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Charged Particle Motion in Strong Magnetic Fields



Guiding Centre Dynamics

• split charged particle motion x into guiding centre
motion X and gyro motion ρ

x = X + ρ

• strong magnetic fields: neglect finite gyroradius effects

• noncanonical Hamiltonian system

q̇ = Ω̄−1(q)∇H(q)

• Lagrangian description: Euler–Lagrange equations

∂L
∂q
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dt
(∂L
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Hamilton’s Principle of Stationary Action

• action: functional of a trajectory q(t)

A[q] =
T

∫
0

L(q(t), q̇(t))dt

• Hamilton’s principle of stationary action: among
all possible trajectories q connecting q0 and qT,
the physical trajectory makes the action integral A stationary

• variation and integration by parts (endpoints fixed: δq(0) = δq(T) = 0)

δA[q] =
T

∫
0
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⋅ δq + ∂L
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⋅ δq̇]dt =
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[∂L
∂q̇
⋅ δq]

T

0
= 0 for all δq

• requiring stationarity of the action leads to the Euler-Lagrange equations of motion
∂L
∂q
(q, q̇) − d

dt
(∂L
∂q̇
(q, q̇)) = 0

q0 qT

q(t) varied curves



Continuous Galerkin Approximation

t

tn tn+1

qn

qn+1qh∣(tn,tn+1)

• divide the interval [0,T] into an equidistant, monotonic sequence {tn = nh}Nn=0,

A[q] =∑N−1
n=0 ∫

tn+1

tn
L(q(t), q̇(t))dt

• approximate q such that discrete trajectories qh in the time interval [0,T] are elements of

Qh([0,T]) = {qh ∶ [0,T]→M ∣ qh∣[tn,tn+1] ∈ Ps([tn, tn+1]), qh(tn) = qn, qh(tn+1) = qn+1}



Discrete Variational Principle

• upon choosing a quadrature rule (bi, ci), the discrete Lagrangian becomes

Ld(qn, qn+1) = h
s
∑
i=1

bi L(qh(tn + cih), q̇h(tn + cih))

• discrete Action with discrete trajectory qd = {qn = qh(tn)}Nn=0

Ad[qd] =
N−1
∑
n=0

Ld(qn, qn+1)

• requiring stationarity of the discrete action,

δAd = δ
N−1
∑
n=0

Ld(qn, qn+1) = 0 for all δqn

with δq0 = δqN = 0 leads to the discrete Euler-Lagrange equations

D2Ld(qn−1, qn) +D1Ld(qn, qn+1) = 0 for all n



Guiding Centre Lagrangian

• the guiding centre Lagrangian is a special case of degenerate Lagrangian linear in velocities

L(q, q̇) = ϑ(q) ⋅ q̇ −H(q)

where ϑ is a general, usually nonlinear function of q

• the Euler-Lagrange equations are first order ordinary differential equations

d
dt
ϑ(q) = ∇ϑ(q) ⋅ q̇ −∇H(q)

• the discrete Euler–Lagrange equations correspond to multi-step variational integrators ΨLd

D2Ld(qn−1, qn) +D1Ld(qn, qn+1) = 0 ⇒ ΨLd ∶ (qn−1, qn)↦ (qn, qn+1)

� susceptible to parasitic modes driving simulations unstable� we need two sets of initial data even though we have first order ODEs



Variational Guiding Centre Integrators

• analogously to the continuous Legendre-transform,

p = ∂L
∂q̇
(q, q̇) = ϑ(q),

we use the discrete Legendre-transform to rewrite the DELEQs in position-momentum form

pn = −D1Ld(qn, qn+1),
pn+1 = D2Ld(qn, qn+1)

• can be solved as the discrete Lagrangian Ld is not degenerate, providing an update rule

Ψ̃Ld ∶ (qn,pn)↦ (qn+1,pn+1)

• use continuous Legendre-transform to obtain an exact second initial condition p0 given q0

p0 =
∂L
∂q̇
(q0) = ϑ(q0)



Passing Guiding Centre Particle with Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]



Passing Guiding Centre Particle with Variational Integrator

• position-momentum form: rewrite the equations of motion as an index-two DAE
ż = Ω−1(∇H(z) +∇ϕT(z)λ),
0 = ϕ(z),

z = (q,p), ϕ(q,p) = p − ϑ(q), Ω =
⎛
⎝
0 −1
1 0

⎞
⎠

• the variational integrator does not preserve the constraint ϕ(q,p) = 0� the numerical solution drifts away from the constraint submanifold

pn ≠ ϑ(qn) for n ≥ 1, even though p0 = ϑ(q0)



