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Charged Particle Motion in Strong Magnetic Fields
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Guiding Centre Dynamics

= split charged particle motion z into guiding centre

Particle
motion X and gyro motion p

//

z=X+p

Guiding Center

= strong magnetic fields: neglect finite gyroradius effects
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= noncanonical Hamiltonian system

q=2"(q) VH(q) X)X

origin

= Lagrangian description: Euler-Lagrange equations
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Hamilton’s Principle of Stationary Action

= action: functional of a trajectory ¢(t) alt) varied curves
: 7
Al = [ 1a(),a(n) de A
0 .

= Hamilton's principle of stationary action: among
all possible trajectories ¢ connecting ¢y and qr,
the physical trajectory makes the action integral A stationary
= variation and integration by parts (endpoints fixed: d¢(0) = d¢(T) = 0) 0
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= requiring stationarity of the action leads to the Euler-Lagrange equations of motion
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Continuous Galerkin Approximation

qh‘(tn tns1)

tn tn1
= divide the interval [0, T] into an equidistant, monotonic sequence {t, = nh}Y

N R ORTON

= approximate ¢ such that discrete trajectories g in the time interval [0, 7] are elements of

Q}L([O T ) = {Qh : 0 T M | Qh [tnitner] € P ([tna Z€n+1]) Qh(tn) dn, Qh(tn+1) = Qn+1}



Discrete Variational Principle

upon choosing a quadrature rule (b;, ¢;), the discrete Lagrangian becomes

La(qns @ne1) = h Y b L(qn(tn + cih), an(tn + cih))
=1

discrete Action with discrete trajectory qq = {qn = qn(t:)}’,

N-1

Adlaal = Y. La(an, ne1)

n=0

requiring stationarity of the discrete action,

N-1
0Aq=9 Z Li(qn, gne1) =0 for all dg,
n=0

with dqg = dgn = 0 leads to the discrete Euler-Lagrange equations

Do La(qn-1,qn) + D1 La(qn, gne1) =0 forall n



Guiding Centre Lagrangian

= the guiding centre Lagrangian is a special case of degenerate Lagrangian linear in velocities
L(q,q) =9(q) - ¢— H(q)
where ¢ is a general, usually nonlinear function of ¢
= the Euler-Lagrange equations are first order ordinary differential equations
d .
=90 =vi(a)- 4= VH(q)
= the discrete Euler—Lagrange equations correspond to multi-step variational integrators ¥,

D2Ld(Qn—17 Qn) + DlLd(Qm Qn+1) =0 = ‘I’Ld : (Qn—la Qn) = (Qn) Qn+1)

— susceptible to parasitic modes driving simulations unstable

— we need two sets of initial data even though we have first order ODEs



Variational Guiding Centre Integrators

= analogously to the continuous Legendre-transform,

oL, .
=500 =9(q),
q
we use the discrete Legendre-transform to rewrite the DELEQs in position-momentum form

Pn = —DlLd(Qm QTH-l)v
Pn+1 = D2Ld(Qm Qn+1)

= can be solved as the discrete Lagrangian L; is not degenerate, providing an update rule
@Ld : (QmPn) = (Qn+1apn+1)

= use continuous Legendre-transform to obtain an exact second initial condition pg given ¢

Po = g—s(%) =9(q)



Passing Guiding Centre Particle with Variational Integrator
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Passing Guiding Centre Particle with Variational Integrator

= position-momentum form: rewrite the equations of motion as an index-two DAE

s _0-1 2 T(z )
(Z);iz(z)(,VH()JFV(ZS (), z=(qp), o(ep)=p-9(q), Q= i g

= the variational integrator does not preserve the constraint ¢(¢,p) =0

— the numerical solution drifts away from the constraint submanifold
pn *9(q,) for n>1, even though po=9(qo)
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Symmetric Projection

= index-two differential-algebraic equation
5= QN (VH(2) + voT(2) M),
0=0(2),

= symmetric projection of primary constraint with R(oco) = +1 the stability function of ¥,

0 -1
z=(q,p),  &(gp)=p-9(9), Q:(n @)

Zn = 2p+ hQ_1V¢T(zn) Al perturb
Zne1 = Vi(Zn) apply arbitrary one-step method
Zn+1 = Zn+1 + h R(00) Q_IVQST(an))\nH project on constraint submanifold

0=0d(2n41) constraint



Passing Guiding Centre Particle with Projected Variational Integrator
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Symmetric Projection
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= symmetric projection of primary constraint with R(oo) = +1 the stability function of ¥,

Zn = 2p+ hQ_1V¢T(zn) Al perturb
Zne1 = Vi(Zn) apply arbitrary one-step method
Zni1 = Zni1 + B R(00) Q_1V¢T(zn+1))\m1 project on constraint submanifold

0=0¢(2zn41) constraint



Discontinuous Galerkin Approximation

qh (tn 7tn+1 )

tn t'n,+1
= discrete trajectories gp,(t) in the time interval [0, T are elements of
Qu([0, 71) = { g+ [0, T] > M | @hl (1, 1,1 € Ps((tns tnr1)) }

with limits ¢} = ltlﬁl; an(t), Gq = ltlTI;l qn(tns1), jumps [q],, = ¢ — ¢, averages (g}, = %(q;ﬁ qr)



Discontinuous Galerkin Action Principle

discontinuous Galerkin action principle for the Lagrangian L(q, q) = 9(q) - ¢— H(q)
N-1 s
) Z hz biL(qh(tn + cih), qn(ty + cih)) + [numerical flux]| =0
-0 | =1

with discontinuous trajectories qh|(tn,tn+1) and a quadrature rule with weights b; and nodes ¢;
discrete solution: ¢4 = {Qn = <<Q>>n}£1v:0 with the averages <<q>>n = %(q; + q;)
the numerical flux is crucial for the stability and conservation properties of the integrator
candidate fluxes: approximations of the nonconservative product ¥(¢q) - ¢ of the form

1 " -
f (75 4ns 01)) (T30 ay) dr > B d(vis aps 4)) &' (i3 G G1)
0

=1

with ¢ a path connecting ¢, and ¢;, and (3;,7;) the weights and nodes of a quadrature rule



Passing Guiding Centre Particle with DG Variational Integrator
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Summary and Outlook

= variational integrators

= obtained from a variational principle applied to a discrete action
= automatically preserve conservation laws originating from symmetries of the Lagrangian as well as a discrete
symplectic structure, leading to good long-time energy behaviour

= for degenerate Lagrangian systems Vls usually constitute multi-step methods, subject to parasitic modes
= projected variational integrators for degenerate Lagrangians

= very good long-time stability, approximate conservation of energy, exact conservation of momenta

= ejther not flexible or not symplectic or not conserving the constraint submanifold exactly
[Projected Variational Integrators for Degenerate Lagrangian Systems, arXiv:1708.07356]
= discontinuous Galerkin variational integrators

= one-step methods for degenerate Lagrangians obtained directly from a discrete action principle

= careful and rigorous derivation of numerical fluxes using LeFloch's theory of nonconservative products
[Hamilton-Pontryagin-Galerkin Integrators, in preparation]

[Discontinuous Galerkin Variational Integrators for Degenerate Lagrangians, in preparation]



