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Outline

• Electromagnetism vs General Relativity

• Kaluza-Klein mechanism

• non perturbative guiding center transformation

• Electromagnetism within General Relativity
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Electromagnetism vs General Relativity
Differences within a variational approach

General Relativity:
• The Einstein’s equation is obtained by varying the metric tensor.
• The trajectories are geodesics in a curved (by masses) space-time manifold.
• Hilbert-Einstein action

SHE = −
∫

R

16πG

√
−gdtd3

x

Electromagnetism:
• The Maxwell’s equations are not obtained by varying a metric tensor.
• The trajectories are solutions of the Lorentz’s force law which are not geodesics:

. Einstein’s Teleparallelism Theory (metric with torsion, Eddington’s affine geometry)

. Kaluza-Klein Mechanism (extra dimension)

. Weyl attempt (non Riemannian metric with scale invariance)

• The action for Maxwell’s equations is different from the Hilbert-Einstein action:
Sf = −

∫
(F 2/4)

√
−gdtd3x

. For taking into account both the interactions, the lagrangian density is the sum
L = −ρm − AαJ

α − F 2/4− R/(16πG)
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Kaluza-Klein mechanism

• A Hilbert-Einstein action in a 5D space-time is

SHE = −
∫

R̃

16πG̃

√
−g̃dtd3

xdy

• A 5D Kaluza-Klein metric tensor

g̃ab =

∣∣∣∣ gαβ + κ2ϕ2AαAβ κϕ2Aα

κϕ2Aβ ϕ2

∣∣∣∣ . (1)

• Considering a Ricci tensor in 5D and Christoffel symbols in 5D

• The cylinder condition: dropping all derivatives with respect to the fifth coordinate

• Then

SHE = −
∫
d

4
x
√
−gϕ

[
ϕ

2FαβF
αβ

4
+

R

16πG
+

2

3κ

∂αϕ∂
αϕ

ϕ2

]
. Kaluza-Klein set ϕ = 1.

• REJECTED: no observation of the 5th dimension and inconsistency of mass scale in compact-
ification schemes.
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Plasma modeling

• The lagrangian for describing electrodynamics in plasmas is the sum of the single particle
lagrangian, `(t, x, v), times the distribution function of particles, f(t, x, v), with the e.m.
lagrangian. The action is often expressed like:

Splasma =

∫
d td

3
xd

3
vf(t, x, v)`(t, x, v)−

∫
FαβF

αβ

4
d td

3
x, (2)

• There is an asymmetry in the action (2) between the matter action and the field one.

• In principle, for restoring the symmetry between the two lagrangians, it should be simple to
think at an action written as

Splasma =

∫
d td

3
xd

3
vLplasma, (3)

where Lplasma = f(t, x, v)`(t, x, v) + ”somethingnew” and the property that∫
”somethingnew”d

3
v = −

FαβF
αβ

4
. (4)
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Non-perturbative guiding center transformation

For the general plasma modeling:
. general e.m. fields (tokamak magnetic fields)

. extended to relativistic energies (runaway electrons)

. Independent from ordering

• ρL ≈ a ( edge phenomena)
• ωc is finite (high frequency phenomena)
• time dependency (non static equilibrium and transport time scale)
• E 6= 0 (MHD ordering and plasma rotation)

. The ordering and the perturbative approach become relevant when fluctuations are considered
(from guiding center to gyrocenter).

. The non perturbative guiding center transformation is based on:

• Lorentz’s force law solutions,
• guiding center description,
• scalar extended phase-space Lagrangian.
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Lorentz’s force law solutions of motion

• A charge e with massm that (non-relativistically) moves in a externally given and static e.m.
field is classically described by the system of equations:

ẋ = v; (5)

v̇ = (e/m)(E + v × B) (6)

within eulerian description ẋ = v(t, x, α) with α̇ · ∇αv = 0. Substituting E = −∂tA−
∇Φ and B = ∇× A, eq. (6) becomes

∂tv + ẋ · ∇v + α̇ · ∇αv = (e/m)(−∂tA−∇Φ + v ×∇× A). (7)

or
∂t[v + (e/m)A] +∇[v

2
/2 + (e/m)Φ] = v ×∇× [v + (e/m)A]. (8)

Equivalent to the velocity law:
Ec + v × Bc = 0, (9)

if the canonical e.m. fields are defined as

(e/m)Ec = −∂tp−∇ε and (e/m)Bc = ∇× p (10)
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The guiding center description of motion

• The guiding center description of motion is not eulerian nor lagrangian.

x = X + ρ(γ), (11)

ẋ = V + σ(γ). (12)

• Ẋ = V (t,X, µ, ε) with Ec + V × Bc = 0.

• If E = V 2/2 + (e/m)Φ(t,X), then the cyclotron frequency, γ̇, is chosen to be

(m/e)µγ̇ = ε− E (13)

• the guiding center momentum is P = V + (e/m)A(t,X).

