

Collisions of Solitons Fully kinetic simulation of plasmas

M. Jenab

æ

Department of Physics, Umeå University, Sweden Marseille, France

<ロト <四ト < 注ト < 注ト

Discovery: in 1834 by John Scott Russell (Scottish civil engineer) accidentally

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995.)

♦ Discovery:

in 1834 by John Scott Russell (Scottish civil engineer) accidentally

Physical understanding:

balance between nonlinear and dispersive effects

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995.)

Discovery:

in 1834 by John Scott Russell (Scottish civil engineer) accidentally

Physical understanding:

balance between nonlinear and dispersive effects

Theoretical investigation: Korteweg de Vries equation (KdV equation) (1895)

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995.)

Discovery:

in 1834 by John Scott Russell (Scottish civil engineer) accidentally

Physical understanding:

balance between nonlinear and dispersive effects

Theoretical investigation:

Korteweg de Vries equation (KdV equation) (1895)

Impact: nothing for 60 years

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995.)

Discovery:

in 1834 by John Scott Russell (Scottish civil engineer) accidentally

Physical understanding:

balance between nonlinear and dispersive effects

Theoretical investigation:

Korteweg de Vries equation (KdV equation) (1895)

Impact: nothing for 60 years

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995.)

Solitons

Solitons survives collisions.)

Mysterious FPUT Problem:

Recurrence of initial condition instead of equally distributed energy in the modes of the system (Fermi-Pasta-Ulam-Tsingou 1953)

Solitons

Solitons survives collisions.)

Mysterious FPUT Problem:

Recurrence of initial condition instead of equally distributed energy in the modes of the system (Fermi-Pasta-Ulam-Tsingou 1953)

Discovery:

Solitary waves can survive collisions (Norman Zabusky and Martin Kruskal 1965)

Solitons

Solitons survives collisions.)

Mysterious FPUT Problem:

Recurrence of initial condition instead of equally distributed energy in the modes of the system (Fermi-Pasta-Ulam-Tsingou 1953)

Discovery:

Solitary waves can survive collisions (Norman Zabusky and Martin Kruskal 1965)

Solitons in Modern Physics

Kink solitons in DNA.

Jupiter's Great Red Spot - vortex soliton.

 Importance:
-fundamental mode of nonlinear regime
-building block for our understanding of nonlinear world

Solitons in Modern Physics

Kink solitons in DNA

Jupiter's Great Red Spot - vortex soliton.

Importance: -fundamental mode of nonlinear regime -building block for our understanding of

nonlinear world

Examples:

from plasma to Bose-Einstein condensates, to biophysics systems and to solit state physics,

Solitons in Modern Physics

Kink solitons in DNA

Jupiter's Great Red Spot - vortex soliton.

Importance: -fundamental mode of nonlinear regime -building block for our understanding of

nonlinear world

Examples:

from plasma to Bose-Einstein condensates, to biophysics systems and to solit state physics,

Soliton profiles in three different quantities, e.g. $n E \phi$).

σ	
E	
φ Λ	

♦ Discovery: Ion-acoustic solitons proposed by Washimi and Taniuti in 1960s

 Discovery: Ion-acoustic solitons proposed by Washimi and Taniuti in 1960s

Nowadays:

Solitary waves and solitons of different types haven been observed in variety of plasma environments.

Soliton profiles in three different quantities, e.g. $n E \phi$).

Soliton profiles in three different quantities, e.g. $n E \phi$).

Discovery: Ion-acoustic solitons proposed by Washimi and Taniuti in 1960s

Nowadays:

Solitary waves and solitons of different types haven been observed in variety of plasma environments.

Main observation:

the broadband electrostatic noise (BEN) observed by different satellites(e.g., Polar, GEOTAIL, FAST, and Cluster) in various regions of the Earth's magnetosphere.

Soliton profiles in three different quantities, e.g. $n E \phi$).

Discovery: Ion-acoustic solitons proposed by Washimi and Taniuti in 1960s

Nowadays:

Solitary waves and solitons of different types haven been observed in variety of plasma environments.

Main observation:

the broadband electrostatic noise (BEN) observed by different satellites(e.g., Polar, GEOTAIL, FAST, and Cluster) in various regions of the Earth's magnetosphere.

