From Vlasov-Poisson to Euler in the gyrokinetic limit J

Evelyne Miot - CNRS - Université Grenoble - Alpes

Collisionless Boltzmann equation and modeling of self-gravitating
systems and plasmas, Nov 2017

(E. Miot) VP to Euler 1/28



The setting
Outline of the talk

@ Introduction: from Vlasov-Poisson to Euler
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Aim: Vlasov-Poisson ~~ Euler equation in 2D

2D Vlasov-Poisson 2D Euler

Of +v-Vyf+E-V,f=0 Oiw+u-Vw=0

f(t,x,v) >0, x,veR?
[density of electric particles]

div(u) =0

p(t,x):/f(t,x, v)dv, xe€R? w(t,x), x€R2

[macroscopic density of particles] [vorticity]

E(t,x) = (5\2 *p> (t,x) u(t,x) = (C{; *w) (t,x)
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The Vlasov-Poisson system with strong magnetic field

o Gyrokinetic limit for the Vlasov-Poisson system: the particles are

submitted to a constant magnetic field, orthogonal to the plane, with

strength tending to infinity.
@ Corresponds to studying the asymptotics as ¢ — 0 of

E 1
((9tfg+zvxfg+ <E+V2> vvfszoa
g £ g
£(0,x,v) = £2(x, v).

o The initial data £ satisfy some suitable bounds for norms that are
conserved by the flow of the Vlasov-Poisson equation.
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The setting
Outline of the talk

@ Main results
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Assumptions on the initial data £°

o 0 € L1 N L*°(R?), nonnegative and compactly supported

~~ unique global solution £ € L>(L! N L) Okabe & Ukai 75.
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Assumptions on the initial data £°

o 0 € L1 N L*°(R?), nonnegative and compactly supported
~~ unique global solution £ € L>(L! N L) Okabe & Ukai 75.

@ Uniform bounds on physical quantities:
9] 12 +/ Ix|2p2(x) dx + H(F) < C.

where the energy is defined by

)= [ [ 1Prcvy e~ [ [inlx = yiote)oty) oy
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Assumptions on the initial data £°

o 0 € L1 N L*°(R?), nonnegative and compactly supported
~~ unique global solution £ € L>(L! N L) Okabe & Ukai 75.

@ Uniform bounds on physical quantities:
9] 12 +/ Ix|2p2(x) dx + H(F) < C.

where the energy is defined by

)= [ [ 1Prcvy e~ [ [inlx = yiote)oty) oy

o Additional boundedness assumption:
2 oo In (| £2]] o= +2) = 0s(1).
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Example: monokinetic-like data

The previous assumptions allow for initial data that converge to
monokinetic data:

fEO(X7 V) - pO(X) 6v:uo(x) ase — 0, poe LOO(Rz)

Indeed, take

(x,v) = polx) 50 (}(X)) |

3
where £25-2|In 6. vanishes as £ — 0 and ® smooth cut-off function.
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Main results
Main result

Theorem 1
Let 0 satisfy the previous assumptions and f. denote the corresponding
global solution. There exists a subsequence €, — 0 as n — 400 such that
o p., converges to p in C(Ry, M+ (R?) — w*);
e p belongs moreover to L>(R, H71(RR?));

@ p is a global generalized "vortex sheet” solution of the 2D Euler
equation.
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Notion of generalized solution to 2D Euler

Notion of "vortex sheet” solution: for p € M* N H~1(R?)) need to define
the product u - Vp in the sense of distributions, where u = x*/|x|2 * p.
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Notion of generalized solution to 2D Euler

Notion of "vortex sheet” solution: for p € M* N H~1(R?)) need to define
the product u - Vp in the sense of distributions, where u = x*/|x|2 * p.

Observed by Delort 91, Schochet 95.
If p is sufficiently smooth we have by symmetrization:

(6. @) = (25 50 .90 = [ Holxn) o) ) 0.
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Notion of generalized solution to 2D Euler

Notion of "vortex sheet” solution: for p € M* N H~1(R?)) need to define
the product u - Vp in the sense of distributions, where u = x*/|x|2 * p.

Observed by Delort 91, Schochet 95.
If p is sufficiently smooth we have by symmetrization:

(6. @) = (25 50 .90 = [ Holxn) o) ) 0.
where

X — )L
o) = 5 o0 (V) - T0(y).

