

Discontinuous Galerkin Variational Integrators

Towards the Geometric Discretisation of the Guiding Centre System

Michael Kraus^{1,2,3} (michael.kraus@ipp.mpg.de)

In collaboration with Joshua Burby 4 , Leland Ellison 5 , Omar Maj 1,2 , Hiroaki Yoshimura 3

¹ Max-Planck-Institut für Plasmaphysik

² Technische Universität München, Zentrum Mathematik

 $^{^{\}rm 3}$ Waseda University, School of Science and Engineering

⁴ Courant Institute of Mathematical Sciences, New York University

 $^{^{5}}$ Lawrence Livermore National Laboratory

Charged Particle Motion in Strong Magnetic Fields

Without magnetic field

Guiding Centre Dynamics

 split charged particle motion x into guiding centre motion X and gyro motion ρ

 $x = X + \rho$

- strong magnetic fields: neglect finite gyroradius effects
- noncanonical Hamiltonian system

 $\dot{q} = \bar{\Omega}^{-1}(q) \nabla H(q)$

Lagrangian description: Euler–Lagrange equations

$$\frac{\partial L}{\partial q}(q,\dot{q}) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}(q,\dot{q}) \right) = 0, \qquad L(q,\dot{q}) = \vartheta(q) \cdot \dot{q} - H(q), \qquad \bar{\Omega}_{ij} = \frac{\partial \vartheta_j}{\partial z^i} - \frac{\partial \vartheta_i}{\partial z^j}$$

Hamilton's Principle of Stationary Action

• action: functional of a trajectory q(t)

$$\mathcal{A}[q] = \int_{0}^{T} L(q(t), \dot{q}(t)) dt$$

- Hamilton's principle of stationary action: among all possible trajectories q connecting q₀ and q_T, the physical trajectory makes the action integral A stationary
- variation and integration by parts (endpoints fixed: $\delta q(0) = \delta q(T) = 0$)

$$\delta \mathcal{A}[q] = \int_{0}^{T} \left[\frac{\partial L}{\partial q} \cdot \delta q + \frac{\partial L}{\partial \dot{q}} \cdot \delta \dot{q} \right] dt = \int_{0}^{T} \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \cdot \delta q \, dt + \left[\frac{\partial L}{\partial \dot{q}} \cdot \delta q \right]_{0}^{T} = 0 \text{ for all } \delta q$$

requiring stationarity of the action leads to the Euler-Lagrange equations of motion

$$\frac{\partial L}{\partial q}(q,\dot{q}) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}(q,\dot{q}) \right) = 0$$

..0

Continuous Galerkin Approximation

• divide the interval [0, T] into an equidistant, monotonic sequence $\{t_n = nh\}_{n=0}^N$,

$$\mathcal{A}[q] = \sum_{n=0}^{N-1} \int_{t_n}^{t_{n+1}} L(q(t), \dot{q}(t)) dt$$

- approximate q such that discrete trajectories q_h in the time interval [0, T] are elements of

$$\mathcal{Q}_{h}([0,T]) = \left\{ q_{h} : [0,T] \to \mathcal{M} \mid q_{h}|_{[t_{n},t_{n+1}]} \in \mathbb{P}_{s}([t_{n},t_{n+1}]), q_{h}(t_{n}) = q_{n}, q_{h}(t_{n+1}) = q_{n+1} \right\}$$

Discrete Variational Principle

• upon choosing a quadrature rule (b_i, c_i) , the discrete Lagrangian becomes

$$L_d(q_n, q_{n+1}) = h \sum_{i=1}^s b_i L(q_h(t_n + c_i h), \dot{q}_h(t_n + c_i h))$$

- discrete Action with discrete trajectory $q_d = \{q_n = q_h(t_n)\}_{n=0}^N$

$$\mathcal{A}_d[q_d] = \sum_{n=0}^{N-1} L_d(q_n, q_{n+1})$$

requiring stationarity of the discrete action,

$$\delta \mathcal{A}_d = \delta \sum_{n=0}^{N-1} L_d(q_n, q_{n+1}) = 0 \quad \text{for all} \quad \delta q_n$$

with $\delta q_0 = \delta q_N = 0$ leads to the discrete Euler-Lagrange equations

$$D_2L_d(q_{n-1}, q_n) + D_1L_d(q_n, q_{n+1}) = 0$$
 for all n

Guiding Centre Lagrangian

• the guiding centre Lagrangian is a special case of degenerate Lagrangian linear in velocities

