

$\begin{array}{c} {\bf Finite-}N \ {\bf Effects}\\ {\bf and} \ {\bf Secular} \ {\bf Evolution}\\ {\bf of} \ {\bf Self-Gravitating} \ {\bf Systems} \end{array}$

Jean-Baptiste Fouvry

 $\begin{array}{c} {\rm CIRM} \\ {\rm 31^{st}~October~2017} \end{array}$

in collaboration with C. Pichon, J. Binney, P.-H. Chavanis S. Prunet, J. Magorrian & B. Bar-Or

Secular dynamics

• What happens to **orbital structures** on **cosmic age**?

- Numerous systems of interest
 - Stellar discs
 - Galactic centers
 - Dark matter haloes
- How do they respond to:
 - ▶ to their stochastic environment?
 - \implies Dressed Fokker-Planck
 - to their internal graininess? \implies **Balescu-Lenard**
- Properties
 - ▶ Inhomogeneous (= complex traject.)
 - ▶ **Relaxed** (= short dynamical times)
 - Self-gravitating (= amplifying)
 - ▶ **Perturbed** (= *envt.* + *discret.*)

Galaxies are inhomogeneous • Label orbits using integrals of motion $\begin{bmatrix} \theta(t) = \theta_0 + t \Omega, \\ \mathbf{J}(t) = \text{cst.} \end{bmatrix}$ $\Rightarrow \text{ Straight lines.} \\ \begin{cases} H(\mathbf{q}, \mathbf{p}) = H(\mathbf{J}), \\ \text{Frequencies: } \Omega(\mathbf{J}) = \frac{\partial H}{\partial \mathbf{J}}. \end{cases}$ • Paramethin diage (

• Razor-thin discs (epicyclic approximation)

• 2D disc
$$\Longrightarrow$$
 Actions: $J = (J_{\phi}, J_r)$.

Galaxies are self-gravitating

• Self-gravitating amplification

Collective effects

• Matrix method (Kalnajs 1976) \implies Representative basis

 $\Delta \psi^{(p)} = 4\pi G \rho^{(p)} \; .$

$$\begin{cases} \delta \psi^{\text{ext}}(\mathbf{x}, t) = \sum_{p} \mathbf{b}_{p}(t) \psi^{(p)}(\mathbf{x}), \\ \delta \psi^{\text{self}}(\mathbf{x}, t) = \sum_{p} \mathbf{a}_{p}(t) \psi^{(p)}(\mathbf{x}). \end{cases}$$

$$\underbrace{\begin{bmatrix} \widehat{\boldsymbol{a}} + \widehat{\boldsymbol{b}} \end{bmatrix}(\omega)}_{\text{perturbations}} = \underbrace{\begin{bmatrix} \mathbf{I} - \widehat{\mathbf{M}}(\omega) \end{bmatrix}^{-1}}_{\text{Dressing}} \cdot \underbrace{\widehat{\boldsymbol{b}}(\omega)}_{\text{External perturbations}}$$

• Response matrix

$$\widehat{\mathbf{M}}(\omega)\!\propto\!\sum_{\mathbf{m}}\!\!\!\int\!\!\mathrm{d}\mathbf{J}\;\frac{\mathbf{m}\!\cdot\!\partial F/\partial\mathbf{J}}{\omega\!-\!\mathbf{m}\!\cdot\!\mathbf{\Omega}(\mathbf{J})}$$

The fate of self-gravitating systems

The role of finite -N effects

 \implies The larger the number of particles, the slower the evolution.

The inhomogeneous Balescu-Lenard equation

- Describe the secular evolution driven by finite-N effects for a system
 - inhomogeneous
 - stable
 - self-gravitating
 - isolated
 - discrete
- Some references:
 - ▶ Balescu (1960), Lenard (1960): Plasma case
 - ► Weinberg (1993): Homogeneous approximation
 - ► Heyvaerts (2010): Angle-Action BBGKY
 - ► Chavanis (2012): Angle-Action Klimontovitch
 - ► Fouvry et al. (2015): 2D with full amplification
 - ▶ Heyvaerts et al. (2017): Fokker-Planck approach
 - ▶ Sridhar&Touma (2017), Fouvry et al. (2017): Quasi-Keplerian case
 - ► Benetti&Marcos (2017): HMF model

