DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

GYROKINETIC SIMULATIONS OF MAGNETIC FUSION PLASMAS: GYSELA CODE

V. Grandgirard, Y. Asahi, N. Bouzat^[1],

- E. Caschera, G. Dif-Pradalier, Ch. Ehrlacher, P. Donnel,
- X. Garbet, Ph. Ghendrih, G. Latu, M. Mehrenberger^[4],
- Y. Sarazin, E. Sonnendrücker^[2]

CEA, IRFM, 13108 Saint-Paul-lez-Durance Cedex, France
[1] Inria, F-54600 Villers-les-Nancy, France
[2] Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
[3] Japan Atomic Energy Agency, 178-4-4 Wakashiba, Japan
[4] IRMA, University of Strasbourg, 67084 Strasbourg, France

CIRM – Marseille – October 31, 2017

Main challenges for Magnetic Fusion

Goals of fusion researches: To control fusion reactions on earth that occur naturally in sun for instance

- Fusion reactions only at high temperatures (~150 Million °C)
- How to confine turbulent plasmas ?
- Most advanced concept = Tokamak
- Main goals of ITER (Cadarache) ~2025
 - International project under construction
 - To demonstrate the scientific and technological feasibility of fusion energy on earth, thus leading to a reliable source of energy with low environmental impacts.
 - Main goals of WEST (IRFM) ~2017
 - Upgrade of Tore Supra french tokamak exploits at IRFM CEA for almost 30 years
 - Tests of ITER like actively cooled divertor elements

 $D+T \rightarrow ^{4}He+n \quad p+p$

Plasma

volume

20 m³

Ce2 ITER building site at Cadarache

Plasma turbulence simulations → Kinetic approach mandatory

Turbulence generates loss of heat and particles

- Confinement properties of the magnetic configuration
- Understanding, predicting and controlling turbulence is a subject of utmost importance

Outline

1. Gyrokinetic codes for plasma turbulence

2. GYSELA code: How to treat kinetic electrons ?

 \rightarrow How to prepare to exascale needs

Gyrokinetic plasma turbulence simulations

- Kinetic theory: 6D distribution function of particles (3D in space + 3D in velocity) $F_s(r, \theta, \varphi, v_{\parallel}, v_{\perp}, \alpha)$
- Fusion plasma turbulence is low frequency:

 $\omega_{turb} \sim 10^5 s^{-1} \ll \omega_{ci} \sim 10^8 s^{-1}$

- Phase space reduction 6D to 5D: fast gyro-motion is averaged out
 - Adiabatic invariant: magnetic momentum $\mu = m_s v_\perp^2/(2B)$
 - Velocity drifts of guiding-centers
- Large reduction memory / CPU time
- Complexity of the system

Gyrokinetic theory: 5D distribution function of guiding-centers $\overline{F}_s(r, \theta, \varphi, v_{G\parallel}, \mu)$ where μ parameter

CEA | V. Grandgirard

- For an overview and a modern formulation of the gyrokinetic derivation, see the review paper by A.J. Brizard and T.S. Hahm, *Foundations of nonlinear gyrokinetic theory*, Rev. Mod. Phys (2007).
- This new approach is based on Lagrangian formalism and Lie perturbation theory (see e.g. J.R Cary [Physics Reports (1981)], J.R Cary and Littlejohn [Annals of Physics (1983)]
- The advantage of this approach is to preserve the first principles by construction, such as the symmetry and conservation properties of the Vlasov equation – particle number, momentum, energy and entropy.

