From Vlasov-Poisson to Euler in the gyrokinetic limit

Evelyne Miot - CNRS - Université Grenoble - Alpes

Collisionless Boltzmann equation and modeling of self-gravitating systems and plasmas, Nov 2017

Outline of the talk

• Introduction: from Vlasov-Poisson to Euler

- Main results
- Sketch of proofs
- From Vlasov-Poisson with point charge to the vortex-wave system

э

イロト イポト イヨト イヨト

Aim: Vlasov-Poisson \rightsquigarrow Euler equation in 2D

2D Vlasov-Poisson	2D Euler
$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + E \cdot \nabla_{\mathbf{v}} f = 0$	$\partial_t \omega + u \cdot \nabla \omega = 0$
$f(t, x, v) \ge 0, x, v \in \mathbb{R}^2$ [density of electric particles]	$\operatorname{div}(u) = 0$
$ ho(t,x) = \int f(t,x,v) dv, x \in \mathbb{R}^2$ [macroscopic density of particles]	$egin{array}{lll} \omega(t,x), & x\in \mathbb{R}^2 \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $
$E(t,x) = \left(\frac{x}{ x ^2} * \rho\right)(t,x)$	$u(t,x) = \left(\frac{x^{\perp}}{ x ^2} * \omega\right)(t,x)$

3

<ロト <回ト < 回ト < 回ト -

The Vlasov-Poisson system with strong magnetic field

- **Gyrokinetic limit** for the Vlasov-Poisson system: the particles are submitted to a constant magnetic field, orthogonal to the plane, with strength tending to infinity.
- Corresponds to studying the asymptotics as $\varepsilon \to 0$ of

$$\partial_t f_{\varepsilon} + \frac{\mathbf{v}}{\varepsilon} \cdot \nabla_x f_{\varepsilon} + \left(\frac{E_{\varepsilon}}{\varepsilon} + \frac{\mathbf{v}^{\perp}}{\varepsilon^2}\right) \cdot \nabla_{\mathbf{v}} f_{\varepsilon} = 0,$$

$$f_{\varepsilon}(0, x, \mathbf{v}) = f_{\varepsilon}^0(x, \mathbf{v}).$$

 The initial data f⁰_e satisfy some suitable bounds for norms that are conserved by the flow of the Vlasov-Poisson equation.

• • = • • = •

Outline of the talk

- Introduction: from Vlasov-Poisson to Euler in the gyrokinetic limit
- Main results
- Sketch of proofs
- From Vlasov-Poisson with point charge to the vortex-wave system

イロト イポト イヨト イヨト

*f*⁰_ε ∈ *L*¹ ∩ *L*[∞](ℝ²), nonnegative and compactly supported
 → unique global solution *f*_ε ∈ *L*[∞](*L*¹ ∩ *L*[∞]) Okabe & Ukai 75.

• • = • • = •

- $f_{\varepsilon}^0 \in L^1 \cap L^{\infty}(\mathbb{R}^2)$, nonnegative and compactly supported \rightsquigarrow unique global solution $f_{\varepsilon} \in L^{\infty}(L^1 \cap L^{\infty})$ Okabe & Ukai 75.
- Uniform bounds on physical quantities:

$$\|f_{\varepsilon}^{0}\|_{L^{1}}+\int_{\mathbb{R}^{2}}|x|^{2}
ho_{\varepsilon}^{0}(x)\,dx+\mathcal{H}(f_{\varepsilon}^{0})\leq C.$$

where the energy is defined by

$$\mathcal{H}(f) = \iint |v|^2 f(x, v) \, dx \, dv - \iint \ln |x - y| \rho(x) \rho(y) \, dx \, dy,$$

A B F A B F

- $f_{\varepsilon}^0 \in L^1 \cap L^{\infty}(\mathbb{R}^2)$, nonnegative and compactly supported \rightsquigarrow unique global solution $f_{\varepsilon} \in L^{\infty}(L^1 \cap L^{\infty})$ Okabe & Ukai 75.
- Uniform bounds on physical quantities:

$$\|f_{\varepsilon}^{0}\|_{L^{1}}+\int_{\mathbb{R}^{2}}|x|^{2}
ho_{\varepsilon}^{0}(x)\,dx+\mathcal{H}(f_{\varepsilon}^{0})\leq C.$$

where the energy is defined by

$$\mathcal{H}(f) = \iint |v|^2 f(x,v) \, dx \, dv - \iint \ln |x-y| \rho(x) \rho(y) \, dx \, dy,$$

