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Context: Turbulence in the core of fusion plasmas 

Core turbulence 
•  Microscopic (mm) waves 
•  Driven by pressure gradients 
•  In this work: electrostatic 
•  Transport particles and energy from 

core to edge via ExB drift 

•  Collisional mean free path (km) >>	λ	
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Turbulence can be channeled or mitigated 
•  Turbulence can generate large coherent eddies which degrade 

confinement further. 
•  Turbulence (prey) can feed macroscopic flows (predators), which 

significantly improve confinement. 
•  Theory could provide selection criteria ? Other methods of control ? 

⇒ Degrade confinement 

Diamond	‘05	

Huld	‘90	



Validity limits of conventional approaches 

3	

⇒ Microscopic	velocity-space	structures?	
⇒ Macroscopic	impacts?	

Analytic theory 
•  Based on linear theory. 
•  Example: quasi-linear theory. 

•  Caveat: assumes collection of 
waves with random phases. 

•  Qualitative discrepancies with 
measured transport. 
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⇒ Random walk 

Numerical simulations 
•  Kinetic simulations (gyrokinetics), large efforts on fine scales in real space. 
•  Caveat: may miss fine scales in velocity (or energy) space. 

Result	from	simula;on					
of	1D	plasma.	

For	toroidal	plasmas:	???	

grid	

Experimental measurements 
•  Direct measurement challenging. 

Δv	≪	vth												Δr	~	ρci		~	mm												
τ	~ 1	-	10	μs	



Conclusion: microscopic phase-space structures 
can be responsible for MOST of the transport! 
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Numerical simulations 
 

•  Turbulence,	transport		
•  Zonal	flows	
•  CorrugaGon,	torque	
•  Collisionless	fricGon	

Biglari	’88	
Dupree	‘72	

Kosuga	’13,	
’14,	’16,	’17	

Analytic theories 
•  Either robust structures with long life-time, or microscopic “granulation” 

of the phase-space. 
•  Essential macroscopic impacts: 

But… 
⇒ Essen;al	impacts	of	small-scale	phase-space	structures	in	

fusion	plasmas!	
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•  Self-organisation of structures •  Heat transport due to structures 
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… many caveats. 
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⇒ 	Future	work:	remove	these	caveats	one	by	one	

Reduced (toy) model 
•  Prototype for low-frequency turbulence 

•  Heavily simplified geometry (but retain toroidal effects and 
inhomogeneity of equilibrium plasma) 

Weak turbulence 
•  Small equilibrium gradients 
•  Small system size 

Decaying turbulence 
•  Initial perturbations, no stirring. Only the transient behavior is analyzed. 

No collision operator 

⇒ Coupling with higher-frequency turbulence is neglected 
⇒ Quasi-periodic orbits with faster time-scale are averaged out 



Approach:	reduced	model	for	trapped	parGcles	(bananas)	

ω << ωbounce << ωgyro	

KineGcs:	

GyrokineGcs:	

6D	Phase-space	(3D	+	3V)	
ω << ωgyro	

4D	Phase-space	+	1	parameter	

Pitch-angle = 0	

2D	Phase-space	+	1	parameter	

Gyrobounce	
gyrokineGcs:	

2D	Phase-space	+	2	parameters	

Car4er-Michaud	‘13	
TERESA	code	

Drouot	‘14	

(α,	ψ)	
(KineGc	energy	E)	
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Precession	phase	α	

ψ	



Model	equaGons	

-		1	

Precession	

Precession	
phase	α	

ψ	

Quasi-neutrality: 

Vlasov equation: 
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Retains the main ingredients of PS structure formation: 
•  Free energy and dissipation mechanism 
•  Wave-particle interactions 
•  Equilibrium inhomogeneity 

Main limitation: ω ~ ωprecession	 ⇒ TIM, TEM 

Tagger,	Laval,	Pellat	‘77	
Biglari,	Diamond,	Terry	’88	

Depret	‘00	
Sarazin	‘05	
Darmet	‘08	
Drouot	’14	



Vlasov advection: semi-Lagrangian scheme 
•  Based on conservation of f along characteristics X, solutions of 

Sonnendrücker ‘99 
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Numerical method (1/2) 

•  Step 1: Newton algorithm to 
determine the foot of the 
characteristics reaching 
each grid point at t=tn+1.  

 
 
 
•  Step 2: bi-cubic spline 

interpolation of f at the foot 
of the characteristics. 

Besse & Mehrenberger ‘08 Car4er-Michaud	‘13	



Charge density 
•  Pade approximation (tends to over-damp the small scales) 

•  Simpson’s rule for integration in E 
 
Quasineutrality: 
•  Fourier decomposition in α, 4th order finite-difference in ψ 

Lesur ‘17 9	

Numerical method (2/2) 

TERESA, in the jargon of gyrokinetic codes: 
•  Global, full-f, fixed-gradient (possibility of flux-driven) 
•  Collisionless, electrostatic 
•  Non-adiabatic electrons with a simple model                                 

(possibility of kinetic electrons) 

n̂e,m

n0
= (1 + ım�)

e�̂m

T
Kadomtsev ‘71 

Car4er-Michaud	‘13	
Drouot	‘14	



TERESA	explores	kineGc	effects	in	tokamak	turbulence	

Rayleigh-Bénard	

Kelvin-Helmholtz	

TERESA	

Precession	phase	α	
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Kinetic version of classic instabilities 

Precession	

Precession	
phase	α	

ψ	

Cartier-
Michaud ‘14 

Palermo ‘15 
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Case	study	of	a	single	mode	(all	other	modes	set	to	0)	
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First peak is not so sensitive 
to NE 
 

But then, convergence 
requires large NE 
•  Appears to converge for NE ≈ 30 
•  But new peaks for NE > 300 

NE=1536 

NE=384 
NE=192 
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Resonant wave-particle interactions can 
create a narrow structure in energy-space  
•  But linear growth-rate is not so sensitive    

(0.1% inaccuracy for NE ≈ 200). 