Symmetric Projection

∆

Ψ h
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• index-two differential-algebraic equation
ż = Ω−1(∇H(z) +∇ϕT(z)λ),
0 = ϕ(z),

z = (q,p), ϕ(q,p) = p − ϑ(q), Ω =
⎛
⎝
0 −1
1 0

⎞
⎠

• symmetric projection of primary constraint with R(∞) = ±1 the stability function of Ψh

z̃n = zn + hΩ−1∇ϕT(zn)λn+1 perturb
z̃n+1 = Ψh(z̃n) apply arbitrary one-step method
zn+1 = z̃n+1 + h R(∞)Ω−1∇ϕT(zn+1)λn+1 project on constraint submanifold

0 = ϕ(zn+1) constraint



Passing Guiding Centre Particle with Projected Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]



Symmetric Projection
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• symmetric projection of primary constraint with R(∞) = ±1 the stability function of Ψh

z̃n = zn + hΩ−1∇ϕT(zn)λn+1 perturb
z̃n+1 = Ψh(z̃n) apply arbitrary one-step method
zn+1 = z̃n+1 + h R(∞)Ω−1∇ϕT(zn+1)λn+1 project on constraint submanifold

0 = ϕ(zn+1) constraint



Discontinuous Galerkin Approximation

t

tn tn+1

q−n

q+n

q−n+1

q+n+1

⟪q⟫n
⟪q⟫n+1

JqKn JqKn+1
qh∣(tn,tn+1)

• discrete trajectories qh(t) in the time interval [0,T] are elements of

Qh([0,T]) = {qh ∶ [0,T]→M ∣ qh∣(tn,tn+1) ∈ Ps((tn, tn+1))}

with limits q+n = limt↓tn
qh(t), q−n+1 = limt↑tn

qh(tn+1), jumps JqKn = q+n − q−n, averages ⟪q⟫n =
1
2(q
−
n + q+n)



Discontinuous Galerkin Action Principle

• discontinuous Galerkin action principle for the Lagrangian L(q, q̇) = ϑ(q) ⋅ q̇ −H(q)

δ
N−1
∑
n=0

⎧⎪⎪⎪⎪⎪⎪⎪⎩
h

s
∑
i=1

bi L(qh(tn + cih), q̇h(tn + cih)) + [numerical flux]
⎫⎪⎪⎪⎪⎪⎪⎪⎭
= 0

with discontinuous trajectories qh∣(tn,tn+1) and a quadrature rule with weights bi and nodes ci

• discrete solution: qd = {qn = ⟪q⟫n}Nn=0 with the averages ⟪q⟫n =
1
2(q
−
n + q+n)

• the numerical flux is crucial for the stability and conservation properties of the integrator

• candidate fluxes: approximations of the nonconservative product ϑ(q) ⋅ q̇ of the form
1

∫
0

ϑ(ϕ(τ ; q−n, q+n))
dϕ
dτ
(τ ; q−n, q+n)dτ ≈

σ

∑
i=1

βi ϑ(ϕ(γi; q−n, q+n))ϕ′(γi; q−n, q+n)

with ϕ a path connecting q−n and q+n and (βi, γi) the weights and nodes of a quadrature rule



Passing Guiding Centre Particle with DG Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]



Summary and Outlook

• variational integrators
• obtained from a variational principle applied to a discrete action
• automatically preserve conservation laws originating from symmetries of the Lagrangian as well as a discrete

symplectic structure, leading to good long-time energy behaviour
• for degenerate Lagrangian systems VIs usually constitute multi-step methods, subject to parasitic modes

• projected variational integrators for degenerate Lagrangians
• very good long-time stability, approximate conservation of energy, exact conservation of momenta
• either not flexible or not symplectic or not conserving the constraint submanifold exactly
[Projected Variational Integrators for Degenerate Lagrangian Systems, arXiv:1708.07356]

• discontinuous Galerkin variational integrators
• one-step methods for degenerate Lagrangians obtained directly from a discrete action principle
• careful and rigorous derivation of numerical fluxes using LeFloch’s theory of nonconservative products
[Hamilton-Pontryagin-Galerkin Integrators, in preparation]
[Discontinuous Galerkin Variational Integrators for Degenerate Lagrangians, in preparation]


