature.

— Goal to do analog of this Hamiltonian Hopf for bifurcation with
continuous spectrum, viz., the Vlasov equation.



Vlasov-Poisson (VP) System

Phase space density (1 4+ 1 + 1 field theory):
f:TxR2—>RT, f(z,v,t) >0

Conservation of phase space density:
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Poisson’s equation:
Qrx = 41 IG/Rf(xaUat) dv — pB]

Energy:

m
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Fluid Two-Stream

Waterbag distribution function — exact closure:
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Two-Stream Instability < Hamiltonian Hopf

T hree equivalent definitions of negative energy modes:

e VVon Laue 1905:

sgn (w(k)&s(k,w(k))>

Ow
e Energy Casmir: §2F = §2(H + C) = Y opwi(a? + p2)/2

e Symplectic signature: Hj; on eigenvector or two-form

Krein (1950) — Moser (1958) — Sturrock (1958)
Avoidance crossing etc. Sturrock — Cairns ....

Von Laue (wave) energy incorrect for continuous spectrum
pjm and Pfirsch (1992)



Fluid and Plasma Theories — Matter Models

Systems that describe the motion of matter as dynamical systems

of the form

ow
F = O(WV), O nonlinear PDEs, intregrodifferential...

Examples:
e kinetic theories

— VIasov equation, drift Kinetic equations, gyrokinetics, ...

e Mmultifluid fluid theories
— 2-Fluid coupled to Maxwell's equations, ...

e Mmagnetofluids
— MHD, HMHD, IMHD, XMHD, etc.

e hybrids

Common Features:

e Nondissipative part is Hamiltonian. Dissipation should be real!

e Hamiltonian description is honcanonical




Canonical Hamiltonian Form

Hamilton’s Equations:

oOH

); = L H = ——,
P; {pz } g

Natural Hamiltonians:

H(p,q) =p?/2+ V() =K+V

Poisson Bracket:

(A B} = 0AOB 0OBOA

0qidp;  0q'Op;’

i=1,72,...,N

Phase Space Coordinates:  z = (q,p)

y . OH . . 0 I
T — 7] — 1 7Y — N N
d=g0 = D) ( I )
symplectic 2-form = (cosymplectic form)—1: w-C-Jgk = ok



Noncanonical Hamiltonian Form J. — J(z)

Noncanonical Coordinates:

o8
OzJ

. OH . A ..
£ = g0 = (2 HY, (4,B) = S579(2)

Poisson Bracket Properties:

antisymmetry —  {A, B} = —{B, A},

Jacobi identity —  {A,{B,C}} +{B,{C,A}}+{C,{A,B}} =0
G. Darboux: detJ #0 — J — J. Canonical Coordinates

Sophus Lie: detJ = 0 — Canonical Coordinates plus Casimirs

Eulerian Media: JU = c}g k <— Lie — Poisson Brackets



Poisson Manifold P Cartoon

Degeneracy in J = Casimirs:

{(f,C}=0 V f:P =R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C: Cons'l‘.'

For infinite dof VIasov leaves are symplectic rearrangements.



VP Cartoon— Symplectic Rearrangement

f(z,v,t) = foz
f~gif f=goz

with z symplectomorphism
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s - © volume measure

f(z,v,t) = f(&(z,v,t),0(x,v,t))



Infinite-Dimensional
Hamiltonian Structure — Field theory

Finite dimensions to infinite dimensions:

Fréchet Derivative — Variational Derivative:

o = iF[q + €dq]

de

e=0 5q

Canonical Poisson Bracket:

{r.cy= |

D
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EOM:

q=1{q,H} w={m H}



Infinite-Dimensional Plasmas Systems
Noncanonical Hamiltonian Field Theory

Field Variables: Ww(p,t) ed. pu==ux, p=(x,v),

Poisson Bracket:

(4, B}—/du—ﬂw—

Lie-Poisson Bracket:

= (o[(421]

Cosymplectic Operator:

Form for Eulerian theories: ideal fluids, VVlasov, Liouville eq, BBGKY,
gyrokinetic theory, MHD, tokamak reduced fluid models, RMHD,
H-M, 4-field model, ITG .. ..