He bounded on R? x R? and continuous off the diagonal
{(x,x), x € B2},
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Notion of generalized solution to 2D Euler

We set for p positive bounded Radon measure belonging to H™!:

Holp. pl = / / Ho (x. y) dp(x) dp(y).
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Notion of generalized solution to 2D Euler

We set for p positive bounded Radon measure belonging to H™!:

Holp. pl = / / Ho (x. y) dp(x) dp(y).

Definition

We say that p € L>°(M™* N H™Y(R?))) is a vortex sheet solution of the
Euler equation with initial datum pq if for all ® € C2°(R?)

[ ®dote.x) = [ @dm(x /%[p (5)] ds.
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Notion of generalized solution to 2D Euler

We set for p positive bounded Radon measure belonging to H™!:

Holp. pl = / / Ho (x. y) dp(x) dp(y).

Definition

We say that p € L>°(M™* N H™Y(R?))) is a vortex sheet solution of the
Euler equation with initial datum pq if for all ® € C2°(R?)

[ ®dote.x) = [ @dm(x /%[p (5)] ds.

Delort 91, Schochet 95: global existence of such solutions.
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Previous results on the asymptotics for Vlasov-Poisson

@ Golse & Saint-Raymond 99, Saint-Raymond 02: compactness
method, same assumptions except that || 2| = = o-(1).

@ Brenier 00: different time scaling, modulated energy method.

@ Bostan, Finot & Hauray 15 different scaling, effective dynamics for the
asymptotics of the shifted density £.(t,x — R(—t/ev)t, R(—t/e)v).

@ Other regimes leading to various equations: Brenier 00 (quasineutral
limit), Frénod & Sonnendriicker 98, 99, 01 , Han-Kwan 10, Ghendrih,
Hauray & Nouri 09, Hauray and Nouri 11, Barré, Chiron, Goudon &
Masmoudi 15.
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Main results
Outline of the talk

@ Sketch of proofs

e Uniform estimates ~» compactness.
o New lagrangian coordinates ~~ new weak formulation
e Passing to the limit
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UG RIS  Sketch of proofs

Conserved quantities, uniform bounds & quantitative
estimates
Let 7. be a solution as in the Theorem 1.

e The quantities ||7(t)||.» and H(f(t)) are conserved.
o In particular: ||£(¢)|[x + [ [x|?pe(t) + H(£(2)) < C.

@ Already known: this implies ||p-(t)|/y-1 < C.
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UG RIS  Sketch of proofs

Conserved quantities, uniform bounds & quantitative
estimates

Let 7. be a solution as in the Theorem 1.
@ The quantities ||£(t)|/.» and H(f(t)) are conserved.
o In particular: ||£(¢)|[x + [ [x|?pe(t) + H(£(2)) < C.
@ Already known: this implies ||p-(t)|/y-1 < C.
@ Quantitative estimates:
le=(®)lliz < CIRILE,  NED) g, < €O+ IE011LE)
~IEW, < Ca+ L), vaz 2
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UG RIS  Sketch of proofs

New lagrangian coordinates for Vlasov-Poisson

DiPerna & Lions 89: theory on transport equations.

Vlasov-Poisson Euler (only in 2D)

w(X(t,x)) = wo(x)

Vo E(X -
ko= =Y B fxu)
X(0,x) = x

(X, V2)(0,x,v) = (x,v) 3
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UG RIS  Sketch of proofs

New lagrangian coordinates for Vlasov-Poisson

Vlasov-Poisson Euler (only in 2D)

w(X(t,x)) = wo(x)

Ve E(X -
ko= =Y B ux)
X(0,x) = x

X XJ'
= —=%p U= — %w
X [x[?
We set Z. = X. + V.-, Z. =X+ O(e)

(X, V2)(0,x,v) = (x,v) 3
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UG RIS  Sketch of proofs

New lagrangian coordinates for Vlasov-Poisson

Vlasov-Poisson Euler (only in 2D)

- (Xe(t, x, v), Ve(t,x,v)) = fEO(x, v) ' w(X(t,x)) = wo(x)

. V. . vi  E(X

Xs:i7 Ve = E2+ E( 6)
€ €

(Xz, V2)(0,x,v) = (x,v)