♦ Importance:

first to be discovered, largely studied and observed

dependency of Mach number versus the soliton amplitude of experimental results, solid line comes from KdV

♦ Importance:

first to be discovered, largely studied and observed

♦ Regime:

electrons provide pressure, ions produce the inertia

dependency of Mach number versus the soliton amplitude of experimental results, solid line comes from KdV

Importance:

first to be discovered, largely studied and observed

dependency of Mach number versus the soliton amplitude of experimental results, solid line comes from KdV

Regime: electrons provide pressure, ions produce the inertia

Questions:

The discrepancy between KdV results and experimental measurements

Importance:

first to be discovered, largely studied and observed

dependency of Mach number versus the soliton amplitude of experimental results, solid line comes from KdV

Regime: electrons provide pressure, ions produce the inertia

Questions:

The discrepancy between KdV results and experimental measurements

Theoretical Solutions:

adding the kinetic effect of trapped populations

Importance:

first to be discovered, largely studied and observed

dependency of Mach number versus the soliton amplitude of experimental results, solid line comes from KdV

Regime: electrons provide pressure, ions produce the inertia

Questions:

The discrepancy between KdV results and experimental measurements

Theoretical Solutions:

adding the kinetic effect of trapped populations

Theoretical treatment of IASs

Fluid frameworks:

-Reductive perturbation method

-Arbitrary amplitude solitary waves method (also known as the Sagdeev pseudo-potential approach)

Theoretical treatment of IASs

Fluid frameworks:

-Reductive perturbation method

-Arbitrary amplitude solitary waves method (also known as the Sagdeev pseudo-potential approach)

Kinetic approach:

Suggested by Schamel based on BGK approach

Theoretical treatment of IASs

Fluid frameworks:

-Reductive perturbation method

-Arbitrary amplitude solitary waves method (also known as the Sagdeev pseudo-potential approach)

Kinetic approach:

Suggested by Schamel based on BGK approach

Reductive perturbation method:

Pros: yields to KdV or KdV-like equations hence predicts temporal evolution,

Cons: limited to small amplitude, ignoring kinetic effect such as wave-particle interaction

Reductive perturbation method:

Pros: yields to KdV or KdV-like equations hence predicts temporal evolution,

Cons: limited to small amplitude, ignoring kinetic effect such as wave-particle interaction

Sagdeev approach:

Pros: not limited in amplitude range,

Cons: losing temporal evolution, ignoring kinetic effects

Reductive perturbation method:

Pros: yields to KdV or KdV-like equations hence predicts temporal evolution,

Cons: limited to small amplitude, ignoring kinetic effect such as wave-particle interaction

Sagdeev approach:

Pros: not limited in amplitude range, **Cons:** losing temporal evolution, ignoring kinetic effects

Schamel Solutions:

Pro: covering the kinetic effects **Cons:** losing temporal evolution

Reductive perturbation method:

Pros: yields to KdV or KdV-like equations hence predicts temporal evolution,

Cons: limited to small amplitude, ignoring kinetic effect such as wave-particle interaction

Sagdeev approach:

Pros: not limited in amplitude range, **Cons:** losing temporal evolution, ignoring kinetic effects

Schamel Solutions:

Pro: covering the kinetic effects **Cons:** losing temporal evolution

Main question:

Do IASs survive collisions when kinetic effects are considered?

The question

Main question:

Do IASs survive collisions when kinetic effects are considered?

follow-up questions:

How IASs survive collisions when overlapping in phase space exists? What is the dynamics of electron holes accompanying IASs?

The question

Main question:

Do IASs survive collisions when kinetic effects are considered?

follow-up questions:

How IASs survive collisions when overlapping in phase space exists? What is the dynamics of electron holes accompanying IASs?