• Additional boundedness assumption: $\varepsilon^2 \|f_{\varepsilon}^0\|_{L^{\infty}} \ln \left(\|f_{\varepsilon}^0\|_{L^{\infty}}+2\right) = o_{\varepsilon}(1).$

Example: monokinetic-like data

The previous assumptions allow for initial data that converge to **monokinetic data:**

$$f^0_arepsilon(x,
u) o
ho_0(x) \, \delta_{
u=u_0(x)} \quad ext{as } arepsilon o 0, \quad
ho_0 \in L^\infty(\mathbb{R}^2).$$

Indeed, take

$$f_{\varepsilon}^{0}(x,v) =
ho_{0}(x) rac{1}{\delta_{\varepsilon}^{2}} \Phi\left(rac{v-u(x)}{\delta_{\varepsilon}}
ight),$$

where $\varepsilon^2 \delta_{\varepsilon}^{-2} | \ln \delta_{\varepsilon} |$ vanishes as $\varepsilon \to 0$ and Φ smooth cut-off function.

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Main result

Theorem 1

Let f_{ε}^{0} satisfy the previous assumptions and f_{ε} denote the corresponding global solution. There exists a subsequence $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow +\infty$ such that

- ρ_{ε_n} converges to ρ in $C(\mathbb{R}_+, \mathcal{M}^+(\mathbb{R}^2) w^*)$;
- ρ belongs moreover to $L^{\infty}(\mathbb{R}_+, H^{-1}(\mathbb{R}^2));$
- *ρ* is a global generalized "vortex sheet" solution of the 2D Euler equation.

Notion of "vortex sheet" solution: for $\rho \in \mathcal{M}^+ \cap H^{-1}(\mathbb{R}^2)$) need to define the product $u \cdot \nabla \rho$ in the sense of distributions, where $u = x^{\perp}/|x|^2 * \rho$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Notion of "vortex sheet" solution: for $\rho \in \mathcal{M}^+ \cap H^{-1}(\mathbb{R}^2)$) need to define the product $u \cdot \nabla \rho$ in the sense of distributions, where $u = x^{\perp}/|x|^2 * \rho$.

Observed by Delort 91, Schochet 95.

If ρ is sufficiently smooth we have by symmetrization:

$$\langle \operatorname{div}(u\rho), \Phi \rangle = -\langle \left(\frac{x^{\perp}}{|x|^2} * \rho \right) \rho, \nabla \Phi \rangle = \iint H_{\Phi}(x, y) \, \rho(x) \, \rho(y) \, dx \, dy,$$

• • = • • = •

Notion of "vortex sheet" solution: for $\rho \in \mathcal{M}^+ \cap H^{-1}(\mathbb{R}^2)$) need to define the product $u \cdot \nabla \rho$ in the sense of distributions, where $u = x^{\perp}/|x|^2 * \rho$.

Observed by Delort 91, Schochet 95.

If $\boldsymbol{\rho}$ is sufficiently smooth we have by symmetrization:

$$\langle \operatorname{div}(u\rho), \Phi \rangle = -\langle \left(\frac{x^{\perp}}{|x|^2} * \rho \right) \rho, \nabla \Phi \rangle = \iint H_{\Phi}(x, y) \, \rho(x) \, \rho(y) \, dx \, dy,$$

where

$$H_{\Phi}(x,y) = \frac{1}{2} \frac{(x-y)^{\perp}}{|x-y|^2} \cdot \left(\nabla \Phi(x) - \nabla \Phi(y) \right).$$

 H_{Φ} bounded on $\mathbb{R}^2 \times \mathbb{R}^2$ and continuous off the diagonal $\{(x,x), x \in \mathbb{R}^2\}.$