3

1 1

1 X o X
EE _W*pg u W*W
We set Z. = X. + V.-, Z. =X+ 0(¢)

Then: Z. = EX(X.)
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UG RIS  Sketch of proofs

New lagrangian coordinates for Vlasov-Poisson

Vlasov-Poisson Euler (only in 2D)

- (Xe(t, x, v), Ve(t,x,v)) = fEO(x, v) ' w(X(t,x)) = wo(x)

. V. . vi  E(X

Xs:i7 Ve = E2+ E( 6)
€ €

(Xz, V2)(0,x,v) = (x,v)

3

L i
X X
EE _W*pg |X‘2*w
We set Z. = X. + V.-, Z. =X+ 0(¢)

Then: Z. = EX(X.) |
Bostan, Hauray & Finot: similar combination of coordinates.
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G
Weak formulation for the spatial density

Proposition

For all & € C°(R?),

/%(r, x) dx — /cbpg(x) o — /Ot Holp-(s), pe(s)] ds + o.(1).
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UG RIS  Sketch of proofs

Proof of Theorem 1 with the proposition

Delort, Schochet:
pey —p in CMT) A L(HY)

implies the convergence of the nonlinear term:

[ Holpas(s)pes(oNds > [ Holpts).nts)) o

Therefore one can pass to the limit in the previous weak formulation.
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UG RIS  Sketch of proofs

Proof of the proposition

By using £-(t) = (Xc(t), V:(t))4#f° and changing variables:

// (t,x,v)® dxdv—//foxv d(X(t, x, v)) dx dv
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UG RIS  Sketch of proofs

Proof of the proposition

By using £-(t) = (Xc(t), V:(t))4#f° and changing variables:

// (t,x,v)® dxdv—//foxv d(X(t, x, v)) dx dv

//foxv -(t,x,v))dxdv+ Ry,

where

Ri= [ [ 20 v) (00x) - 0(2)
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UG RIS  Sketch of proofs

Proof of the proposition

By using £-(t) = (Xc(t), V:(t))4#f° and changing variables:

// (t,x,v)® dxdv—//foxv d(X(t, x, v)) dx dv

//foxv -(t,x,v))dxdv+ Ry,

where

Ri= [ [ 00 (00%) - #(2) < D8]z [ [ it < c=
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UG RIS  Sketch of proofs

On the other hand,
&[] Peneziex)
— [[ B E X ) VOZ(x ) (2= B
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UG RIS  Sketch of proofs

On the other hand,

//foxv (t,x,v))

— [[ B E X ) VOZ(x ) (2= B
— [[ X EH) - VOl ev)[E(8) = (X(8), Vo))
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UG RIS  Sketch of proofs

On the other hand,

//foxv (t,x,v))

— [[ B E X ) VOZ(x ) (2= B
— [[ X EH) - VOl ev)[E(8) = (X(8), Vo))

= / f.(t,x,v)EX(x) - VO(x) + Ra,
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UG RIS  Sketch of proofs

On the other hand,

//foxv (t,x,v))

- / / R0 VS (Xe(x,v)) - VO(Z(t,x,v))  [Ze = EX(XC))]
// (£, %, V)EL(x) - VO(x +evh)  [£(t) = (Xe(t), Ve(£)£F]
:/ f.(t, x, vV)EX(x) - VO(x) + Ry,

where

R, = // peEL(x) - (vcb(x Fevh) - ¢(x)> dx.
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UG RIS  Sketch of proofs

On the other hand,

//foxv (t,x,v))

— [[ B E X ) VOZ(x ) (2= B
— [[ X EH) - VOl ev)[E(8) = (X(8), Vo))
:/ f.(t,x,v)EX(x) - VO(x) + Ra,
where
R, = //pan(x)' <V¢(x+5vL) —¢(x)> dx.
So

R, SauD%rLoo\|/|vaquHEa|m.