Regime: electrostatics, unmagnetized, collisionless

Regime:

electrostatics, unmagnetized, collisionless

Equations:

The set of Vlasov-Poisson equations:

$$\frac{\partial f_{s}(x,v,t)}{\partial t} + v \frac{\partial f_{s}(x,v,t)}{\partial x} + \frac{q_{s}}{m_{s}} E(x,t) \frac{\partial f_{s}(x,v,t)}{\partial v} = 0,$$
$$\frac{\partial^{2} \phi(x,t)}{\partial x^{2}} = n_{e}(x,t) - n_{i}(x,t)$$

coupled with the density integral over distribution function:

$$n_{s}(x,t) = n_{0s}N_{s}(x,t), N_{s}(x,t) = \int f_{s}(x,v,t)dv$$

conform a close set of equations.

Regime:

electrostatics, unmagnetized, collisionless

Equations:

The set of Vlasov-Poisson equations:

$$\frac{\partial f_{s}(x,v,t)}{\partial t} + v \frac{\partial f_{s}(x,v,t)}{\partial x} + \frac{q_{s}}{m_{s}} E(x,t) \frac{\partial f_{s}(x,v,t)}{\partial v} = 0,$$
$$\frac{\partial^{2} \phi(x,t)}{\partial x^{2}} = n_{e}(x,t) - n_{i}(x,t)$$

coupled with the density integral over distribution function:

$$n_{s}(x,t) = n_{0s}N_{s}(x,t), N_{s}(x,t) = \int f_{s}(x,v,t)dv$$

conform a close set of equations.

Normalization:

all the variables are normalized by ionic scales

Regime:

electrostatics, unmagnetized, collisionless

Equations:

The set of Vlasov-Poisson equations:

$$\frac{\partial f_{s}(x,v,t)}{\partial t} + v \frac{\partial f_{s}(x,v,t)}{\partial x} + \frac{q_{s}}{m_{s}} E(x,t) \frac{\partial f_{s}(x,v,t)}{\partial v} = 0,$$
$$\frac{\partial^{2} \phi(x,t)}{\partial x^{2}} = n_{e}(x,t) - n_{i}(x,t)$$

coupled with the density integral over distribution function:

$$n_{s}(x,t) = n_{0s}N_{s}(x,t), N_{s}(x,t) = \int f_{s}(x,v,t)dv$$

conform a close set of equations.

Normalization:

all the variables are normalized by ionic scales

Simulation Method

♦ Name:

The Vlasov Hybrid Simulation (VHS), a Hybrid of Lagrangian and Eulerian methods

♦ Name:

The Vlasov Hybrid Simulation (VHS), a Hybrid of Lagrangian and Eulerian methods

Approach:

based on the concept of phase points, which are representative of the distribution function

♦ Name:

Approach:

based on the concept of phase points, which are representative of the distribution function

Mehtod:

The distribution function is sampled by phase points with three parameters associated to them;

r (position in spatial axis),

v (velocity),

f (distribution function value)

♦ Name:

The Vlasov Hybrid Simulation (VHS), a Hybrid of Lagrangian and Eulerian methods

Approach:

based on the concept of phase points, which are representative of the distribution function

Mehtod:

The distribution function is sampled by phase points with three parameters associated to them;

- r (position in spatial axis),
- v (velocity),
- *f* (distribution function value)

Advantages:

Positiveness of distribution function is guaranteed, not matter what!

♦ Name:

The Vlasov Hybrid Simulation (VHS), a Hybrid of Lagrangian and Eulerian methods

Approach:

based on the concept of phase points, which are representative of the distribution function

Mehtod:

The distribution function is sampled by phase points with three parameters associated to them;

- r (position in spatial axis),
- v (velocity),
- *f* (distribution function value)

Advantages:

Positiveness of distribution function is guaranteed, not matter what!

Interpolation:
 Distribution function is reconstructed on the grid

Interpolation: Distribution function is reconstructed on the grid

Numerical Integrations:

Number density and other quantities are calculated by integration on velocity direction

Interpolation: Distribution function is reconstructed on the grid

Numerical Integrations:

Number density and other quantities are calculated by integration on velocity direction

Poisson Solver:

Number densities are plugged in and potential is achieved

Interpolation: Distribution function is reconstructed on the grid

Numerical Integrations:

Number density and other quantities are calculated by integration on velocity direction

Poisson Solver:

Number densities are plugged in and potential is achieved

Pusher:

Phase points are pushed based on Leapfrog scheme

Interpolation: Distribution function is reconstructed on the grid

Numerical Integrations:

Number density and other quantities are calculated by integration on velocity direction

Poisson Solver:

Number densities are plugged in and potential is achieved

Pusher:

Phase points are pushed based on Leapfrog scheme

Mehdi Jenab (UmU)

Collisions of Solitons

Marseille, France 13 / 29

Adopting the code to study solitons

Initial condition:

-how to excite solitons self-consistently? -we need to have distribution functions for each species

Adopting the code to study solitons

Initial condition:

-how to excite solitons self-consistently? -we need to have distribution functions for each species

Approaches:

-utilizing "chain formation" phenomena

Adopting the code to study solitons

Initial condition:

-how to excite solitons self-consistently? -we need to have distribution functions for each species

Approaches:

-utilizing "chain formation" phenomena

Explanation:

any pulse breaks into a number of solitons

• Explanation: any pulse breaks into a number of solitons

Proof: based on Hirota's n-solitons solution

Explanation: any pulse breaks into a number of solitons

Proof:

based on Hirota's n-solitons solution

Initial Condition:

we use "Schamel distribution function" to introduces a large pulse self-consistently

Explanation: any pulse breaks into a number of solitons

Proof:

based on Hirota's n-solitons solution

Initial Condition:

we use "Schamel distribution function" to introduces a large pulse self-consistently

Schamel Distribution Function Definition:

$$f_{s}(v) = \begin{cases} A \exp\left[-\left(\sqrt{\frac{\xi_{s}}{2}}v_{0} + \sqrt{\varepsilon(v)}\right)^{2}\right] & \text{if} \begin{cases} v < v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ \end{cases} \\ A \exp\left[-\left(\frac{\xi_{s}}{2}v_{0}^{2} + \beta_{s}\varepsilon(v)\right)\right] & \text{if} \begin{cases} v < v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v < v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \end{cases} \end{cases}$$

$$\begin{split} & A = \sqrt{\frac{\xi_s}{2\pi}} n_{0s} \text{ (amplitude)} \\ & \xi_s = \frac{m_s}{T_s} \text{ (normalization factors)} \\ & \varepsilon(v) = \frac{\xi_s}{2} (v - v_0)^2 + \phi \frac{q_s}{T_s} \text{ (energy of particles)} \\ & \beta \text{ (trapping parameters)} \end{split}$$

$$f_{s}(v) = \begin{cases} A \exp\left[-\left(\sqrt{\frac{\xi_{s}}{2}}v_{0} + \sqrt{\varepsilon(v)}\right)^{2}\right] & \text{if} \begin{cases} v < v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v < v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \end{cases} \end{cases}$$

$$\begin{split} & A = \sqrt{\frac{\xi_s}{2\pi}} n_{0s} \text{ (amplitude)} \\ & \xi_s = \frac{m_s}{T_s} \text{ (normalization factors)} \\ & \varepsilon(v) = \frac{\xi_s}{2} (v - v_0)^2 + \phi \frac{q_s}{T_s} \text{ (energy of particles)} \\ & \beta \text{ (trapping parameters)} \end{split}$$

Outcome:

introduces a hole in distribution function which in turn creates the initial pulse

$$f_{s}(v) = \begin{cases} A \exp\left[-\left(\sqrt{\frac{\xi_{s}}{2}}v_{0} + \sqrt{\varepsilon(v)}\right)^{2}\right] & \text{if} \begin{cases} v < v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v > v_{0} - \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \\ v < v_{0} + \sqrt{\frac{2\varepsilon_{\phi}}{m_{s}}} \end{cases} \end{cases}$$

$$\begin{split} & A = \sqrt{\frac{\xi_s}{2\pi}} n_{0s} \text{ (amplitude)} \\ & \xi_s = \frac{m_s}{T_s} \text{ (normalization factors)} \\ & \varepsilon(v) = \frac{\xi_s}{2} (v - v_0)^2 + \phi \frac{q_s}{T_s} \text{ (energy of particles)} \\ & \beta \text{ (trapping parameters)} \end{split}$$

Outcome:

introduces a hole in distribution function which in turn creates the initial pulse

Schamel Distribution Function

cross section of distribution function on the velocity direction.