< 回 > < 三 > < 三 > <

We set for ρ positive bounded Radon measure belonging to H^{-1} :

$$\mathcal{H}_{\Phi}[\rho,\rho] = \iint H_{\Phi}(x,y) \, d\rho(x) \, d\rho(y).$$

・ 何 ト ・ ヨ ト ・ ヨ ト

We set for ρ positive bounded Radon measure belonging to H^{-1} :

$$\mathcal{H}_{\Phi}[\rho,\rho] = \iint H_{\Phi}(x,y) \, d\rho(x) \, d\rho(y).$$

Definition

We say that $\rho \in L^{\infty}(\mathcal{M}^+ \cap H^{-1}(\mathbb{R}^2)))$ is a vortex sheet solution of the Euler equation with initial datum ρ_0 if for all $\Phi \in C_c^{\infty}(\mathbb{R}^2)$

$$\int \Phi \, d
ho(t,x) = \int \Phi \, d
ho_0(x) + \int_0^t \mathcal{H}_\Phi[
ho(s),
ho(s)] \, ds.$$

(E. Miot)

We set for ρ positive bounded Radon measure belonging to H^{-1} :

$$\mathcal{H}_{\Phi}[\rho,\rho] = \iint H_{\Phi}(x,y) \, d\rho(x) \, d\rho(y).$$

Definition

We say that $\rho \in L^{\infty}(\mathcal{M}^+ \cap H^{-1}(\mathbb{R}^2)))$ is a vortex sheet solution of the Euler equation with initial datum ρ_0 if for all $\Phi \in C_c^{\infty}(\mathbb{R}^2)$

$$\int \Phi \, d\rho(t,x) = \int \Phi \, d\rho_0(x) + \int_0^t \mathcal{H}_{\Phi}[\rho(s),\rho(s)] \, ds.$$

Delort 91, Schochet 95: global existence of such solutions.

(E. Miot)

Main results

Previous results on the asymptotics for Vlasov-Poisson

- Golse & Saint-Raymond 99, Saint-Raymond 02: compactness method, same assumptions except that $\varepsilon || f_{\varepsilon}^{0} ||_{L^{\infty}} = o_{\varepsilon}(1)$.
- Brenier 00: different time scaling, modulated energy method.
- Bostan, Finot & Hauray 15 different scaling, effective dynamics for the asymptotics of the shifted density $f_{\varepsilon}(t, x R(-t/\varepsilon v)^{\perp}, R(-t/\varepsilon)v)$.
- Other regimes leading to various equations: Brenier 00 (quasineutral limit), Frénod & Sonnendrücker 98, 99, 01, Han-Kwan 10, Ghendrih, Hauray & Nouri 09, Hauray and Nouri 11, Barré, Chiron, Goudon & Masmoudi 15.

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト …

Main results

Outline of the talk

- Introduction: from Vlasov-Poisson to Euler in the gyrokinetic limit
- Main results

Sketch of proofs

- Uniform estimates \rightsquigarrow compactness.
- $\bullet\,$ New lagrangian coordinates $\rightsquigarrow\,$ new weak formulation
- Passing to the limit

• From Vlasov-Poisson with point charge to the vortex-wave system

• • = • • = •

Conserved quantities, uniform bounds & quantitative estimates

Let f_{ε} be a solution as in the Theorem 1.

- The quantities $||f_{\varepsilon}(t)||_{L^{p}}$ and $\mathcal{H}(f_{\varepsilon}(t))$ are conserved.
- In particular: $\|f_{\varepsilon}(t)\|_{L^1} + \int |x|^2 \rho_{\varepsilon}(t) + \mathcal{H}(f_{\varepsilon}(t)) \leq C$.
- Already known: this implies $\|\rho_{\varepsilon}(t)\|_{H^{-1}} \leq C$.

< 回 > < 三 > < 三 > <

Conserved quantities, uniform bounds & quantitative estimates

Let f_{ε} be a solution as in the Theorem 1.