We conclude with the quantitative estimates.
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Sketch of proofs
Outline of the talk

@ From Vlasov-Poisson with point charge to the vortex-wave system
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UG RIS  Sketch of proofs

Vlasov-Poisson with point charge ~~ Vortex-wave system

Consider the interaction of bounded density with a point charge located
at & with intensity g > O:

f(t,x,v) ~ f(t,x,v)+ qOx=¢(t) @ Oy=n(t)-

Question: in the gyrokinetic limit do we get the interaction of bounded
vorticity with point vortex of circulation g ?
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UG RIS  Sketch of proofs

Vlasov-Poisson with point charge ~~ Vortex-wave system

Vlasov-Poisson with charge Euler: vortex-wave system

E
8tf+€12 fo+ tgtal va:O aif(JJ"'Utotal Vw =20

_ (x =9+
Eiotal = E + q‘ — 5‘2 Utotal = U + qw
. X . X
_W*p U_W*w
E=n, 1=qE() = u(¢)

|
|
|
|
|
|
|
|
|
|
: 1
|
|
|
|
|
|
|
|
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UG RIS  Sketch of proofs

Vlasov-Poisson with charge

Oef + v - Vif ) (=9 =
+f + v Vi tw+(u+q| 7£|2)~Vw 0
E x=& V,f=0

HE+ I )

E=mn, 1n=qE() §=u(9)

Marchioro & Pulvirenti 91
Lacave & Miot 09

Caprino, Marchioro & Pulvirenti 10
Desvillettes, Miot & Saffirio 14
Crippa, Ligabue & Saffirio 17, 3D case
existence, uniqueness for

feLle & ¢supp(p)

. existence, uniqueness for
w € L, & ¢ supp(w)
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UG RIS  Sketch of proofs

Assumptions on the initial data £°

° fso € L' N L™ compactly supported, vanishes near 550
~~ unique global solution £ € L°°(L! N L) for each fixed ¢ > 0.

@ Uniform bounds on physical quantities:

||f0||L1+/X| x) dx - [€9] + H(F0, 0,n0) < C
where

H(F,€m) = H(F) + 0> — g / In x — £]p(x) dx

o &[] = o(1).

o [p2< 1.
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UG RIS  Sketch of proofs

Convergence to a nonlinear equation

Theorem 1

Up to a subsequence:
o p., — pin Cu(Ry, M (R?)) and &, — & locally uniformly;
o pe LRy, HL(R));
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UG RIS  Sketch of proofs

Convergence to a nonlinear equation

Theorem 1
Up to a subsequence:

o pe, — pin Cu(Ry, M (R?)) and &, — & locally uniformly;
o pe (R, H1(R?));

o There exists a defect measure v € [L°(R, M(R?)]* such that (p, &)
satisfies for all test function:

®d(p(t) + 0¢gry) = | Pd(po + d¢,)
/Rz /Rz (NLE)

t t
+/ H¢[p+q55n0+q5§]ds+/ / DVL6 : dv ds.
0 o0 JR2
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SR CEE
The special cases g=0and g =1

Case g = 0 ~~ first part of the talk: convergence to a generalized solution
of the Euler equation.

Case g = 1 (NLE) reduces to the generalized formulation of the Euler
equation for the total measure-valued vorticity w = p + d¢.
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SR CEE
Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (p, &) be an accumulation point given by Theorem 1 and such that v
vanishes. If moreover p € L3 (R4, LP(R?)) for some p > 2 and
€ € CL(Ry,R?) then (p,§) satisfies the system

8tp+<EL+q(‘ ?2>-Vp—0

£(t) = gE*(t,€(1)),
where E = ﬁ * .
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SR CEE
Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (p, &) be an accumulation point given by Theorem 1 and such that v
vanishes. If moreover p € L3 (R4, LP(R?)) for some p > 2 and
€ € CL(Ry,R?) then (p,§) satisfies the system

8tp+<EL+q(‘ ?2>-Vp—0

£(t) = gE*(t,€(1)),
where E = ﬁ * .

Remark
e If g =0 retrieve 2D Euler,

o If g =1 retrieve vortex-wave system.
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UG RIS  Sketch of proofs

Basic properties of the new system of ODE

Theorem 3
o Global existence of a solution with p € L(R ., L°(R?)), compactly
supported ;

e Uniqueness holds if moreover £(0) ¢ suppp(p(0)). In this case, the
solution satisfies £(t) ¢ supp(p(t)), for all t > 0. This means: no
collision occurs between the plasma particles and the point charge.

v
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UG RIS  Sketch of proofs

Thank you for your attention.

(E. Miot) VP to Euler 28 / 28



	Introduction
	The setting

	Main results
	Main results

	Sketch of proofs
	Sketch of proofs