• The lagrangian doesn’t explicitly depend on the gyro-phase, γ is cyclic.

• The constant of motion for such symmetry is the magnetic moment, µ.

• The differences are that in the perturbative approach
. the latter items are considered at each perturbative order,
. v = v‖b(0) + v⊥ instead of v = V + σ, (unfortunate choice if B departs too much

from being straight).
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The guiding center Lagrangian

• The single (charged) particle Lagrangian, L, must be gauge independent: if

L→ L+ Ṡ, (14)

the equations of motion are the same.

• L must be a scalar: if the index A runs over the extended phase-space dimensions then

L = γAż
A

(15)

. Canonical coordinates:

z
A

= (t, x, v) and γA = (−ε, p, 0).

. Non canonical, guiding center coordinates:

Z
A

= (t,X, γ, µ, ε) and ΓA = (−E, P,−(m/e)µ, 0, 0).

• L = p · ẋ− ε = P · Ẋ − E − (m/e)µγ̇ ⇐⇒ p · ẋ = P · Ẋ if ε = E + (m/e)µγ̇.

• If S = (m/e)µγ then guiding center Lagrangian is

Lgc = L+ Ṡ = P · Ẋ − ε+ (m/e)µγ̇.
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General relativity on extended phase-space

• Let’s indicate with L̂ the phase-space relativistic Lagrangian: L̂ = γA(dzA/dŝ) ≡ γAz′A.

• Thus, let’s introduce a metric tensor: ĝAB so that L̂dŝ = ĝABγ
AdzB. γA are the contra-

variant momenta in the extended phase space (6+1)D.

• An Hilbert-Einstein lagrangian is added to address the metric tensor. The total lagrangian
(distribution) becomes:

`a = fmL̂−
R̂

16πĜ
, (16)

• fm is the scalar distribution function of masses, Ĝ and R̂ are the gravitational constant and
the scalar curvature for the extended phase space, respectively.

• A field theory on the extended phase-space is simply given by the action

S =

∫
`a dM, (17)

• If the guiding center coordinates are used then dM =
√
−ĝ dt d3X dγ dε dµ.
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The misleading symmetry

• Relativistic guiding center transformation:

x
α

= X
α

+ ρ
α
(γ) (18)

x
′α

= U
α

+ ν
α
(γ). (19)

. If µ 6= 0 the guiding center is not a particle: UαUα 6= 1.

. The time is separated in slow and fast component: t = tslow + tfast(γ),
being X0 = tslow and ρ0 = tfast(γ).

• The misleading symmetry is the condition: (m/e)µγ′ = 1− UαUα.
(it corresponds to (m/e)µγ̇ = ε− E in n.r. )

• The relativistic Lagrangian has the same form after the transformation:

. In general: L̂ = γαu
α = ΓαU

α − (m/e)µγ′.
. In particular: L̂ = −1 + (e/m)Aα(xβ)uα = −1 + (e/m)Aα(Xβ)Uα.

• The form of the Lagrangian remains the same after a translation on phase-space ⇒ The
extended energy momentum tensor, TAB, is conserved:

ĜAB = 8πĜ T̂AB. Einstein’s equation on the extended phase space (20)
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Kaluza-Klein solution

• In 5D: L̃ = g̃abΓ
aZ ′b, a, b = 0, 1, 2, 3, 4 and `a = fmL̃− R̃/(16πG̃).

• The misleading symmetry: UaUa = 1.

• The following KK metric tensor is adopted:

g̃ab =

∣∣∣∣ gαβ − k2
GAαAβ k2

G(m/e)2µAα

k2
G(m/e)2µAβ −k2

G(m/e)4µ2

∣∣∣∣ . (21)

being kG =
√

16πG.

• if
√
−g̃ =

√
−g(m/e)2kGµ and G̃ = G

∫
(m/e)2kGµJ̃Pdγdεdµ.

• then

Sf = −
∫ √

−gdtd3
X

R

16πG
−
∫ √

−gdtd3
X
FαβF

αβ

4
. (22)

• Even if the terms in the lagrangian density, L, are the desired ones, they are referring to fields
on (t,X) where X is the guiding center position and it doesn’t indicate the position of a
particle⇒ the present theory is NON LOCAL

• In the pasma action, the term "somethingnew" is Hilbert-Einstein in extended phase-space.
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Conclusion

• In general relativity theory, it is possible to think at a consistency between the gravitational
field and the motion of masses. Indeed, what is said is that the space-time coincides with the
gravitational field thanks to the Einstein’s equation.

. Finally, the gravitational field coincides with the extended phase-space not with the
only space-time. The important difference with the standard approach is that from
giving a geometry to the extended phase-space it is possible to obtain both gravitation
and electromagnetism.
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