- The quantities $||f_{\varepsilon}(t)||_{L^{p}}$ and $\mathcal{H}(f_{\varepsilon}(t))$ are conserved.
- In particular: $\|f_{\varepsilon}(t)\|_{L^1} + \int |x|^2 \rho_{\varepsilon}(t) + \mathcal{H}(f_{\varepsilon}(t)) \leq C$.
- Already known: this implies $\|\rho_{\varepsilon}(t)\|_{H^{-1}} \leq C$.
- Quantitative estimates:

 $egin{aligned} &\|
ho_arepsilon(t)\|_{L^2} \leq C\|f_arepsilon^0\|_{L^\infty}^{1/2}, &\|E_arepsilon(t)\|_{H^1_{ ext{loc}}} \leq C(1+\|f_arepsilon^0\|_{L^\infty}^{1/2}) \ & \rightsquigarrow \|E_arepsilon(t)\|_{L^1_{ ext{loc}}} \leq C\sqrt{q}(1+\|f_arepsilon^0\|_{L^\infty}^{1/2}), &orall q\geq 2. \end{aligned}$

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

New lagrangian coordinates for Vlasov-Poisson

DiPerna & Lions 89: theory on transport equations.

Vlasov-PoissonEuler (only in 2D) $f_{\varepsilon}(X_{\varepsilon}(t,x,v), V_{\varepsilon}(t,x,v)) = f_{\varepsilon}^{0}(x,v)$ $\omega(X(t,x)) = \omega^{0}(x)$ $\begin{pmatrix} \dot{X}_{\varepsilon} = \frac{V_{\varepsilon}}{\varepsilon}, & \dot{V}_{\varepsilon} = \frac{V_{\varepsilon}^{\perp}}{\varepsilon^{2}} + \frac{E_{\varepsilon}(X_{\varepsilon})}{\varepsilon} \\ (X_{\varepsilon}, V_{\varepsilon})(0, x, v) = (x, v) \end{pmatrix}$ $\begin{cases} \dot{X} = u(X) \\ X(0, x) = x \end{cases}$

$$E_{\varepsilon} = \frac{x}{|x|^2} * \rho_{\varepsilon} \qquad \qquad u = \frac{x^{\perp}}{|x|^2} * \omega$$

• • = • • = •

New lagrangian coordinates for Vlasov-Poisson

Vlasov-PoissonEuler (only in 2D)
$$f_{\varepsilon} (X_{\varepsilon}(t, x, v), V_{\varepsilon}(t, x, v)) = f_{\varepsilon}^{0}(x, v)$$
 $\omega (X(t, x)) = \omega^{0}(x)$ $\begin{cases} \dot{X}_{\varepsilon} = \frac{V_{\varepsilon}}{\varepsilon}, \quad \dot{V}_{\varepsilon} = \frac{V_{\varepsilon}^{\perp}}{\varepsilon^{2}} + \frac{E_{\varepsilon}(X_{\varepsilon})}{\varepsilon} \\ (X_{\varepsilon}, V_{\varepsilon})(0, x, v) = (x, v) \end{cases}$ $\begin{cases} \dot{X} = u(X) \\ X(0, x) = x \end{cases}$ $E_{\varepsilon} = \frac{x}{|x|^{2}} * \rho_{\varepsilon}$ $u = \frac{x^{\perp}}{|x|^{2}} * \omega$ We set $Z_{\varepsilon} = X_{\varepsilon} + \varepsilon V_{\varepsilon}^{\perp}$, $Z_{\varepsilon} = X_{\varepsilon} + O(\varepsilon)$

イロト イヨト イヨト イヨト

New lagrangian coordinates for Vlasov-Poisson

Vlasov-PoissonEuler (only in 2D)
$$f_{\varepsilon}(X_{\varepsilon}(t,x,v), V_{\varepsilon}(t,x,v)) = f_{\varepsilon}^{0}(x,v)$$
 $\omega(X(t,x)) = \omega^{0}(x)$ $\begin{cases} \dot{X}_{\varepsilon} = \frac{V_{\varepsilon}}{\varepsilon}, \quad \dot{V}_{\varepsilon} = \frac{V_{\varepsilon}^{\perp}}{\varepsilon^{2}} + \frac{E_{\varepsilon}(X_{\varepsilon})}{\varepsilon} \\ (X_{\varepsilon}, V_{\varepsilon})(0, x, v) = (x, v) \end{cases}$ $\begin{cases} \dot{X} = u(X) \\ X(0, x) = x \end{cases}$ $E_{\varepsilon}^{\perp} = \frac{x^{\perp}}{|x|^{2}} * \rho_{\varepsilon}$ $u = \frac{x^{\perp}}{|x|^{2}} * \omega$ We set $Z_{\varepsilon} = X_{\varepsilon} + \varepsilon V_{\varepsilon}^{\perp}$,
Then: $\dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon})$ $Z_{\varepsilon} = X_{\varepsilon} + O(\varepsilon)$