trapping parameters:

 β controls the shape of trapped particles distribution functions,

- hollow (β < 0)
- plateau (β = 0)
- hump(β > 0)

Schamel Distribution Function

cross section of distribution function on the velocity direction.

trapping parameters:

 β controls the shape of trapped particles distribution functions,

- hollow (β < 0)
- plateau (β = 0)
- hump(β > 0)

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

First Part of simulation:

-the stationary pulse breaks into two similar but counter-propagating pulses

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

First Part of simulation:

-the stationary pulse breaks into two similar but counter-propagating pulses

Second Step of simulation:

the chain formation takes place and number of solitons appears

- 1_chain_formation.mv

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

First Part of simulation:

-the stationary pulse breaks into two similar but counter-propagating pulses

Second Step of simulation:

the chain formation takes place and number of solitons appears

- 1_chain_formation.mv

Third Step of simulation:

We isolate these solitons, then we have a zoo of solitons with different features (e.g. amplitude, height, velocity and β)

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

First Part of simulation:

-the stationary pulse breaks into two similar but counter-propagating pulses

Second Step of simulation:

the chain formation takes place and number of solitons appears

- 1_chain_formation.mv

Third Step of simulation:

We isolate these solitons, then we have a zoo of solitons with different features (e.g. amplitude, height, velocity and β)

Now we can study collisions:

insert these solitons into simulation box and study different scenarios

♦ Starting Point:

a stationary pulse $v_0 = 0$ accompanied by a hole in electron distribution function

First Part of simulation:

-the stationary pulse breaks into two similar but counter-propagating pulses

Second Step of simulation:

the chain formation takes place and number of solitons appears

- 1_chain_formation.mv

Third Step of simulation:

We isolate these solitons, then we have a zoo of solitons with different features (e.g. amplitude, height, velocity and β)

Now we can study collisions:

insert these solitons into simulation box and study different scenarios

One soliton

Time = 0

what soliton looks like on kientic and fluid level. 2_one_soliton_propgation.avi

Mehdi Jenab (UmU)

Collisions of Solitons

Chain formation process

Evolution in Phase Space

First Step: break up of the stationary hole into two counter-propagating holes

Second Step: break up of the moving hole into number of holes (chain formation)

1) Overtaking Collisions

Scenario:

Collision of solitons propagating in the same direction with large relative velocity.

temporal evolution of number density.

1) Overtaking Collisions

temporal evolution of number density.

Scenario:

Collision of solitons propagating in the same direction with large relative velocity.

Findings:

- stability against mutual collisions
- exchange of trapped populations
- phase shift can be understood as a consequence of exchange of trapped populations

1) Overtaking Collisions

temporal evolution of number density.

Scenario:

Collision of solitons propagating in the same direction with large relative velocity.

Findings:

- stability against mutual collisions
- exchange of trapped populations
- phase shift can be understood as a consequence of exchange of trapped populations

1) Overtaking Collisions:

Evolution of electron holes

temporal evolution in phase space during overtaking collision.

2) Head-on Collisions

Scenario:
 Collision of solitons propagating in the opposite direction
2) Head-on Collisions

Scenario:

Collision of solitons propagating in the opposite direction

Findings:

- stability against mutual collisions
- exchange of trapped populations however the dynamics of exchange is different from overtaking collisions

2) Head-on Collisions

Scenario:

Collision of solitons propagating in the opposite direction

Findings:

- stability against mutual collisions
- exchange of trapped populations however the dynamics of exchange is different from overtaking collisions

Collision movie:

3_Collision_two_soliton.avi

2) Head-on Collisions

Scenario:

Collision of solitons propagating in the opposite direction

Findings:

- stability against mutual collisions
- exchange of trapped populations however the dynamics of exchange is different from overtaking collisions

Collision movie:

3_Collision_two_soliton.avi

2) Head-on Collisions:

Trapped populations rotate around each other during head-on collisions, some parts of trapped populations being exchanged [3].

Scattering Collisions

temporal evolution of number density.

Scenario: Collision of solitons propagating in the same direction with small relative velocity

Scattering Collisions

temporal evolution of number density.

