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Goal: Explain and prove a Krein-like theorem (G. Hagstrom) for

instabilities that emerge from continuous spectra in a large class of

Hamiltonian Eulerian matter models including the Vlasov-Poisson

(VP) system.
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Goal: Explain and prove a Krein-like theorem ... .
and obtain weakly nonlinear Hamiltonian theory for Vlasov
and other systems by a procedure called beatification.



Beatification: Flattening Poisson Brackets

Q: What does this mean?

A: Transfer of nonlinearity from Poisson bracket to Hamiltonian.



What is Hamiltonian Hopf (Krein) bifurcation?



Charged Particle on Slick Mountain

Falls and Rotates ⇒ Precession



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization → plasma mirror machine.

Lagrangian:

L =
m

2

(
ẋ2 + ẏ2

)
+
eB

2
(ẏx− ẋy) +

K

2

(
x2 + y2

)

Hamiltonian:

H =
m

2

(
p2
x + p2

y

)
+ ωL (ypx − xpy)−

m

2

(
ω2
L − ω

2
0

) (
x2 + y2

)

Two frequencies:

ωL =
eB

2m
and ω0 =

√
K

m



Hamiltonian Hopf Bifurcation - Krein Crash

x, y ∼ eiωt = eλt



Stable Normal Form

For large enough B system is stable and ∃ a coordinate change,
a canonical transformation (q, p)→ (Q,P ), to

H =
|ωf |

2

(
P2
f +Q2

f

)
−
|ωs|
2

(
P2
s +Q2

s

)

Slow mode is a negative energy mode (NEM) – a stable oscillation
that lowers the energy relative to the equilibrium state.

NEM Normal Form: Weierstrass (1894), Williamson (1936), ... .

Krein: Bifurcation to quartet only possible if modes have opposite
signature.

→ Goal to do analog of this Hamiltonian Hopf for bifurcation with
continuous spectrum, viz., the Vlasov equation.



Vlasov-Poisson (VP) System

Phase space density (1 + 1 + 1 field theory):

f : T× R2 → R+ , f(x, v, t) ≥ 0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = 4π
[
e
∫
R
f(x, v, t) dv − ρB

]

Energy:

H =
m

2

∫
T

∫
R
v2f dxdv +

1

8π

∫
T

(φx)2 dx



Fluid Two-Stream

Waterbag distribution function → exact closure:





Two-Stream Instability ↔ Hamiltonian Hopf

Three equivalent definitions of negative energy modes:

• Von Laue 1905:

sgn

(
ω(k)

∂ε(k, ω(k))

∂ω

)

• Energy Casmir: δ2F = δ2(H + C) =
∑
k σkωk(q2

k + p2
k)/2

• Symplectic signature: HL on eigenvector or two-form

Krein (1950) – Moser (1958) – Sturrock (1958)

Avoidance crossing etc. Sturrock → Cairns ....

Von Laue (wave) energy incorrect for continuous spectrum

pjm and Pfirsch (1992)



Fluid and Plasma Theories – Matter Models

Systems that describe the motion of matter as dynamical systems
of the form

∂Ψ

∂t
= O(Ψ) , O nonlinear PDEs, intregrodifferential ...

Examples:
• kinetic theories

– Vlasov equation, drift kinetic equations, gyrokinetics, ...

• multifluid fluid theories

– 2-Fluid coupled to Maxwell’s equations, ...

• magnetofluids

– MHD, HMHD, IMHD, XMHD, etc.

• hybrids

Common Features:

• Nondissipative part is Hamiltonian. Dissipation should be real!

• Hamiltonian description is noncanonical



Canonical Hamiltonian Form

Hamilton’s Equations:

ṗi = {pi, H} = −
∂H

∂qi
, q̇i = {qi, H} =

∂H

∂pi
,

Natural Hamiltonians:

H(p, q) = p2/2 + V (q) = K + V

Poisson Bracket:

{A,B} =
∂A

∂qi
∂B

∂pi
−
∂B

∂qi
∂A

∂pi
, i = 1,2, . . . , N

Phase Space Coordinates: z = (q, p)

żi = J ijc
∂H

∂zj
= {zi, H} (J ijc ) =

(
0N IN
−IN 0N

)

symplectic 2-form = (cosymplectic form)−1: ωcijJ
jk
c = δki



Noncanonical Hamiltonian Form Jc→ J(z)

Noncanonical Coordinates:

żi = J ij
∂H

∂zj
= {zi, H} , {A,B} =

∂A

∂zi
J ij(z)

∂B

∂zj

Poisson Bracket Properties:

antisymmetry −→ {A,B} = −{B,A} ,

Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Eulerian Media: J ij = c
ij
k z

k ←− Lie− Poisson Brackets



Poisson Manifold P Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f : P → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

For infinite dof Vlasov leaves are symplectic rearrangements.