э

<ロト <回ト < 回ト < 回ト

New lagrangian coordinates for Vlasov-Poisson

$$\begin{array}{ll} \text{Vlasov-Poisson} & \text{Euler (only in 2D)} \\ f_{\varepsilon}\left(X_{\varepsilon}(t,x,v), V_{\varepsilon}(t,x,v)\right) = f_{\varepsilon}^{0}(x,v) & \omega\left(X(t,x)\right) = \omega^{0}(x) \\ \left\{ \begin{array}{l} \dot{X}_{\varepsilon} = \frac{V_{\varepsilon}}{\varepsilon}, \quad \dot{V}_{\varepsilon} = \frac{V_{\varepsilon}^{\perp}}{\varepsilon^{2}} + \frac{E_{\varepsilon}(X_{\varepsilon})}{\varepsilon} \\ (X_{\varepsilon}, V_{\varepsilon})(0, x, v) = (x, v) \end{array} & \left\{ \begin{array}{l} \dot{X} = u(X) \\ X(0, x) = x \end{array} \right. \\ E_{\varepsilon}^{\perp} = \frac{x^{\perp}}{|x|^{2}} * \rho_{\varepsilon} & u = \frac{x^{\perp}}{|x|^{2}} * \omega \end{array} \\ \text{We set } Z_{\varepsilon} = X_{\varepsilon} + \varepsilon V_{\varepsilon}^{\perp}, \\ \text{Then: } \dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon}) \end{array} & Z_{\varepsilon} = X_{\varepsilon} + O(\varepsilon) \end{array}$$

Bostan, Hauray & Finot: similar combination of coordinates

(E. Miot)

Weak formulation for the spatial density

Proposition

For all $\Phi \in C_c^{\infty}(\mathbb{R}^2)$, $\int \Phi \rho_{\varepsilon}(t,x) \, dx - \int \Phi \rho_{\varepsilon}^0(x) \, dx = \int_0^t \mathcal{H}_{\Phi}[\rho_{\varepsilon}(s), \rho_{\varepsilon}(s)] \, ds + o_{\varepsilon}(1).$

Proof of Theorem 1 with the proposition

Delort, Schochet:

$$\rho_{\varepsilon_n} \rightharpoonup \rho \quad \text{in } C(\mathcal{M}^+) \cap L^{\infty}(H^{-1})$$

implies the convergence of the nonlinear term:

$$\int \mathcal{H}_{\Phi}[\rho_{\varepsilon_n}(s),\rho_{\varepsilon_n}(s)]\,ds \to \int \mathcal{H}_{\Phi}[\rho(s),\rho(s)]\,ds.$$

Therefore one can pass to the limit in the previous weak formulation.

< 回 > < 三 > < 三 >

Proof of the proposition

By using $f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}$ and changing variables:

$$\iint f_{\varepsilon}(t,x,v)\Phi(x)\,dx\,dv = \iint f_{\varepsilon}^{0}(x,v)\Phi(X_{\varepsilon}(t,x,v))\,dx\,dv$$

э

イロト イボト イヨト イヨト

Proof of the proposition

By using $f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}$ and changing variables:

$$\iint f_{\varepsilon}(t, x, v) \Phi(x) \, dx \, dv = \iint f_{\varepsilon}^{0}(x, v) \Phi(X_{\varepsilon}(t, x, v)) \, dx \, dv$$
$$= \iint f_{\varepsilon}^{0}(x, v) \Phi(Z_{\varepsilon}(t, x, v)) \, dx \, dv + R_{1},$$

where

$$R_1 = \iint f_{\varepsilon}^0(x,v) \left(\Phi(X_{\varepsilon}) - \Phi(Z_{\varepsilon}) \right)$$