Inhomogeneous Balescu-Lenard equation

• Inhomogeneous Balescu-Lenard equation

Heyvaerts (2010), Chavanis (2012)

$$\begin{split} \frac{\partial F(\mathbf{J}_1,t)}{\partial t} &= \pi (2\pi)^d \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}_1} \cdot \left[\sum_{\mathbf{m}_1,\mathbf{m}_2} \mathbf{m}_1 \int & \mathrm{d} \mathbf{J}_2 \frac{\delta_{\mathrm{D}}(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 - \mathbf{m}_2 \cdot \mathbf{\Omega}_2)}{|\mathcal{D}_{\mathbf{m}_1,\mathbf{m}_2}(\mathbf{J}_1,\mathbf{J}_2,\mathbf{m}_1 \cdot \mathbf{\Omega}_1)|^2} \\ & \left[\mathbf{m}_1 \cdot \frac{\partial}{\partial \mathbf{J}_1} - \mathbf{m}_2 \cdot \frac{\partial}{\partial \mathbf{J}_2} \right] F(\mathbf{J}_1,t) F(\mathbf{J}_2,t) \right]. \end{split}$$

- Some properties:
 - $F(\mathbf{J},t)$: **Orbital distorsion** in action space.
 - 1/N: Driven by finite -N effects.
 - ▶ $\partial/\partial \mathbf{J}_1$: Divergence of a flux, i.e. conservation.
 - ▶ **m**₁: **Discrete** Fourier vectors **Anistropic** diffusion.
 - $\delta_{\rm D}$: **Resonance condition** for distant encounters.
 - $1/\mathcal{D}_{\mathbf{m}_1,\mathbf{m}_2}$: Self-gravitating dressing (squared).
 - $\mathbf{m}_1 \cdot \mathbf{\Omega}_1$: Secular diffusion **at resonance**.
 - \implies Master equation for self-induced orbital distortion.

Resonant encounters

• Resonance condition $\delta_D(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 - \mathbf{m}_2 \cdot \mathbf{\Omega}_2) \Longrightarrow$ Distant encounters.

Resonant stellar encounters

• Resonance condition: $\delta_D(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 - \mathbf{m}_2 \cdot \mathbf{\Omega}_2)$

12 / 20

Diffusion is anisotropic

$$\frac{\partial F(\mathbf{J},t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{m}} \mathbf{m} \ \mathcal{F}_{\mathbf{m}}(\mathbf{J},t)\right].$$

m: Resonance vector

Fokker-Planck equation

- Test particle of mass $\mu_t P(\mathbf{J}, t)$.
- **Bath particles** of mass $\mu_{\rm b}(\sim 1/N_{\rm b})$ $F_{\rm b}(\mathbf{J},t)$.

$$\begin{split} \frac{\partial \mathbf{P}(\mathbf{J}_{1},t)}{\partial t} &= \pi (2\pi)^{d} \frac{\partial}{\partial \mathbf{J}_{1}} \cdot \left[\sum_{\mathbf{m}_{1},\mathbf{m}_{2}} \mathbf{m}_{1} \int\! \mathrm{d}\mathbf{J}_{2} \, \frac{\delta_{\mathrm{D}}(\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1} - \mathbf{m}_{2} \cdot \mathbf{\Omega}_{2})}{|\mathcal{D}_{\mathbf{m}_{1},\mathbf{m}_{2}}(\mathbf{J}_{1},\mathbf{J}_{2},\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1})|^{2}} \\ & \left[\frac{\mu_{\mathrm{b}} \, \mathbf{m}_{1} \cdot \frac{\partial}{\partial \mathbf{J}_{1}}}{\partial \mathbf{J}_{1}} - \frac{\mu_{\mathrm{t}} \, \mathbf{m}_{2} \cdot \frac{\partial}{\partial \mathbf{J}_{2}}} \right] \mathbf{P}(\mathbf{J}_{1},t) \, \mathbf{F}_{\mathrm{b}}(\mathbf{J}_{2},t)} \right]. \end{split}$$

•
$$\mu_{\rm b} \mathbf{m}_{\mathbf{1}} \cdot \frac{\partial}{\partial \mathbf{J}_{\mathbf{1}}}$$
: Diffusion

