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Introduction The setting

Aim: Vlasov-Poisson  Euler equation in 2D

2D Vlasov-Poisson 2D Euler

∂t f + v · ∇x f + E · ∇v f = 0 ∂tω + u · ∇ω = 0

f (t, x , v) ≥ 0, x , v ∈ R2 div(u) = 0
[density of electric particles]

ρ(t, x) =

∫
f (t, x , v) dv , x ∈ R2 ω(t, x), x ∈ R2

[macroscopic density of particles] [vorticity]

E (t, x) =

(
x

|x |2
∗ ρ
)

(t, x) u(t, x) =

(
x⊥

|x |2
∗ ω
)

(t, x)
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Introduction The setting

The Vlasov-Poisson system with strong magnetic field

Gyrokinetic limit for the Vlasov-Poisson system: the particles are
submitted to a constant magnetic field, orthogonal to the plane, with
strength tending to infinity.

Corresponds to studying the asymptotics as ε→ 0 of

∂t fε +
v

ε
· ∇x fε +

(
Eε
ε

+
v⊥

ε2

)
· ∇v fε = 0,

fε(0, x , v) = f 0
ε (x , v).

The initial data f 0
ε satisfy some suitable bounds for norms that are

conserved by the flow of the Vlasov-Poisson equation.
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Introduction The setting

Assumptions on the initial data f 0
ε

f 0
ε ∈ L1 ∩ L∞(R2), nonnegative and compactly supported
 unique global solution fε ∈ L∞(L1 ∩ L∞) Okabe & Ukai 75.

Uniform bounds on physical quantities:

‖f 0
ε ‖L1 +

∫
R2

|x |2ρ0
ε(x) dx +H(f 0

ε ) ≤ C .

where the energy is defined by

H(f ) =

∫∫
|v |2f (x , v) dx dv −

∫∫
ln |x − y |ρ(x)ρ(y) dx dy ,

Additional boundedness assumption:
ε2‖f 0

ε ‖L∞ ln
(
‖f 0
ε ‖L∞ + 2

)
= oε(1).
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Introduction The setting

Example: monokinetic-like data

The previous assumptions allow for initial data that converge to
monokinetic data:

f 0
ε (x , v)→ ρ0(x) δv=u0(x) as ε→ 0, ρ0 ∈ L∞(R2).

Indeed, take

f 0
ε (x , v) = ρ0(x)

1

δ2
ε

Φ

(
v − u(x)

δε

)
,

where ε2δ−2
ε | ln δε| vanishes as ε→ 0 and Φ smooth cut-off function.
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Main results Main results

Main result

Theorem 1

Let f 0
ε satisfy the previous assumptions and fε denote the corresponding

global solution. There exists a subsequence εn → 0 as n→ +∞ such that

ρεn converges to ρ in C (R+,M+(R2)− w∗);

ρ belongs moreover to L∞(R+,H
−1(R2));

ρ is a global generalized ”vortex sheet” solution of the 2D Euler
equation.
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Main results Main results

Notion of generalized solution to 2D Euler

Notion of ”vortex sheet” solution: for ρ ∈M+ ∩ H−1(R2)) need to define
the product u · ∇ρ in the sense of distributions, where u = x⊥/|x |2 ∗ ρ.

Observed by Delort 91, Schochet 95.
If ρ is sufficiently smooth we have by symmetrization:

〈div(uρ),Φ〉 = −〈
(

x⊥

|x |2
∗ ρ
)
ρ,∇Φ〉 =

∫∫
HΦ(x , y) ρ(x) ρ(y) dx dy ,

where

HΦ(x , y) =
1

2

(x − y)⊥

|x − y |2
· (∇Φ(x)−∇Φ(y)) .

HΦ bounded on R2 × R2 and continuous off the diagonal
{(x , x), x ∈ R2}.
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Main results Main results

Notion of generalized solution to 2D Euler

We set for ρ positive bounded Radon measure belonging to H−1:

HΦ[ρ, ρ] =

∫∫
HΦ(x , y) dρ(x) dρ(y).

Definition

We say that ρ ∈ L∞(M+ ∩ H−1(R2))) is a vortex sheet solution of the
Euler equation with initial datum ρ0 if for all Φ ∈ C∞c (R2)∫

Φ dρ(t, x) =

∫
Φ dρ0(x) +

∫ t

0
HΦ[ρ(s), ρ(s)] ds.

Delort 91, Schochet 95: global existence of such solutions.
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Main results Main results

Previous results on the asymptotics for Vlasov-Poisson

Golse & Saint-Raymond 99, Saint-Raymond 02: compactness
method, same assumptions except that ε‖f 0

ε ‖L∞ = oε(1).

Brenier 00: different time scaling, modulated energy method.

Bostan, Finot & Hauray 15 different scaling, effective dynamics for the
asymptotics of the shifted density fε(t, x − R(−t/εv)⊥,R(−t/ε)v).

