Degree-of-freedom reduction for nonlinear N-Body wave-particle interaction applied to time domain simulations

Damien F. G. MINENNA (CNES/AMU/TED)

- Degree-of-freedom involved in plasma is
 - One major issue for N-Body simulations
 - Limiting numerical exploitations
- But to study wave-particle interactions, we want
 - Time domain regime
 - Oscillations, reflections, ...
 - Nonlinear regime
 - Trapping, chaos, ...
 - Momentum conservation
- For simulations of beam-plasma system-like, we want
 - Accuracy with
 - Interaction time from nanoseconds to milliseconds
 - Long medium from centimetres to metres
 - Fast runs
 - Few minutes only (with my 7 years old computer!)

Degree-of-freedom reduction for nonlinear N-Body wave-particle interaction applied to time domain simulations

Damien F. G. MINENNA (CNES/AMU/TED)

- Yes we can!
- Drastic degree-of-freedom reduction of fields
 - For periodical structures
- Self-consistent hamiltonian dynamics
 - Symplectic integrator