[See N. Tronko talk for more recent works, Thursday morning]

Cea GK codes require state-of-the-art HPC (1/2)

- Gyrokinetic codes require state-of-the-art HPC techniques and must run efficiently on several thousand processors
 - Non-linear 5D simulations + multi-scale problem in space and time

 $\rho_i \rightarrow \text{machine size } a : \rho_* \equiv \rho_i / a \ll 1 \ (\rho_*^{\text{ITER}} \approx 10^{-3}) ; \ \Delta t \approx \gamma^{-1} \sim 10^{-6} s \rightarrow t_{\text{simul}} \approx \text{few } \tau_E \sim 10 s$

GK codes already use Petascale capabilities

Various simplifications in terms of physics:

- δf : scale separation between equilibrium and perturbation
- Flux-tube: domain considered = a vicinity of a magnetic field line \neq
- Fixed gradient: no sources
- Collisionless: no neoclassical transport
- Adiabatic electrons: no particle transport
- Electrostatic: **B** = const
 - \rightarrow None of the codes cover all physical aspects

New generation of codes: Global full-f flux-driven code with collisions

Full-f

complex

 \neq

- Global
- ≠ Flux-driven
- ≠ Collisions
- ≠ Kinetic electrons
- *≠* Electromagnetic

- Various numerical schemes: [Grandgirard, Panorama & Synthèse 2012]
 Lagrangian (PIC), Eulerian or Semi-Lagrangian
- GK code development is a highly international competitive activity
 US: ~ 8 codes EU: 5 codes Japan: 2 codes
- EuroFusion project "GK code benchmark" (2015-2017)
 Linear benchmarks between 3 EU codes successfully achieved

[Goerler, PoP 2016 ; Biancalani, PoP 2017]

\rightarrow ITER simulations without any assumptions are unreacheable

GK code – schematic view

Gyrokinetic complexity: Poisson is solved with the charge density of particles and the Vlasov equation describe the guiding-center evolution Gyrokinetic operator is more complex for global codes

Cea 5D Boltzmann eq. + 3D quasi-neutrality eq.

IRfm

Time evolution of the gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation with an additional realistic heating source:

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{G}}{dt} B_{\parallel s}^{*} \bar{F}_{s}\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{dv_{G\parallel}}{dt} B_{\parallel s}^{*} \bar{F}_{s}\right) = \underbrace{\mathcal{C}(\bar{F}_{s})}_{\text{collision operator}} + \underbrace{\mathcal{S}}_{\text{heating source}}$$
where $\frac{d\mathbf{x}_{G}}{dt} = \mathbf{v}_{G} = v_{G\parallel}\mathbf{b} + v_{G\perp}$
with $v_{G\perp} \approx \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} + v_{d0} R \frac{\mathbf{B} \times \nabla B}{B^{2}}$

$$\mathbf{B} = \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{G\perp}} + \underbrace{\mathcal{O}(\bar{F}_{s})}_{\mathbf{V}_{S}} + \underbrace{\mathcal{O}(\bar{F}_{s})}$$

 $\mathbf{E} = \nabla (\mathbf{J}_0 \cdot \phi)$ with $\phi(\mathbf{x})$ electrostatic potential and \mathbf{J}_0 the gyroaverage operator.

5D Boltzmann eq. + 3D quasi-neutrality eq.

- IRfm
- Time evolution of the gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation with an additional realistic heating source:

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(\frac{\partial \mathbf{x}_{G}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{\partial v_{G\parallel}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) = \underbrace{\mathcal{C}(\bar{F}_{s})}_{\text{collision operator}} + \underbrace{\mathcal{S}}_{\text{heating source}}$$
where $\frac{\partial \mathbf{x}_{G}}{\partial t} = \mathbf{v}_{G} = v_{G\parallel} \mathbf{b} + v_{G\perp}$
with $v_{G\perp} \approx \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} + v_{d0} R \frac{\mathbf{B} \times \nabla B}{B^{2}}$
Build the vertex of the second s

 $\mathbf{E} = \nabla (\mathbf{J}_0 \cdot \phi)$ with $\phi(\mathbf{x})$ electrostatic potential and \mathbf{J}_0 the gyroaverage operator.