VP Cartoon– Symplectic Rearrangement

f(x, v, t) = f̊ ◦ z̊

f ∼ g if f = g ◦ z

with z symplectomorphism

, ~ 
1 

p = mv

µ volume measure

f(x, v, t) = f̊ (̊x(x, v, t), v̊(x, v, t))



Infinite-Dimensional
Hamiltonian Structure – Field theory

Finite dimensions to infinite dimensions:

Fréchet Derivative → Variational Derivative:

δF =
d

dε
F [q + εδq]

∣∣∣∣
ε=0

= DF · δq →
δF

δq
≡ Fq

Canonical Poisson Bracket:

{F,G} =
∫
D
d3a

(
δF

δqi
δG

δπi
−
δG

δqi
δF

δπi

)

EOM:

q̇ = {q,H} π̇ = {π,H}



Infinite-Dimensional Plasmas Systems
Noncanonical Hamiltonian Field Theory

Field Variables: ψ(µ, t) e.g. µ = x, µ = (x, v), . . .

Poisson Bracket:

{A,B} =
∫
dµ

δA

δψ
J (ψ)

δA

δψ

Lie-Poisson Bracket:

{A,B} =
〈
ψ,

[
δA

δψ
,
δA

δψ

] 〉

Cosymplectic Operator:

J · ∼ [ψ, · ]

Form for Eulerian theories: ideal fluids, Vlasov, Liouville eq, BBGKY,
gyrokinetic theory, MHD, tokamak reduced fluid models, RMHD,
H-M, 4-field model, ITG . . . .



Natural Hamiltonian Structure of Matter

Noncanonical Poisson Bracket:

{F,G} =
∫
Z
dqdp f

[
δF

δf
,
δG

δf

]
=
∫
Z
dqdpFfJGf =

〈
f, [Ff , Gf ]

〉

Cosymplectic Operator:

J · =
∂f

∂p

∂ ·
∂q
−
∂f

∂q

∂ ·
∂p

Vlasov:
∂f

∂t
= {f,H} = J

δH

δf
= −[f, E].

Casimir Degeneracy:

{C,F} = 0 ∀F for C[f ] =
∫
Z
dqdp C(f)

Too many variables and not canonical.
Recall Cartoon – Hamiltonian on leaf.



Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = 4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal-Oberman 1958):

HL = −
m

2

∫
T

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
T

(δφx)2 dx



Sample Homogeneous Equilibria

← Maxwellian

BiMaxwellian →



Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian ⇒

∂δf

∂t
= {δf,HL}L ,

where quadratic Hamiltonian HL is the Kruskal-Oberman energy
and linear Poisson bracket is { , }L = { , }f0

.

Note:

δf not canonical

HL not diagonal



Landau’s Problem

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv

Three methods:

1. Laplace Transforms (Landau and others 1946)

2. Normal Modes (Van Kampen, Case,... 1955)

3. Coordinate Change ⇐⇒ Integral Transform (PJM, Pfirsch,
Shadwick, ... 1992)



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonization:

qk(v, t) = fk(v, t) , pk(v, t) =
m

ikf ′0
f−k(v, t) =⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv



Integral Transform

Definintion:

f(v) = G[g](v) := εR(v) g(v) + εI(v)H[g](v) ,

where

εI(v) = −π
ω2
p

k2

∂f0(v)

∂v
, εR(v) = 1 +H[εI](v) ,

and the Hilbert transform

H[g](v) :=
1

π
−
∫

g(u)

u− v
du ,

with −
∫

denoting Cauchy principal value of
∫
R.



Theorem (G1) G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator; i.e.

‖G[g]‖p ≤ Bp ‖g‖p ,

where Bp depends only on p.

Theorem (G2) If f ′0 ∈ L
q(R), stable, Hölder decay, then G[g] has

a bounded inverse,

G−1 : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = G−1[f ](u)

:=
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u) .

where |ε|2 := ε2
R + ε2

I .