 Scenario:
 Collision of solitons propagating in the same direction with small relative velocity

Findings:

 solitons repel each other instead of just passing each other

Scattering Collisions

temporal evolution of number density.

 Scenario:
 Collision of solitons propagating in the same direction with small relative velocity

Findings:

 solitons repel each other instead of just passing each other

Evolution of electron holes

In case of overtaking collisions and **small relative velocity** the effect of trapped population cause two solitons to repel each other. **Solitons scatter** from each other instead of passing through.

♦ Solitons in Multi-species Plasmas:

- usual soiltons: dust-ion-acoustic solitons, and ...
- unusual solitons: **Supersolitons** are solitons with more complicated profile than usual solitons

Solitons in Multi-species Plasmas:

- usual soiltons: dust-ion-acoustic solitons, and ...
- unusual solitons: **Supersolitons** are solitons with more complicated profile than usual solitons

different types of distribution functions:

 Kappa distribution function as the most successful candidate of modeling high-energy particles

Solitons in Multi-species Plasmas:

- usual soiltons: dust-ion-acoustic solitons, and ...
- unusual solitons: **Supersolitons** are solitons with more complicated profile than usual solitons

different types of distribution functions:

 Kappa distribution function as the most successful candidate of modeling high-energy particles

self-consistent approach:

- chain formation process, limits the study by producing random solitons, no control over the parameters such as velocity and amplitude
- adopting Sagdeev pseudo-potential provides total control over the parameters

Solitons in Multi-species Plasmas:

- usual soiltons: dust-ion-acoustic solitons, and ...
- unusual solitons: **Supersolitons** are solitons with more complicated profile than usual solitons

different types of distribution functions:

 Kappa distribution function as the most successful candidate of modeling high-energy particles

self-consistent approach:

- chain formation process, limits the study by producing random solitons, no control over the parameters such as velocity and amplitude
- adopting Sagdeev pseudo-potential provides total control over the parameters

Physical Review E:
Published 2 May 2017
Volume: 95, Issue: 5
Study of ion-acoustic solitons in presence of trapped electrons with a fully kinetic simulation approach

< □ > < 同

4 B K 4 B

Physical Review E:
Published 2 May 2017
Volume: 95, Issue: 5
Study of ion-acoustic solitons in presence of trapped electrons with a fully kinetic simulation approach

Physics of Plasmas:
Published 16 March 2017
Volume: 24, Issue: 3
Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime

< □ > < 同

4 B b 4 B

Physical Review E:
Published 2 May 2017
Volume: 95, Issue: 5
Study of ion-acoustic solitons in presence of trapped electrons with a fully kinetic simulation approach

Physics of Plasmas:
Published 16 March 2017
Volume: 24, Issue: 3
Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime

Physics of Plasmas:
Published October 2016
Volume: 23, Issue: 10
Study of trapping effect on ion-acoustic solitary waves based on a fully kinetic simulation approach

4 B K 4 B

Physical Review E:
Published 2 May 2017
Volume: 95, Issue: 5
Study of ion-acoustic solitons in presence of trapped electrons with a fully kinetic simulation approach

Physics of Plasmas:
Published 16 March 2017
Volume: 24, Issue: 3
Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime

Physics of Plasmas:
Published October 2016
Volume: 23, Issue: 10
Study of trapping effect on ion-acoustic solitary waves based on a fully kinetic simulation approach

♦ IEEE Transactions on Plasma Science: Published June 2017

Volume: 45, Issue: 8 Kinetic simulation study of electron holes dynamics during collisions of ion-acoustic solitons

3 1 4

Physical Review E:
Published 2 May 2017
Volume: 95, Issue: 5
Study of ion-acoustic solitons in presence of trapped electrons with a fully kinetic simulation approach

Physics of Plasmas:
Published 16 March 2017
Volume: 24, Issue: 3
Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime

Physics of Plasmas:
Published October 2016
Volume: 23, Issue: 10
Study of trapping effect on ion-acoustic solitary waves based on a fully kinetic simulation approach

♦ IEEE Transactions on Plasma Science: Published June 2017

Volume: 45, Issue: 8 Kinetic simulation study of electron holes dynamics during collisions of ion-acoustic solitons

3 1 4