Self-consistency ensured by a 3D quasi-neutrality equation:

$$\underbrace{\frac{e}{T_{e,eq}}(\phi - \langle \phi \rangle_{FS})}_{\delta n_e \text{ for adiabatic electrons}} = \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \int J_0 \cdot \left(\bar{F}_s - \bar{F}_{s,eq}\right) d^3 v}_{\sum_s \delta n_{GCs}} + \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \nabla_\perp \cdot \left(\frac{n_{s,eq}}{B\Omega_s} \nabla_\perp \phi\right)}_{\delta n_{polarization} \text{ particles } \neq \text{ guiding-centers}_{Page 11}}$$

- 1. Gyrokinetic codes for plasma turbulence
- 2. GYSELA code: How to treat kinetic electrons ?
 - Increase code Parallelization
 - → Prepare GYSELA to Exascale machine
 - Separation of dynamics (//, \perp)
 - → Weak discretization in // direction
 - Heavy electrons
 - \rightarrow spatial / temporal discretization x (m_i/m_e)²
 - Linear benchmarks
 - Damping of GAM due to kinetic electrons
 - Linear growth of ITG-TEM instability

Cea GYSELA = GYrokinetic SEmi LAgrangian code

- GYSELA developed at CEA-IRFM since 2001: Unique code based on a Semi-Lagrangian method (mix between PIC and Eulerian schemes) [Grandgirard, CPC 2016]
- GYSELA strength:
- **Global:** simulate entire tokamak
 - \rightarrow boundary conditions
- Full-f: multi-scale physics
- Flux-Driven (heat, momentum, ... sources)
 - \rightarrow steady state on τ_{E}
- **—** Multi-ion species \rightarrow impurity transp.
- **Collision** operator \rightarrow synergy between neoclassical & turbulent transports
- Present GYSELA limitations:
 - Adiabatic electrons
 - Circular magnetic configuration
 - Electrostatic

Kinetic electrons mandatory: particle transport + trapped electron modes

22 Time-splitting for Boltzmann equation

A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel s}^* \bar{F}_s \right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel s}^* \bar{F}_s \right) = C(\bar{F}_s) + S$$

Let us define three advection operators
$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(B_{\parallel s}^{*} \frac{dX_{G}}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{X}_{G})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial \varphi} \left(B_{\parallel s}^{*} \frac{d\varphi}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel s}^{*} \frac{dv_{G\parallel}}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$
And the collision operator (\tilde{C}) on a Δt : $\partial_{t} \bar{F}_{s} = C(\bar{F}_{s})$
And the source operator (\tilde{S}) on a Δt : $\partial_{t} \bar{F}_{s} = S$
Crank-Nicolson
Then, a Boltzmann solving sequence (\tilde{B}) is performed:
(\tilde{B}) \equiv $\left(\frac{\tilde{S}}{2}, \frac{\tilde{C}}{2}\right) \left(\frac{v_{G\parallel}}{2}, \frac{\tilde{\varphi}}{2}, \tilde{X}_{G}, \frac{\tilde{\varphi}}{2}, \frac{v_{G\parallel}}{2}\right) \left(\frac{\tilde{C}}{2}, \frac{\tilde{S}}{2}\right)$

Example of Backward Semi-Lagrangian (BSL) approach for 2D advection operator

We consider the advection equation: $B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(B_{\parallel s}^* \frac{\partial X_G}{\partial t} \bar{F}_s \right) = 0$ (with $X_G = (r, \theta)$)

The Backward Semi-Lagrangian scheme: (mix between PIC and Eulerian approach)

- Fixed grid on phase-space (Eulerian character)
- Method of characteristics : ODE → origin of characteristics (PIC character)

f is conserved along the characteristics, i.e $f^{n+1}(\mathbf{x}_i) = f^n(X(t_n; \mathbf{x}_i, t_{n+1}))$

- Interpolate on the origin using known values of previous step at mesh points (initial distribution f⁰ known).
 - Cubic spline interpolation: good compromise between accuracy and complexity.