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate Change (q, p)←→ (Q′, P ′):

pk(v) =
δF[q, P ′]

δqk(v)
= G[Pk](v) , Q′k(u) =

δF[q, P ′]

δPk(u)
= G†[qk](u)

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

where ωk(u) = |ku| and the signature is

σk(v) := −sgn(vf ′0(v))



Sample Homogeneous Equilibria

← Maxwellian

BiMaxwellian →



Hamiltonian Spectrum

Hamiltonian Operator:

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: Tkfk ,

Complete System:

fkt = Tkfk and f−kt = T−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if λ =

γ+ iω, then eigenvalues occur in the pairs, ±γ and ±iω, for purely

real and imaginary cases, respectively, or quartets, λ = ±γ ± iω,
for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized

around some equilibrium solution, with the phase space of solu-

tions in some Banach space B, is spectrally stable if the spectrum

σ(T ) of the time evolution operator T is purely imaginary.

Theorem If for some k ∈ R+ and u = ω/k in the upper half plane

the plasma dispersion relation,

ε(k, u) := 1− k−2
∫
R
dv

f ′0
u− v

= 0 ,

then the system with equilibrium f0 is spectrally unstable. Other-

wise it is spectrally stable.



Nyquist Method

f ′0 ∈ C
0,α(R)⇒ ε ∈ Cω(uhp).

Therefore, Argument Principle ⇒ winding # = # zeros of ε

Stable →



Spectral Theorem

Set k = 1 and consider T : f 7→ ivf − if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions

‖f‖1,1 = ‖f‖1 + ‖f ′‖1 =
∫
R
dv(|f |+ |f ′|)

Definition Resolvent of T is R(T, λ) = (T − λI)−1 and λ ∈ σ(T ).
(i) λ in point spectrum, σp(T ), if R(T, λ) not injective. (ii) λ in
residual spectrum, σr(T ), if R(T, λ) exists but not densely defined.
(iii) λ in continuous spectrum, σc(T ), if R(T, λ) exists, densely
defined but not bounded.

Theorem Let λ = iu. (i) σp(T ) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(T ) consists of all

λ = iu with u ∈ R\(−iσp(T )∩R). (iii) σr(T ) contains all the points
λ = iu in the complement of σp(T )∪ σc(T ) that satisfy f ′0(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



Structural Stability

Definition Consider an equilibrium solution of a Hamiltonian sys-
tem and the corresponding time evolution operator T for the
linearized dynamics. Let the phase space for the linearized dy-
namics be some Banach space B. Suppose that T is spectrally
stable. Consider perturbations δT of T and define a norm on the
space of such perturbations. Then we say that the equilibrium
is structurally stable under this norm if there is some δ > 0 such
that for every ‖δT‖ < δ the operator T + δT is spectrally stable.
Otherwise the system is structurally unstable.

Definition Consider the formulation of the linearized Vlasov-Poisson
equation in the Banach space W1,1(R) with a spectrally stable ho-
mogeneous equilibrium function f0. Let Tf0+δf0

be the time evo-
lution operator corresponding to the linearized dynamics around
the distribution function f0 + δf0. If there exists some ε depend-
ing only on f0 such that Tf0+δf0

is spectrally stable whenever
‖Tf0

− Tf0+δf0
‖ < ε, then the equilibrium f0 is structurally stable

under perturbations of f0.



All f0 are Structurally Unstable in W1,1

True in space where Hilbert transform unbounded, e.g. W1,1.

Small perturbation ⇒ big jump in Penrose plot.

Theorem A stable equilibrium distribution is structurally unstable

under perturbations of f ′0 in the Banach spaces W1,1 and L1∩C0.
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Hilbert Transform of χ

Easy to make ‘bumps’ in f0 that are small in norm. What to do?



Krein-Like Theorem for VP

Theorem Let f0 be a stable equilibrium distribution function

for the Vlasov equation. Then f0 is structurally stable under

dynamically accessible perturbations in W1,1, if there is only one

solution of f ′0(v) = 0 (e.g. Maxwellian). If there are multiple

solutions, f0 is structurally unstable and the unstable modes come

from the roots of f ′0 that satisfy f ′′0(v) < 0.

Remark A change in the signature of the continuous spectrum

is a necessary and sufficient condition for structural instability.

The bifurcations do not occur at all points where the signature

changes, however. Only those that represent valleys of the distri-

bution can give birth to unstable modes.



Summary – Conclusions

When a linear system has NEMs:

• Structurally unstable – Krein-Moser via Hamiltonian Hopf

For Hamiltonian pdes with continuous spectrum (CS) like VP:

• Diagonalization by G-transform defines signature for CS

• There is a Krein-like theorem, e.g. valley theorem



Beatification: Flattening Poisson Brackets

Collaborators: J. Vanneste, T. Viscondi, I. Caldas