э

イロト イポト イヨト イヨト

Proof of the proposition

By using $f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}$ and changing variables:

$$\iint f_{\varepsilon}(t, x, v) \Phi(x) \, dx \, dv = \iint f_{\varepsilon}^{0}(x, v) \Phi(X_{\varepsilon}(t, x, v)) \, dx \, dv$$
$$= \iint f_{\varepsilon}^{0}(x, v) \Phi(Z_{\varepsilon}(t, x, v)) \, dx \, dv + R_{1},$$

where

$$R_1 = \iint f_{\varepsilon}^0(x,v) \left(\Phi(X_{\varepsilon}) - \Phi(Z_{\varepsilon}) \right) \leq \| D \Phi \|_{L^{\infty}} \varepsilon \iint |v| f_{\varepsilon} \leq C \varepsilon.$$

э

イロト イポト イヨト イヨト

On the other hand,

$\frac{d}{dt} \iint f_{\varepsilon}^{0}(x,v) \Phi(Z_{\varepsilon}(t,x,v))$ $= \iint f_{\varepsilon}^{0}(x,v)E_{\varepsilon}^{\perp}(X_{\varepsilon}(x,v))\cdot\nabla\Phi(Z_{\varepsilon}(t,x,v)) \quad [\dot{Z}_{\varepsilon}=E_{\varepsilon}^{\perp}(X_{\varepsilon}))]$

ヘロン 人間 とくほとく ほとう

$$\begin{split} &\frac{d}{dt} \iint f_{\varepsilon}^{0}(x,v) \Phi(Z_{\varepsilon}(t,x,v)) \\ &= \iint f_{\varepsilon}^{0}(x,v) E_{\varepsilon}^{\perp}(X_{\varepsilon}(x,v)) \cdot \nabla \Phi(Z_{\varepsilon}(t,x,v)) \quad [\dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon}))] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x + \varepsilon v^{\perp}) \quad [f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}] \end{split}$$

Ξ.

*ロト *部ト *注ト *注ト

$$\begin{split} &\frac{d}{dt} \iint f_{\varepsilon}^{0}(x,v) \Phi(Z_{\varepsilon}(t,x,v)) \\ &= \iint f_{\varepsilon}^{0}(x,v) E_{\varepsilon}^{\perp}(X_{\varepsilon}(x,v)) \cdot \nabla \Phi(Z_{\varepsilon}(t,x,v)) \quad [\dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon}))] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x + \varepsilon v^{\perp}) \quad [f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x) + R_{2}, \end{split}$$

Ξ.

*ロト *部ト *注ト *注ト

$$\begin{split} &\frac{d}{dt} \iint f_{\varepsilon}^{0}(x,v) \Phi(Z_{\varepsilon}(t,x,v)) \\ &= \iint f_{\varepsilon}^{0}(x,v) E_{\varepsilon}^{\perp}(X_{\varepsilon}(x,v)) \cdot \nabla \Phi(Z_{\varepsilon}(t,x,v)) \quad [\dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon}))] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x + \varepsilon v^{\perp}) \quad [f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x) + R_{2}, \end{split}$$

where

$$R_2 = \iint \rho_{\varepsilon} E_{\varepsilon}^{\perp}(x) \cdot \left(\nabla \Phi(x + \varepsilon v^{\perp}) - \Phi(x) \right) \, dx.$$

E

<ロト <回ト < 回ト < 回ト

$$\begin{split} &\frac{d}{dt} \iint f_{\varepsilon}^{0}(x,v) \Phi(Z_{\varepsilon}(t,x,v)) \\ &= \iint f_{\varepsilon}^{0}(x,v) E_{\varepsilon}^{\perp}(X_{\varepsilon}(x,v)) \cdot \nabla \Phi(Z_{\varepsilon}(t,x,v)) \quad [\dot{Z}_{\varepsilon} = E_{\varepsilon}^{\perp}(X_{\varepsilon}))] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x + \varepsilon v^{\perp}) \quad [f_{\varepsilon}(t) = (X_{\varepsilon}(t), V_{\varepsilon}(t))_{\#} f_{\varepsilon}^{0}] \\ &= \iint f_{\varepsilon}(t,x,v) E_{\varepsilon}^{\perp}(x) \cdot \nabla \Phi(x) + R_{2}, \end{split}$$

where

$$R_2 = \iint \rho_{\varepsilon} E_{\varepsilon}^{\perp}(x) \cdot \left(\nabla \Phi(x + \varepsilon v^{\perp}) - \Phi(x) \right) \, dx.$$

So

$$R_2 \leq \varepsilon \|D^2 \Phi\|_{L^{\infty}} \|\int |v| f_{\varepsilon}\|_{L^{q'}} \|E_{\varepsilon}\|_{L^{q}}.$$

We conclude with the quantitative estimates.