CEA | V. Grandgirard

Several Semi-Lagrangian schemes tested

$$(ilde{\mathcal{V}}) \equiv \left(rac{ec{v_{G\parallel}}}{2}, rac{ ilde{arphi}}{2}, ilde{\mathcal{X}}_{G}, rac{ ilde{arphi}}{2}, rac{ec{v_{G\parallel}}}{2}
ight)$$

- Each Vlasov sequence $\tilde{\mathcal{V}}$ is solved by using Semi-Lagrangian techniques
- Several new Semi-Lagrangian have been tested in collaboration with Strasbourg university.
 - Conservative Semi-Lagrangian (CSL)
 - Forward Semi-Lagrangian (FSL)
- GYSELA is still based on the classical semi-lagrangian scheme
 - ▶ Backward Semi-lagrangian (BSL) [Grandgirard, JoCP 2006]
 → Good properties of energy conservation shown for 4D simplified models
- SELALIB INRIA platform for testing numerical schemes for 4D Vlasov equations: born out the observation that efficient schemes in 2D can be irrelevant for our 5D plasma turbulence problem.

CEA | V. Grandgirard

[Braeunig, INRIA-report 2010] [Latu, INRIA-report 2012]

- Long simulation (\rightarrow self-organisation on τ_E) with adiabatic electrons on huge meshes (e.g. 272 10⁹) run ~ 1 month on several thousands cores [Dif-Pradalier, PRL 2015]
- GYSELA is already using currently Petascale machines (~ 100 million hours/year)
 - GYSELA runs efficiently on the totality of the biggest EU machine (~ 450 kcores)
 - Numerical issues for kinetic electrons:

 $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \rightarrow \text{time step / } (m_i/m_e)^{1/2} \sim 60$ $\rho_e \sim \rho_i/(m_i/m_e)^{1/2} \sim \rho_i/60 \sim 50 \mu \text{m} \rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2} \sim 60^3$

→ (ρ_{e} , v_{the}) and (ρ_{i} , v_{thi}) in same simulation more than exascale ?

Parallelisation optimisation → Lagrange instead of cubic splines

- <u>Trend:</u> computations cheaper and cheaper in comparison to mem. access \rightarrow FLOPs achieved by high-order methods tends to increase
- Idea: Replace cubic splines used for interpolation in semi-Lagrangian scheme by high-order Lagrange polynomials
 - Lagrange are more local than cubic splines
 - Lagrange polynomials degree 5 \rightarrow best compromise (accuracy)

But Lagrange involves extra operations

Kind of interpolation	Mem. load	Mem. store	Multiply	Add	Divide
1D spline	1	1	26	16	1
1D Lagrange 6-pts	1	1	30	25	0
2D spline	1	1	60	40	2
2D Lagrange 6-pts	1	1	90	74	0

However: Compiler vectorises well Lagrange formula
 Division is costly on KNL

Parallelisation optimisation → Improvement of the vectorisation

GYSELA is now ported on KNL machine

[EoCoE european Project + CVT GENCI + HLST IPP Garching + Atos-France]

Benchmark on one node Broadwell / KNL / Skylake (Marconi machine)

	Steps \ Hardware	Broadwell	KNL	Skylake
Adding of vectorisation + Lagrange	advec1D in vpar	12.7 (-78%)	12.2 (-85%)	6.4 (-86%)
	advec2D (r,theta)	16.3 (-60%)	24.7 (-43%)	8.9 (-70%)
	comm. transpose	31.2 (-25%)	12.9 (-48%)	15.5 (-53%)
	heat source	5.6 (-50%)	7.9 (-64%)	3.2 (-60%)
	Total	139 (-45%)	124 (-55%)	86 (-58%)

Table: Breakdown of timing (in s) for a small run. In parentheses,improvement compared to initial version.[G. Latu, 2017]

CPU time on one KNL node comparable with one Broadwell node
 Improvement of vectorisation essential for KNL

 \rightarrow positive impact on Broadwell and Skylake machine

Taking benefit of the strong anisotropy

Objective: take benefit of strong anisotropy (// vs. \perp) to reduce nb. of grid points in 1 direction

Drawbacks of using aligned coordinates:

φ_i*

θ

CIRM, October 31, 2017

GYSELA uses (r, θ, ϕ) coord. system

 \rightarrow would require complete rewritting

 ϕ_{i^*+1}

Not periodic \rightarrow loss of natural double periodicity of torus

Points used

for || interpolation

CEA | V. Grandgirard

"Field aligned coordinates" method

IRfm

- Standard method \rightarrow Nb of grid points ~ ρ_*^{-3}
- New "aligned-coordinates" method = take advantage of weak $\nabla_{//}$
 - Decouples // & \perp dynamics \rightarrow Nb of grid points ~ $\rho_*^{-2} \rightarrow$ crucial for kinetic e⁻