First	peak:	not-so-fine	scales	in	energy-space	
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Second	peak:	fine-scales	in	energy-space	
The second peak is associated with the growth of phase-
space structures with ΔE << T0 
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These	structures	survive	turbulence	

1.  Self-organized	from	seeds	born	at	
the	resonant	energy.	

2.  Evolved	toward	higher	energies.	
3.  Localized	in	radius,	with	Δr	~	ρci	
4.  Localized	in	energy,	with	ΔE	≪	T	
5.  LifeGme	>>	drir	period	
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Properties 
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Turbulent	case	
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Small-scale	phase-space	structures	drive	
radial	flux	of	phase-space	density	
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Thermal	range	
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Impact on heat transport 
•  Dominant effect in the flux 
•  Qualitatively: non-diffusive 

Small-scale	phase-space	structures	drive	
parGcle	and	heat	transport		
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Summary 

Convergence in NE is delicate 
•  Small-scale structures localized in 

energy self-organize near the resonant 
energy, and travel toward higher 
energies. 

•  They drive strong transport, which is 
missing from simulations with NE < 1000 

18	

Toroidal angle α 
0 2π 

0 

5 

E
ne

rg
y 

(E
 / 

T i
) Drift-holes 

1% -1% 0 
f-<f>α 

Drift-holes 

δf 

Toroidal angle Radial coordinate 

!core                      edge" 
  

1.4 

2.0 

Ve
lo

ci
ty

 (v
 / 

v T
i) 

1.6 

1.8 

Perspectives 
•  Larger systems 
•  Stronger, stirred turbulence 
•  Effect of collisions? 
•  Signatures for experimental observation 
 

TERESA code 
•  Focuses on trapped (banana) particles 
•  Toy-model for low-frequency turbulence 
•  Retains essential kinetic ingredients 



Small-scale energy-space structures in GK 
KineGcs:	

Existence of fine-scale structures in velocity-space 
•  Not an issue? 

•  Still an issue! 

GyrokineGcs:	

6D	Phase-space	(3D	+	3V)	

ω << ωgyro	

4D	Phase-space	+	1	parameter	

Entropy	and	energy	flux	constant	between	4	x	4	x	2	and	16	x	16	x	2	
Candy ‘06 

1024	x	64	

Watanabe ‘06 

⇒ 	ExisGng	GK	simulaGons	may	miss	effects	of	small-scale	PS	structures	
Idomura ‘08 



Turbulent cascade of entropy in phase-space 
•  Driven by nonlinear phase-mixing in strongly turbulent plasmas 
•  Generation of small-scales in real space and that in velocity space are 

intertwined. 
 Schekochihin ‘08 
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Tatsuno ‘09 
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Spectrum	in	wave	number	 Spectrum	in	velocity-space	
(Hankel	spectrum)	

(AstroGK	data)	

Cascade in velocity-space 
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Context 1 : Current-driven                              
ion-acoustic turbulence 

1D model for ion-electron plasma with initial velocity drift 
•  1D Vlasov for ions and electrons (collisionless) 
•  Poisson equation 

Tonks & Langmuir ‘29 
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⇒  Current-driven          
ion-acoustic turbulence 

Revans ‘33 

Velocity redistribution 
•  Anomalous resistivity 
•  Turbulent "heating" 
•  Turbulent transport                   

in other contexts 



Electrostatic trapping yields                      
phase-space vortex 

Self-sustaining structure 
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Bernstein & Green & Kruskal ‘57 

⇒  BGK mode 

Local	deficit	
of	ions	in	

phase-space	

PotenGal	well	
Ions	trapped	

within	
separatrix	



Nonlinear growth of a                                
phase-space vortex 

Growth mechanism 
•  F-P drag by scattering electrons 
•  Lagrangian conservation of f yields 

Eulerian growth of δf 
Dupree ‘83 
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Phase-space	dynamics	
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Perturbed	PS	density	
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Courtesy of W. Qi 



Phase-space turbulence? 

How about the interaction of coexisting structures of various sizes? 

Interaction of two structures is deterministic 
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Motivation: essential role of                        
phase-space structures 

Vortices in phase-space are observed in experiments 
•  Space plasmas 
•  Laboratory linear plasmas 
•  Magnetic reconnection of toroidal plasmas 
•  Fusion plasmas 
•  Laser plasmas 

Deep implications for instabilities, turbulence, transport, heating 
•  Drive nonlinear instabilities 
•  Modify the magnitude of saturation, spectrum of turbulence 
•  Qualitative effect on transport 
•  Interact with large-scale flows 

•  PS vortex-driven subcritical instability dominates the EM spectrum 

Review: Eliasson & Shukla ‘06 
Saeki ‘79 

Fox ‘08 
Kusama ‘99 ; Berk, Breizman & Pekker ‘96 
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