Natural Hamiltonian Structure of Matter

Noncanonical Poisson Bracket:
oF 060G

(F.GYy = [Ldadp f |

] —_— /qudprij = <f7 [Ff7Gf]>

Cosymplectic Operator:

j._(‘?f@- _(‘9f8-
_8p 0q Oq Op
VIasov:
8

Casimir Degeneracy:

(C,FY=0 VF for C[f] = /qudp c(f)

Too many variables and not canonical.
Recall Cartoon — Hamiltonian on leaf.



Linear ViIasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f=row)+df(z,v,1)

Linearized EOM:

('%f 08 | e 009l t:61100

ox m ox Ov

+ =0

Oz = 47T6/R5f(a:', v,t) dv

Linearized Energy (Kruskal-Oberman 1958):
5f)2 1
// v f) dvd:v—l——/(éqb;,;)Qdac
8m JT




Sample Homogeneous Equilibria

— Maxwellian

BiMaxwellian —




Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian =

00
8—tf ={6f,Hr}L,

where quadratic Hamiltonian Hj is the Kruskal-Oberman energy
and linear Poisson bracket is {, }r =1, }y, -

Note:
6 f not canonical \
f . A-DA — {
Hj; not diagonal 7-?

ngple@h'c

Leaves
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Landau’s Problem

Assume

5f — ka(v7 t)eikéb‘, 5¢ — Z¢k(t)€ka
k k

Linearized EOM:

3fk e dfo

+ikofy ikgp— 0 =0, kg = —4me /R (v, 1) do

T hree methods:

1. Laplace Transforms (Landau and others 1946)
2. Normal Modes (Van Kampen, Case,... 1955)

3. Coordinate Change <= Integral Transform (PJM, Pfirsch,
Shadwick, ... 1992)



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

L OF 0G 0G oF
FGY, — ik / _
{F,G}L g::lm/]gfo <5fk5f_k 5fk5f—k>

Linear Hamiltonian:

1
— = Z/ —|fk|2d”0 8—Wzk2|¢k|2

k
fr(v) O 1 (v|v") fr.(v)) dvdd’
> L 510 Op @) £y
Canonization:
Qk(vat) — fk(’l),t), pk(’U,t) — k(’U t) —

fo

OF 63 oG 5F> p
— U
0q 0P, 0qL 0Dk

FGY =
{F,G}p, k§1/R<



Integral Transform

Definintion:

f(v) =Glgl(v) =epr(v)g(v) +¢1(v) Hlg](v),

where

w2 A fo(v)
. *pdJjo\Y
8[(”)_ sz (% 9

er(v) =1+ Hlef](v),

and the Hilbert transform

HgI(0) =~ f

g(u) du,
u — v

with § denoting Cauchy principal value of [p.



Theorem (G1) G: LP(R) — LP(R), 1 < p < oo, is a bounded
linear operator; i.e.

1G19]llp < Bp llgllp

where By, depends only on p.

Theorem (G2) If fj € L1(R), stable, Hélder decay, then G[g] has
a bounded inverse,

G~1: LP(R) — LP(R),
for1/p+1/q <1, given by

g(w) = GTf1(w)
er(u)

= TR 9~ iy G

where |g|? = 5% + a%




Diagonalization

Mixed Variable Generating Functional:

Flg, P'] = k; [ ax() GLP{ () do

Canonical Coordinate Change (q,p) +— (Q', P"):

6Flq, P'] 6Flq, P']

— T U
500(0) sPu(u) 0 ()

= G[P](v), Qp(u) =

pr(v) =

New Hamiltonian:

Hi=3 Y [duoru) (R + PEw)

where wi(u) = |ku| and the signature is

o (v) := —sgn(vfh(v))




Sample Homogeneous Equilibria

— Maxwellian

BiMaxwellian —




Hamiltonian Spectrum

Hamiltonian Operator:

o = —ikofi+ 0 [ b f(50) = Ty,

Complete System:

fror = TSk and foty =T Sk keRT

Lemma If A\ is an eigenvalue of the VIasov equation linearized
about the equilibrium fh(v), then so are —X and X* . Thus if A =
v+ 1w, then eigenvalues occur in the pairs, &v and xiw, for purely
real and imaginary cases, respectively, or quartets, X = +v %+ 1w,
for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized
around some equilibrium solution, with the phase space of solu-
tions in some Banach space B, is spectrally stable if the spectrum
o(T) of the time evolution operator T is purely imaginary.