(E. Miot)

E

Outline of the talk

- Introduction: from Vlasov-Poisson to Euler in the gyrokinetic limit
- Main results
- Sketch of proofs
- From Vlasov-Poisson with point charge to the vortex-wave system

イロト イポト イヨト イヨト

Vlasov-Poisson with point charge ~> Vortex-wave system

Consider the **interaction** of bounded density with a point charge located at ξ with intensity q > 0:

$$f(t, x, v) \rightsquigarrow f(t, x, v) + q\delta_{x=\xi(t)} \otimes \delta_{v=\eta(t)}.$$

Question: in the gyrokinetic limit do we get the **interaction** of bounded vorticity with point vortex of circulation q?

イロト 不得下 イヨト イヨト

Vlasov-Poisson with point charge \rightsquigarrow Vortex-wave system

Vlasov-Poisson with chargeEuler:
$$v$$
 $\partial_t f + \frac{v}{\varepsilon^2} \cdot \nabla_x f + \frac{E_{\text{total}}}{\varepsilon} \cdot \nabla_v f = 0$ $\partial_t \omega$ $E_{\text{total}} = E + q \frac{x - \xi}{|x - \xi|^2}$ u_{total} $E = \frac{x}{|x|^2} * \rho$ $\dot{\xi} = \eta, \quad \dot{\eta} = qE(\xi)$

Euler: vortex-wave system

$$\partial_t \omega + u_{\text{total}} \cdot \nabla \omega = 0$$

$$u_{\text{total}} = u + q \frac{(x - \xi)^{\perp}}{|x - \xi|^2}$$

$$u = \frac{x^{\perp}}{|x|^2} * \omega$$

 $\dot{\xi} = u(\xi)$

イロト イポト イヨト イヨト

1

Vlasov-Poisson with charge

$$\partial_t f + v \cdot \nabla_x f$$

 $+ (E + q \frac{x - \xi}{|x - \xi|^2}) \cdot \nabla_v f = 0$

$$\dot{\xi} = \eta, \quad \dot{\eta} = qE(\xi)$$

Caprino, Marchioro & Pulvirenti 10 Desvillettes, Miot & Saffirio 14 Crippa, Ligabue & Saffirio 17, 3D case existence, uniqueness for $f \in L^{\infty}_{c}, \xi \notin \operatorname{supp}(\rho)$

Vortex-wave system

$$\partial_t \omega + (u + q \frac{(x - \xi)^{\perp}}{|x - \xi|^2}) \cdot \nabla \omega = 0$$

$$\dot{\xi} = u(\xi)$$

Marchioro & Pulvirenti 91 Lacave & Miot 09

: existence, uniqueness for $\omega \in L^{\infty}_{c}, \xi \notin \operatorname{supp}(\omega)$

- f⁰_ε ∈ L¹ ∩ L[∞] compactly supported, vanishes near ξ⁰_ε
 → unique global solution f_ε ∈ L[∞](L¹ ∩ L[∞]) for each fixed ε > 0.
- Uniform bounds on physical quantities:

$$\|f_{\varepsilon}^{0}\|_{L^{1}}+\int|x|^{2}\rho_{\varepsilon}^{0}(x)\,dx+|\xi_{\varepsilon}^{0}|+\mathcal{H}(f_{\varepsilon}^{0},\xi_{\varepsilon}^{0},\eta_{\varepsilon}^{0})\leq C$$

where

$$\mathcal{H}(f,\xi,\eta) = \mathcal{H}(f) + |\eta|^2 - q \int \ln|x-\xi|\rho(x) dx.$$

- $\varepsilon^2 \| f_{\varepsilon}^0 \|_{L^{\infty}} = o_{\varepsilon}(1).$
- $\int \rho_{\varepsilon}^{0} < 1.$