Other regimes leading to various equations: Brenier 00 (quasineutral
limit), Frénod & Sonnendrücker 98, 99, 01 , Han-Kwan 10, Ghendrih,
Hauray & Nouri 09, Hauray and Nouri 11, Barré, Chiron, Goudon &
Masmoudi 15.
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Sketch of proofs Sketch of proofs

Conserved quantities, uniform bounds & quantitative
estimates

Let fε be a solution as in the Theorem 1.

The quantities ‖fε(t)‖Lp and H(fε(t)) are conserved.

In particular: ‖fε(t)‖L1 +
∫
|x |2ρε(t) +H(fε(t)) ≤ C .

Already known: this implies ‖ρε(t)‖H−1 ≤ C .

Quantitative estimates:

‖ρε(t)‖L2 ≤ C‖f 0
ε ‖

1/2
L∞ , ‖Eε(t)‖H1

loc
≤ C (1 + ‖f 0

ε ‖
1/2
L∞ )

 ‖Eε(t)‖Lqloc
≤ C
√

q(1 + ‖f 0
ε ‖

1/2
L∞ ), ∀q ≥ 2.
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Sketch of proofs Sketch of proofs

New lagrangian coordinates for Vlasov-Poisson

DiPerna & Lions 89: theory on transport equations.

Vlasov-Poisson Euler (only in 2D)

fε (Xε(t, x , v),Vε(t, x , v)) = f 0
ε (x , v) ω (X (t, x)) = ω0(x)Ẋε =

Vε
ε
, V̇ε =

V⊥ε
ε2

+
Eε(Xε)

ε
(Xε,Vε)(0, x , v) = (x , v)

{
Ẋ = u(X )

X (0, x) = x

Eε =
x

|x |2
∗ ρε u =

x⊥

|x |2
∗ ω

We set Zε = Xε + εV⊥ε ,

Then: Żε = E⊥ε (Xε)

Bostan, Hauray & Finot: similar combination of coordinates.
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Vε
ε
, V̇ε =

V⊥ε
ε2

+
Eε(Xε)

ε
(Xε,Vε)(0, x , v) = (x , v)

{
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Vε
ε
, V̇ε =

V⊥ε
ε2

+
Eε(Xε)

ε
(Xε,Vε)(0, x , v) = (x , v)

{
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Sketch of proofs Sketch of proofs

Weak formulation for the spatial density

Proposition

For all Φ ∈ C∞c (R2),∫
Φρε(t, x) dx −

∫
Φρ0

ε(x) dx =

∫ t

0
HΦ[ρε(s), ρε(s)] ds + oε(1).
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Sketch of proofs Sketch of proofs

Proof of Theorem 1 with the proposition

Delort, Schochet:

ρεn ⇀ ρ in C (M+) ∩ L∞(H−1)

implies the convergence of the nonlinear term:∫
HΦ[ρεn(s), ρεn(s)] ds →

∫
HΦ[ρ(s), ρ(s)] ds.

Therefore one can pass to the limit in the previous weak formulation.
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Sketch of proofs Sketch of proofs

Proof of the proposition

By using fε(t) = (Xε(t),Vε(t))#f 0
ε and changing variables:∫∫

fε(t, x , v)Φ(x) dx dv =

∫∫
f 0
ε (x , v)Φ(Xε(t, x , v)) dx dv

=

∫∫
f 0
ε (x , v)Φ(Zε(t, x , v)) dx dv + R1,

where

R1 =

∫∫
f 0
ε (x , v) (Φ(Xε)− Φ(Zε)) ≤ ‖DΦ‖L∞ε

∫∫
|v |fε ≤ Cε.
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Sketch of proofs Sketch of proofs

On the other hand,

d

dt

∫∫
f 0
ε (x , v)Φ(Zε(t, x , v))

=

∫∫
f 0
ε (x , v)E⊥ε (Xε(x , v)) · ∇Φ(Zε(t, x , v)) [Żε = E⊥ε (Xε))]

=

∫∫
fε(t, x , v)E⊥ε (x) · ∇Φ(x + εv⊥) [fε(t) = (Xε(t),Vε(t))#f 0

ε ]

=

∫∫
fε(t, x , v)E⊥ε (x) · ∇Φ(x) + R2,

where

R2 =

∫∫
ρεE

⊥
ε (x) ·

(
∇Φ(x + εv⊥)− Φ(x)

)
dx .

So

R2 ≤ ε‖D2Φ‖L∞‖
∫
|v |fε‖Lq′‖Eε‖Lq .

We conclude with the quantitative estimates.
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Sketch of proofs Sketch of proofs

Vlasov-Poisson with point charge  Vortex-wave system

Consider the interaction of bounded density with a point charge located
at ξ with intensity q > 0:

f (t, x , v) f (t, x , v) + qδx=ξ(t) ⊗ δv=η(t).