Theorem If for some k € RT and v = w/k in the upper half plane
the plasma dispersion relation,
/
e(k,u) 1= 1—k_2/Rdv Jo =0,

U —"v

then the system with equilibrium fqo is spectrally unstable. Other-
wise it is spectrally stable.



Nyquist Method
fh € COYR) = & € C¥(uhp).

T herefore, Argument Principle = winding # = # zeros of ¢

U- PLANE & E-PLANE

Stable —




Spectral Theorem

Set k=1 and consider T: f— ivf —if} [ f in the space WLHI(R).
WL1(R) is Sobolev space containing closure of functions

£l = Ifl+ £ = [ dv(1f1+ 15D

Definition Resolvent of T is R(T,\) = (T —XI)~1 and X € o(7).
(i) A in point spectrum, op(T), if R(T,\) not injective. (ii) A in
residual spectrum, o,(T), if R(T, \) exists but not densely defined.
(iii) X in continuous spectrum, o.(T), if R(T,)\) exists, densely
defined but not bounded.

Theorem Let A\ = iu. (i) op(T) consists of all points iu € C,
where e = 1 — k™2 [pdv fi/(u —v) = 0. (ii) oo(T) consists of all

A = iu with u € R\ (—iop(T)NR). (iii) or(T") contains all the points
A = iu in the complement of op(T) Uoc(T) that satisfy fi(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



Structural Stability

Definition Consider an equilibrium solution of a Hamiltonian sys-
tem and the corresponding time evolution operator 1T for the
linearized dynamics. Let the phase space for the linearized dy-
namics be some Banach space B. Suppose that T is spectrally
stable. Consider perturbations &7 of T  and define a norm on the
space of such perturbations. Then we say that the equilibrium
is structurally stable under this norm if there is some 6 > 0 such
that for every ||6T|| < § the operator T + &T is spectrally stable.
Otherwise the system is structurally unstable.

Definition Consider the formulation of the linearized VIasov-Poisson
equation in the Banach space WH1(R) with a spectrally stable ho-
mogeneous equilibrium function fg. Let L4515 be the time evo-
lution operator corresponding to the linearized dynamics around
the distribution function fg + dfg. If there exists some € depend-
ing only on fp such that Tfo+5fo IS spectrally stable whenever
|Ts, — Ty4-57,ll < € then the equilibrium fp is structurally stable
under perturbations of fj.
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All fy are Structurally Unstable in Wil

True in space where Hilbert transform unbounded, e.g. whl
Small perturbation = big jump in Penrose plot.

Theorem A stable equilibrium distribution is structurally unstable
under perturbations of f} in the Banach spaces W11 and L1NCy.
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Easy to make ‘bumps’ in fg that are small in norm. What to do?



Krein-Like T heorem for VP

Theorem Let fo be a stable equilibrium distribution function
for the Vlasov equation. Then fg is structurally stable under
dynamically accessible perturbations in W11, if there is only one
solution of fh(v) = 0 (e.g. Maxwellian). If there are multiple
solutions, fq is structurally unstable and the unstable modes come
from the roots of f} that satisfy f{(v) <O.

Remark A change in the signature of the continuous spectrum
IS a necessary and sufficient condition for structural instability.
The bifurcations do not occur at all points where the signature
changes, however. Only those that represent valleys of the distri-
bution can give birth to unstable modes.



Summary — Conclusions

When a linear system has NEMSs:

e Structurally unstable — Krein-Moser via Hamiltonian Hopf

For Hamiltonian pdes with continuous spectrum (CS) like VP:

e Diagonalization by G-transform defines signature for CS

e [ here is a Krein-like theorem, e.g. valley theorem



Beatification: Flattening Poisson Brackets

Collaborators: J. Vanneste, T. Viscondi, I. Caldas