- Vanishes in the collisionless limit $N_{\rm b} \to \infty$.
- Sourced by the correlation of the bath fluctuations

$$D_{\mathbf{m}}(\mathbf{J}) \propto \int_{-\infty}^{+\infty} dt \, \mathrm{e}^{-\mathrm{i}\mathbf{m}\cdot\mathbf{\Omega}(\mathbf{J})t} \left\langle \delta\psi_{\mathrm{b}}(0) \, \delta\psi_{\mathrm{b}}(t) \right\rangle \,.$$

• $\mu_{t} \mathbf{m}_{2} \cdot \frac{\partial}{\partial \mathbf{J}_{2}}$: Dynamical Friction

- Induces mass segregation
- ▶ Sourced by the **retroaction of the test particle** on the bath.

Difficulties of the Balescu-Lenard equation

- Balescu-Lenard equation $\frac{\partial \mathbf{F}(\mathbf{J}_{1},t)}{\partial t} = \pi (2\pi)^{d} \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}_{1}} \cdot \left[\sum_{\mathbf{m}_{1},\mathbf{m}_{2}} \mathbf{m}_{1} \int d\mathbf{J}_{2} \frac{\delta_{\mathbf{D}}(\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1} - \mathbf{m}_{2} \cdot \mathbf{\Omega}_{2})}{|\mathcal{D}_{\mathbf{m}_{1},\mathbf{m}_{2}}(\mathbf{J}_{1},\mathbf{J}_{2},\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1})|^{2}} \begin{bmatrix} \mathbf{m}_{1} \cdot \frac{\partial}{\partial \mathbf{J}_{1}} - \mathbf{m}_{2} \cdot \frac{\partial}{\partial \mathbf{J}_{2}} \end{bmatrix} \mathbf{F}(\mathbf{J}_{1},t) |\mathbf{F}(\mathbf{J}_{2},t)| \end{bmatrix}.$
- Dressed susceptibility coefficients

$$\frac{1}{\mathcal{D}_{\mathbf{m}_1,\mathbf{m}_2}(\mathbf{J}_1,\mathbf{J}_2,\omega)} = \sum_{p,q} \left| \psi_{\mathbf{m}_1}^{(p)}(\mathbf{J}_1) \right| \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]_{pq}^{-1} \left| \psi_{\mathbf{m}_2}^{(q)*}(\mathbf{J}_2) \right|.$$

Difficulties:

- Inhomogeneous system
 - Angle-action $(\mathbf{x}, \mathbf{v}) \mapsto (\boldsymbol{\theta}, \mathbf{J})$.
- Long-range system
 - Basis elements $\psi^{(p)}$.
- Self-gravitating system
 - Response matrix $\widehat{\mathbf{M}}(\omega)$.
- Resonant encounters
 - Resonance $\delta_{\mathrm{D}}(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 \mathbf{m}_2 \cdot \mathbf{\Omega}_2)$.

Balescu-Lenard - Global approach

• Balescu-Lenard equation $\frac{\partial F(\mathbf{J}_{1},t)}{\partial t} = \pi (2\pi)^{d} \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}_{1}} \cdot \left[\sum_{\mathbf{m}_{1},\mathbf{m}_{2}} \mathbf{m}_{1} \int d\mathbf{J}_{2} \frac{\delta_{\mathbf{D}}(\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1} - \mathbf{m}_{2} \cdot \mathbf{\Omega}_{2})}{|\mathcal{D}_{\mathbf{m}_{1},\mathbf{m}_{2}}(\mathbf{J}_{1},\mathbf{J}_{2},\mathbf{m}_{1} \cdot \mathbf{\Omega}_{1})|^{2}} \right] \\ \begin{bmatrix} \mathbf{m}_{1} \cdot \frac{\partial}{\partial \mathbf{J}_{1}} - \mathbf{m}_{2} \cdot \frac{\partial}{\partial \mathbf{J}_{2}} \end{bmatrix} F(\mathbf{J}_{1},t) F(\mathbf{J}_{2},t) \\ \mathbf{D}_{\mathbf{m}_{2},\mathbf{m}_{2}}(\mathbf{J}_{2},t) \end{bmatrix} .$ • Dressed susceptibility coefficients

$$\frac{1}{\mathcal{D}_{\mathbf{m}_1,\mathbf{m}_2}(\mathbf{J}_1,\mathbf{J}_2,\omega)} = \sum_{p,q} \left| \psi_{\mathbf{m}_1}^{(p)}(\mathbf{J}_1) \right| \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]_{pq}^{-1} \left| \psi_{\mathbf{m}_2}^{(q)*}(\mathbf{J}_2) \right|.$$