Question: in the gyrokinetic limit do we get the interaction of bounded
vorticity with point vortex of circulation q ?
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Sketch of proofs Sketch of proofs

Vlasov-Poisson with point charge  Vortex-wave system

Vlasov-Poisson with charge Euler: vortex-wave system

∂t f +
v

ε2
· ∇x f +

Etotal

ε
· ∇v f = 0 ∂tω + utotal · ∇ω = 0

Etotal = E + q
x − ξ
|x − ξ|2

utotal = u + q
(x − ξ)⊥

|x − ξ|2

E =
x

|x |2
∗ ρ u =

x⊥

|x |2
∗ ω

ξ̇ = η, η̇ = qE (ξ) ξ̇ = u(ξ)
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Vlasov-Poisson with charge Vortex-wave system

∂t f + v · ∇x f ∂tω + (u + q
(x − ξ)⊥

|x − ξ|2
) · ∇ω = 0

+(E + q
x − ξ
|x − ξ|2

) · ∇v f = 0

ξ̇ = η, η̇ = qE (ξ) ξ̇ = u(ξ)

Caprino, Marchioro & Pulvirenti 10 Marchioro & Pulvirenti 91
Desvillettes, Miot & Saffirio 14 Lacave & Miot 09
Crippa, Ligabue & Saffirio 17, 3D case
existence, uniqueness for : existence, uniqueness for
f ∈ L∞c , ξ /∈ supp(ρ) ω ∈ L∞c , ξ /∈ supp(ω)

(E. Miot) VP to Euler 22 / 28



Sketch of proofs Sketch of proofs

Assumptions on the initial data f 0
ε

f 0
ε ∈ L1 ∩ L∞ compactly supported, vanishes near ξ0

ε

 unique global solution fε ∈ L∞(L1 ∩ L∞) for each fixed ε > 0.

Uniform bounds on physical quantities:

‖f 0
ε ‖L1 +

∫
|x |2ρ0

ε(x) dx + |ξ0
ε |+H(f 0

ε , ξ
0
ε , η

0
ε) ≤ C

where

H(f , ξ, η) = H(f ) + |η|2 − q

∫
ln |x − ξ|ρ(x) dx .

ε2‖f 0
ε ‖L∞ = oε(1).∫

ρ0
ε < 1.
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Convergence to a nonlinear equation

Theorem 1

Up to a subsequence:

ρεn ⇀ ρ in Cw (R+,M+(R2)) and ξεn → ξ locally uniformly;

ρ ∈ L∞(R+,H
−1(R2));

There exists a defect measure ν ∈ [L∞(R+,M(R2)]4 such that (ρ, ξ)
satisfies for all test function:∫

R2

Φd(ρ(t) + δξ(t)) =

∫
R2

Φd(ρ0 + δξ0)

+

∫ t

0
HΦ[ρ+ qδξ, ρ+ qδξ] ds +

∫ t

O

∫
R2

D∇⊥Φ : dν ds.

(NLE)
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The special cases q = 0 and q = 1

Case q = 0  first part of the talk: convergence to a generalized solution
of the Euler equation.

Case q = 1 (NLE) reduces to the generalized formulation of the Euler
equation for the total measure-valued vorticity ω = ρ+ δξ.
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Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (ρ, ξ) be an accumulation point given by Theorem 1 and such that ν
vanishes. If moreover ρ ∈ L∞loc(R+, L

p(R2)) for some p > 2 and
ξ ∈ C 1(R+,R2) then (ρ, ξ) satisfies the system∂tρ+

(
E⊥ + q

(x − ξ)⊥

|x − ξ|2

)
· ∇ρ = 0

ξ̇(t) = qE⊥(t, ξ(t)),

where E = x
|x |2 ∗ ρ.

Remark

If q = 0 retrieve 2D Euler,

If q = 1 retrieve vortex-wave system.

(E. Miot) VP to Euler 26 / 28



Sketch of proofs Sketch of proofs

Decoupling the equation into a system of PDE/ODE

Theorem 2

Let (ρ, ξ) be an accumulation point given by Theorem 1 and such that ν
vanishes. If moreover ρ ∈ L∞loc(R+, L

p(R2)) for some p > 2 and
ξ ∈ C 1(R+,R2) then (ρ, ξ) satisfies the system∂tρ+

(
E⊥ + q

(x − ξ)⊥

|x − ξ|2

)
· ∇ρ = 0

ξ̇(t) = qE⊥(t, ξ(t)),

where E = x
|x |2 ∗ ρ.

Remark

If q = 0 retrieve 2D Euler,

If q = 1 retrieve vortex-wave system.

(E. Miot) VP to Euler 26 / 28



Sketch of proofs Sketch of proofs

Basic properties of the new system of ODE

Theorem 3

Global existence of a solution with ρ ∈ L∞(R+, L
∞(R2)), compactly

supported ;

Uniqueness holds if moreover ξ(0) /∈ suppp(ρ(0)). In this case, the
solution satisfies ξ(t) /∈ supp(ρ(t)), for all t > 0. This means: no
collision occurs between the plasma particles and the point charge.
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Thank you for your attention.
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