(E. Miot)

• • = • • = •

Convergence to a nonlinear equation

Theorem 1

Up to a subsequence:

• $\rho_{\varepsilon_n} \rightharpoonup \rho$ in $C_w(\mathbb{R}_+, \mathcal{M}_+(\mathbb{R}^2))$ and $\xi_{\varepsilon_n} \rightarrow \xi$ locally uniformly; • $\rho \in L^{\infty}(\mathbb{R}_+, H^{-1}(\mathbb{R}^2))$:

★ Ξ ► < Ξ ►</p>

Convergence to a nonlinear equation

Theorem 1

Up to a subsequence:

- $\rho_{\varepsilon_n} \rightharpoonup \rho$ in $C_w(\mathbb{R}_+, \mathcal{M}_+(\mathbb{R}^2))$ and $\xi_{\varepsilon_n} \rightarrow \xi$ locally uniformly;
- $\rho \in L^{\infty}(\mathbb{R}_+, H^{-1}(\mathbb{R}^2))$;
- There exists a defect measure $\nu \in [L^{\infty}(\mathbb{R}_+, \mathcal{M}(\mathbb{R}^2)]^4$ such that (ρ, ξ) satisfies for all test function:

$$\int_{\mathbb{R}^{2}} \Phi d(\rho(t) + \delta_{\xi(t)}) = \int_{\mathbb{R}^{2}} \Phi d(\rho_{0} + \delta_{\xi_{0}}) + \int_{0}^{t} \mathcal{H}_{\Phi}[\rho + q\delta_{\xi}, \rho + q\delta_{\xi}] ds + \int_{0}^{t} \int_{\mathbb{R}^{2}} D\nabla^{\perp} \Phi : d\nu ds.$$
(NLE)

The special cases q = 0 and q = 1

Case $q = 0 \rightsquigarrow$ first part of the talk: convergence to a generalized solution of the Euler equation.

Case q = 1 (NLE) reduces to the generalized formulation of the Euler equation for the total measure-valued vorticity $\omega = \rho + \delta_{\xi}$.

・ロト ・四ト ・日ト ・日トー

Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (ρ, ξ) be an accumulation point given by Theorem 1 and such that ν vanishes. If moreover $\rho \in L^{\infty}_{loc}(\mathbb{R}_+, L^p(\mathbb{R}^2))$ for some p > 2 and $\xi \in C^1(\mathbb{R}_+, \mathbb{R}^2)$ then (ρ, ξ) satisfies the system

$$\begin{cases} \partial_t \rho + \left(E^{\perp} + q \frac{(x-\xi)^{\perp}}{|x-\xi|^2} \right) \cdot \nabla \rho = 0\\ \dot{\xi}(t) = q E^{\perp}(t,\xi(t)), \end{cases}$$

where $E = \frac{x}{|x|^2} * \rho$.

Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (ρ, ξ) be an accumulation point given by Theorem 1 and such that ν vanishes. If moreover $\rho \in L^{\infty}_{loc}(\mathbb{R}_+, L^p(\mathbb{R}^2))$ for some p > 2 and $\xi \in C^1(\mathbb{R}_+, \mathbb{R}^2)$ then (ρ, ξ) satisfies the system

$$\begin{cases} \partial_t \rho + \left(E^{\perp} + q \frac{(x-\xi)^{\perp}}{|x-\xi|^2} \right) \cdot \nabla \rho = 0\\ \dot{\xi}(t) = q E^{\perp}(t,\xi(t)), \end{cases}$$

where $E = \frac{x}{|x|^2} * \rho$.

Remark

- If q = 0 retrieve 2D Euler,
- If q = 1 retrieve vortex-wave system.

Basic properties of the new system of ODE

Theorem 3

- Global existence of a solution with ρ ∈ L[∞](ℝ₊, L[∞](ℝ²)), compactly supported ;
- Uniqueness holds if moreover ξ(0) ∉ suppp(ρ(0)). In this case, the solution satisfies ξ(t) ∉ supp(ρ(t)), for all t > 0. This means: no collision occurs between the plasma particles and the point charge.

Thank you for your attention.

э

イロト イポト イヨト イヨト