Difficulties:

- Inhomogeneous system
 - Angle-action $(\mathbf{x}, \mathbf{v}) \mapsto (\boldsymbol{\theta}, \mathbf{J}) \Longrightarrow 2D$ discs are explicitly integrable.
- Long-range system
 - ▶ Basis elements $\psi^{(p)} \Longrightarrow$ Global basis elements.
- Self-gravitating system
 - Response matrix $\widehat{\mathbf{M}}(\omega) \Longrightarrow$ Numerical linear theory.
- Resonant encounters
 - ▶ Resonance $\delta_D(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 \mathbf{m}_2 \cdot \mathbf{\Omega}_2) \Longrightarrow$ Integrate along resonant lines.

Balescu-Lenard - Global approach

• Balescu-Lenard equation $\frac{\partial F(\mathbf{J}_1, t)}{\partial t} = \pi (2\pi)^d \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}_1} \cdot \left[\sum_{\mathbf{m}_1, \mathbf{m}_2} \mathbf{m}_1 \int d\mathbf{J}_2 \frac{\delta_{\text{D}}(\mathbf{m}_1 \cdot \mathbf{\Omega}_1 - \mathbf{m}_2 \cdot \mathbf{\Omega}_2)}{|\mathcal{D}_{\mathbf{m}_1, \mathbf{m}_2}(\mathbf{J}_1, \mathbf{J}_2, \mathbf{m}_1 \cdot \mathbf{\Omega}_1)|^2} \right]$ $\left|\mathbf{m}_{1} \cdot \frac{\partial}{\partial \mathbf{J}_{1}} - \mathbf{m}_{2} \cdot \frac{\partial}{\partial \mathbf{J}_{2}}\right| F(\mathbf{J}_{1}, t) F(\mathbf{J}_{2}, t) \right|.$ Dressed susceptibility coefficients $\frac{1}{\mathcal{D}_{\mathbf{m}_1,\mathbf{m}_2}(\mathbf{J}_1,\mathbf{J}_2,\omega)} = \sum_{\mathbf{n},\mathbf{n}} \psi_{\mathbf{m}_1}^{(p)}(\mathbf{J}_1) \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]_{pq}^{-1} \psi_{\mathbf{m}_2}^{(q)*}(\mathbf{J}_2) \right].$ (COR,COR)=(m1,m2) (ILB ILB) $\widehat{\mathbf{M}}_{pq}(\omega) \sim \sum \! \int \! \mathrm{d} \mathbf{J} \, \frac{\mathbf{m} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{m} \cdot \mathbf{\Omega}} \, \psi_{\mathbf{m}}^{(p)*}(\mathbf{J}) \, \psi_{\mathbf{m}}^{(q)}(\mathbf{J}) \, .$ (OLR.COR) (COR.ILF **Resonant lines** Fouvry et al. (2015)

Balescu-Lenard Global - Application

• Diffusion flux in action space

$$\frac{\partial F}{\partial t} = \operatorname{div}(\mathbf{F}_{\operatorname{tot}}(\mathbf{J})).$$

• Predicted contours for $\operatorname{div}(\mathbf{F}_{\text{tot}})(t=0^+)$

Late time evolution

• Phase transition: $BL \Longrightarrow Vlasov$.

• 2-body (resonant) relaxation \implies small-scale structures in the DF **Destabilisation at the collisionless level**

N=8.10⁵ t=60

The fate of secular evolution

CONCLUSIONS

• From linear response to secular evolution.

Galactic dynamics enters the cosmic framework.

- Balescu-Lenard can be implemented!
 - ▶ (Thin/Thick) Stellar discs
 - ► (Inhomogeneous) HMF
 - Quasi-Keplerian Systems
 - Globular clusters
- Approach complementary to N-body and Monte Carlo methods