 $L(q, \dot{q}) = \vartheta(q) \cdot \dot{q} - H(q)$

where ϑ is a general, usually nonlinear function of q

• the Euler-Lagrange equations are first order ordinary differential equations

$$\frac{d}{dt}\vartheta(q) = \nabla\vartheta(q) \cdot \dot{q} - \nabla H(q)$$

1

- the discrete Euler–Lagrange equations correspond to multi-step variational integrators Ψ_{L_d}

$$D_2L_d(q_{n-1}, q_n) + D_1L_d(q_n, q_{n+1}) = 0 \qquad \Rightarrow \qquad \Psi_{L_d} : (q_{n-1}, q_n) \mapsto (q_n, q_{n+1})$$

- $\rightarrow\,$ susceptible to parasitic modes driving simulations unstable
- $\rightarrow\,$ we need two sets of initial data even though we have first order ODEs

Variational Guiding Centre Integrators

analogously to the continuous Legendre-transform,

$$p = \frac{\partial L}{\partial \dot{q}}(q, \dot{q}) = \vartheta(q),$$

we use the discrete Legendre-transform to rewrite the DELEQs in position-momentum form

$$p_n = -D_1 L_d(q_n, q_{n+1}),$$

$$p_{n+1} = D_2 L_d(q_n, q_{n+1})$$

• can be solved as the discrete Lagrangian L_d is not degenerate, providing an update rule

$$\tilde{\Psi}_{L_d}: (q_n, p_n) \mapsto (q_{n+1}, p_{n+1})$$

• use continuous Legendre-transform to obtain an exact second initial condition p_0 given q_0

$$p_0 = \frac{\partial L}{\partial \dot{q}}(q_0) = \vartheta(q_0)$$

Passing Guiding Centre Particle with Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]

Passing Guiding Centre Particle with Variational Integrator

position-momentum form: rewrite the equations of motion as an index-two DAE

$$\dot{z} = \Omega^{-1} \big(\nabla H(z) + \nabla \phi^{T}(z) \lambda \big), \qquad z = (q, p), \qquad \phi(q, p) = p - \vartheta(q), \qquad \Omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- the variational integrator does not preserve the constraint $\phi(q, p) = 0$
- $\rightarrow\,$ the numerical solution drifts away from the constraint submanifold

$$p_n \neq \vartheta(q_n)$$
 for $n \ge 1$, even though $p_0 = \vartheta(q_0)$

index-two differential-algebraic equation

 $\tilde{z}_n = z_n + h \Omega^{-1} \nabla \phi^T(z_n) \lambda_{n+1}$

$$\dot{z} = \Omega^{-1} \big(\nabla H(z) + \nabla \phi^{T}(z) \lambda \big), \qquad z = (q, p), \qquad \phi(q, p) = p - \vartheta(q), \qquad \Omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

• symmetric projection of primary constraint with $R(\infty) = \pm 1$ the stability function of Ψ_h

perturb

$$\tilde{z}_{n+1} = \Psi_h(\tilde{z}_n)$$

$$z_{n+1} = \tilde{z}_{n+1} + h R(\infty) \Omega^{-1} \nabla \phi^T(z_{n+1}) \lambda_{n+1}$$

$$0 = \phi(z_{n+1})$$

apply arbitrary one-step method

project on constraint submanifold

constraint

Passing Guiding Centre Particle with Projected Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]

