#### Phase-Space Evolution of Merging Collisionless Stellar Systems with a Self-Consistent Field Method



Shunsuke Hozumi Shiga University, Japan

#### Mean-Field Approach to Merging Systems

#### Merging

• Fundamental process of structure formation in the CDM universe

- galaxy-galaxy mergers  $\implies$  collisionless systems
- Galaxy Simulation
  - N Body Approach
    - *N*-gravitating bodies  $\Longrightarrow$   $F_i = \sum_{j=1 \atop i \neq i}^N \frac{Gm_i m_j (r_j r_i)}{|r_j r_i|^3}$
    - Gravitational softening  $\implies F_i = \sum_{j=1}^{N} \frac{Gm_i m_j (r_j r_i)}{(|r_j r_i|^2 + O^2)^{3/2}}$
    - Two-body relaxation  $\Longrightarrow t_{\text{relax}} \approx \frac{0.1N}{\ln N} t_{\text{cross}}$
  - Mean-Field Approach

    - Force field  $\Rightarrow$  Collisionless nature
      - One N-body problem is reduced to N one-body problems

● No softening ➡ Pure Newtonian force



Hibbard & van Gorkom, 1996, AJ, 111, 655

### 1. Merging Simulation

## Self-Consistent Field (SCF) Method

Bi-orthogonal basis set  $(\rho_{nlm}(\mathbf{r}), \Phi_{nlm}(\mathbf{r}))$ Poisson's equation  $: \nabla^2 \Phi_{nlm}(\mathbf{r}) = 4\pi G \rho_{nlm}(\mathbf{r})$ Bi-orthogonality  $: \int \rho_{nlm}(\mathbf{r}) [\Phi_{n'l'm'}(\mathbf{r})]^* d\mathbf{r} = \delta_{nn'} \delta_{ll'} \delta_{mm'}$ 

Expansions in a set of basis functions

$$\rho(\mathbf{r}) = \sum_{nlm} A_{nlm} \rho_{nlm}(\mathbf{r}) \qquad \qquad \nabla^2 \Phi_{nlm}(\mathbf{r}) = 4\pi G \rho_{nlm}(\mathbf{r}) \\ \Phi(\mathbf{r}) = \sum_{nlm} A_{nlm} \Phi_{nlm}(\mathbf{r}) \qquad \qquad \nabla^2 \Phi(\mathbf{r}) = 4\pi G \rho(\mathbf{r})$$

References:

*Clutton-Brock*, 1972, Ap&SS, **16**, 101 *Clutton-Brock*, 1973, Ap&SS, **23**, 55 *Hernquist & Ostriker*, 1992, ApJ, **386**, 375



• Expansion coefficients for a particle system :  $A_{nlm} = \sum_{k=1}^{N} m_k \Phi_{nlm}(\mathbf{r}_k)$  $\Rightarrow \mathbf{a}(\mathbf{r}) = -\nabla \Phi(\mathbf{r}) = -\sum_{nlm} A_{nlm} \nabla \Phi_{nlm}(\mathbf{r}) \Rightarrow$  Gravitational field  $\Rightarrow$  Field Method

#### Expanding $\rho$ and $\Phi$ of Merging Systems



#### Motions of Particles in Each Galaxy



## **Merging Simulations**

Two identical King models:  $f(\mathcal{E}) = \begin{cases} \frac{\rho_1}{(2\pi\sigma^2)^{3/2}} (e^{\mathcal{E}/\sigma^2} - 1) & (\mathcal{E} > 0) \\ 0 & (\mathcal{E} \le 0) \end{cases}$   $(\mathcal{E} \le 0)$   $W = \Psi(0)/\sigma^2 = 3 \implies r_t = 4.70 r_0 \quad (r_0 = \frac{3\sigma}{\sqrt{4\pi G\rho_0}}, \rho_0: \text{ central density})$  (0.2, 0), (-0.2, 0)

- **Central coordinates** : (-5, -y), (5, y) with  $y = 3, 5 \implies impact parameter$  : 6, 10
- Orbital plane : x-y plane
- **Number of particles** : N = 10,000,584
- **Computational units** :  $G = M = r_0 = 1$
- SCF simulations

#### O Clutton-Brock's basis set

 $\begin{cases} \rho_{nlm}(\mathbf{r}) = K_{nl} \frac{M}{4\pi a^3} \frac{(r/a)^l}{[1 + (r/a)^2]^{l+5/2}} C_n^{(l+1)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi) \\ \Phi_{nlm}(\mathbf{r}) = -\frac{GM}{a} \frac{(r/a)^l}{[1 + (r/a)^2]^{l+1/2}} C_n^{(l+1)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi) \end{cases}$ 

• Scale length of the basis fn. : a = 1.15

#### O number of expansion terms

- radial direction  $n_{\rm max} = 16$
- angular directions :  $l_{\text{max}} = m_{\text{max}} = 10$

#### Tree-code simulations

 $\bigcirc$  *Plummer* softening:  $\varepsilon = 0.0074$  $F_{i} = \sum_{j=1}^{N} \frac{Gm_{i}m_{j}(r_{j} - r_{i})}{(|r_{j} - r_{i}|^{2} + \varepsilon^{2})^{3/2}}$ 

as a mean interparticle separation within the half mass radius

0

- $\bigcirc$  *Tolerance* parameter:  $\theta$  = 0.5
- Including up to *quadrupole* terms

### Merging Simulation for a Small Impact Parameter



## Merging Simulation for a Large Impact Parameter



# Change of Expansion Center for Interaction Forces



# Improved Merging Simulation for a Large Impact Parameter



## Time Evolution of Merging Systems for the Large Impact Parameter



Density evolution of Systems 1 and 2 for impact parameter = 10

Interaction forces are calculated by expanding the density and potential with respect to the center of mass of the total system with  $n_{max}$ =28, and  $l_{max}=m_{max}$ =28

#### Density and Velocity Dispersion Profiles



#### 2. Construction of Phase Space

# Construction of Phase Space with an SCF Method



Hozumi, 1997, ApJ, 487, 617

Forward tracing Expansion coefficients at each time t

$$A_{nlm}(t) = \sum_{k=1}^{N} m_k \Phi_{nlm}(\boldsymbol{r}_k)$$

are saved.

Barckward tracing

Using  $A_{nlm}(t)$ , necessary orbits are traced from time *t* backward to *t* =0, and according to *Liouville's theorem*,

 $f(\boldsymbol{r}_i(t), \, \boldsymbol{v}_i(t), \, t) = f(\boldsymbol{r}_i(0), \, \boldsymbol{v}_i(0), \, 0)$ 

DF is constructed.

#### Evolution of the Collapse of a Uniform-Density Sphere in Phase Space – Asymmetric Case



## Evolution of Head-On Colliding Systems in Phase Space



#### Evolution of Head-On Colling Systems in Configuration and Phase Spaces



## Summary

- SCF method can be applied to merging simulations.
- Phase-space evolution in merging processes can be reproduced with SCF method.
- (SCF simulation can avoid the ill-effects of gravitational softening, needed by tree-code simulation, on merging simulations in large impact parameter cases.)
- (SCF simulation is at least twice as fast as tree-code simulation.)