Gain of a factor 4 in time and memory including calcul. + comm. overhead

Trapped kinetic electrons : Hybrid model

Trapped Electron Modes : one of the main contributor in heat transport [Bottino, PPCF, 2011]

$$\omega_{de} \sim q \frac{\rho_{e}}{4R} \frac{v_{th,e}}{R} < \frac{v_{th,e}}{R} \qquad \delta_{be} \sim 2q\rho_{e}\sqrt{2R/r} > \rho_{e}$$

$$\frac{|\text{dea}: \text{Capture physics of TEM at low cost } (\omega_{de} \text{ and } \delta_{be} \text{ resolved})}{\text{Idemura, PoP 2016}}$$

$$- \text{Trapped electrons : Kinetic} \qquad [|\text{domura, PoP 2016}]$$

$$- \text{Passing electrons : Adiabatic} \qquad (\text{response close to adiabaticity in ITG-TEM turbulence})}$$

$$n_{e} = \int_{trap.} f_{e} d^{3}v + (1-\alpha_{t})\langle n_{e} \rangle_{FS} \exp\left\{\frac{e}{T_{e}}(\phi - \langle \phi \rangle_{FS})\right\}$$

$$- \text{Kinetic} \qquad \text{Adiabatic} \qquad \text{with } \alpha_{t} = \frac{n_{e}^{trap.}}{n_{e}}$$

$$- \text{Fraction of trapped electrons} \qquad - \frac{1}{2} \sum_{raple d = raple d = raple$$

Passing electrons well described at low m_i / m_e

CIRM, October 31, 2017

Damping of GAM due to kinetic electrons

- Standard benchmark: Damping of Geodesic Acoustic Mode (GAM)
 - Thermodynamic equilibrium : flat *n* and *T* profiles \rightarrow no instabilities
 - Comparison with ORB5 and GENE codes performed via EUROfusion project "GK code benchmarks" (2015-2017)
- Successful comparison with adiabatic electrons

[Biancalani, PoP 2017]

Damping of GAM due to kinetic electrons

- Standard benchmark: Damping of Geodesic Acoustic Mode (GAM)
 - Thermodynamic equilibrium : flat *n* and *T* profiles \rightarrow no instabilities
 - Comparison with ORB5 and GENE codes performed via EUROfusion project "GK code benchmarks" (2015-2017)

Kinetic electrons : Good agreement - influence of the mass ratio m_i / m_e

Transition ITG/TEM versus ion temperature gradient

- Comparison with gyrokinetic GT5D code [Idomura, CPC 2008]
 - Via Japan/France collaboration [post-doc. Y. Asahi]
 - Successful comparison for flux-driven full-f global simulations with adiabatic electrons [Asahi, submitted 2017]

Transition ITG/TEM versus ion temperature gradient

Kinetic electrons: Agreement Transition ITG/TEM for R₀/L_{Ti} ~ 5.2

Preliminary non-linear results

-0.02

-0.04

-0.06

R/L_{Ti}=6.92

 $\Phi - \Phi_{00} at time = 23760.0 / \omega_c$

CEA | V. Grandgirard

Conclusion & Perspectives

- Kinetic electrons recently implemented in the gyrokinetic global full-f fluxdriven code GYSELA.
 - Hybrid model \rightarrow Kinetic trapped electrons for non linear simulations
 - Goal: Particle and energy transport (role of TEM) studies
 - Perspectives for GYSELA:

[PhD, E. Caschera]

[EuroFusion project]

- More realistic boundary conditions \rightarrow penalisation techniques
- Complex geometries \rightarrow develop hybrid semi-Lagrangian schemes
- Electromagnetic effects
- Gyrokinetic global codes will require exascale capabilities for ITER simulations with kinetic electrons
 - Future challenges for gyrokinetic codes:
 - Coupling between core and edge turbulence