Symmetric Projection

• symmetric projection of primary constraint with $R(\infty) = \pm 1$ the stability function of Ψ_h

$$\begin{split} \tilde{z}_n &= z_n + h \,\Omega^{-1} \nabla \phi^T(z_n) \,\lambda_{n+1} & \text{perturb} \\ \tilde{z}_{n+1} &= \Psi_h(\tilde{z}_n) & \text{apply arbitrary one-step method} \\ z_{n+1} &= \tilde{z}_{n+1} + h \,R(\infty) \,\Omega^{-1} \nabla \phi^T(z_{n+1}) \lambda_{n+1} & \text{project on constraint submanifold} \\ 0 &= \phi(z_{n+1}) & \text{constraint} \end{split}$$

Discontinuous Galerkin Approximation

• discrete trajectories $q_h(t)$ in the time interval [0, T] are elements of

$$\mathcal{Q}_{h}([0, T]) = \left\{ q_{h} : [0, T] \to \mathcal{M} \mid q_{h}|_{(t_{n}, t_{n+1})} \in \mathbb{P}_{s}((t_{n}, t_{n+1})) \right\}$$

with limits $q_{n}^{+} = \lim_{t \downarrow t_{n}} q_{h}(t), \ q_{n+1}^{-} = \lim_{t \uparrow t_{n}} q_{h}(t_{n+1}), \text{ jumps } \llbracket q \rrbracket_{n} = q_{n}^{+} - q_{n}^{-}, \text{ averages } \langle \! \langle q \rangle \! \rangle_{n} = \frac{1}{2} (q_{n}^{-} + q_{n}^{+})$

Discontinuous Galerkin Action Principle

- discontinuous Galerkin action principle for the Lagrangian $L(q, \dot{q}) = \vartheta(q) \cdot \dot{q} - H(q)$

$$\delta \sum_{n=0}^{N-1} \left(h \sum_{i=1}^{s} b_i L(q_h(t_n + c_i h), \dot{q}_h(t_n + c_i h)) + [\text{numerical flux}] \right) = 0$$

with discontinuous trajectories $q_h|_{(t_n,t_{n+1})}$ and a quadrature rule with weights b_i and nodes c_i

- discrete solution: $q_d = \{q_n = \langle\!\langle q \rangle\!\rangle_n\}_{n=0}^N$ with the averages $\langle\!\langle q \rangle\!\rangle_n = \frac{1}{2}(q_n^- + q_n^+)$
- the numerical flux is crucial for the stability and conservation properties of the integrator
- candidate fluxes: approximations of the nonconservative product $\vartheta(q) \cdot \dot{q}$ of the form

$$\int_{0}^{1} \vartheta \left(\phi(\tau; q_{n}^{-}, q_{n}^{+}) \right) \frac{d\phi}{d\tau}(\tau; q_{n}^{-}, q_{n}^{+}) d\tau \quad \approx \quad \sum_{i=1}^{\sigma} \beta_{i} \vartheta \left(\phi(\gamma_{i}; q_{n}^{-}, q_{n}^{+}) \right) \phi'(\gamma_{i}; q_{n}^{-}, q_{n}^{+})$$

with ϕ a path connecting q_n^- and q_n^+ and (β_i, γ_i) the weights and nodes of a quadrature rule

Passing Guiding Centre Particle with DG Variational Integrator

[http://github.com/DDMGNI/GeometricIntegrators.jl]

- variational integrators
 - obtained from a variational principle applied to a discrete action
 - automatically preserve conservation laws originating from symmetries of the Lagrangian as well as a discrete symplectic structure, leading to good long-time energy behaviour
 - for degenerate Lagrangian systems VIs usually constitute multi-step methods, subject to parasitic modes
- projected variational integrators for degenerate Lagrangians
 - very good long-time stability, approximate conservation of energy, exact conservation of momenta
 - either not flexible or not symplectic or not conserving the constraint submanifold exactly

[Projected Variational Integrators for Degenerate Lagrangian Systems, arXiv:1708.07356]

- discontinuous Galerkin variational integrators
 - one-step methods for degenerate Lagrangians obtained directly from a discrete action principle
 - careful and rigorous derivation of numerical fluxes using LeFloch's theory of nonconservative products

[Hamilton-Pontryagin-Galerkin Integrators, in preparation]

[Discontinuous Galerkin Variational Integrators for Degenerate Lagrangians, in preparation]