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Electromagnetism vs General Relativity

Differences within a variational approach

General Relativity:

e The Einstein’s equation is obtained by varying the metric tensor.
e The trajectories are geodesics in a curved (by masses) space-time manifold.

e Hilbert-Einstein action
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Electromagnetism:

e The Maxwell’s equations are not obtained by varying a metric tensor.
e The trajectories are solutions of the Lorentz’s force law which are not geodesics:

> Einstein’s Teleparallelism Theory (metric with torsion, Eddington’s affine geometry)
> Kaluza-Klein Mechanism (extra dimension)
> Weyl attempt (non Riemannian metric with scale invariance)

e The action for Maxwell’s equations is different from the Hilbert-Einstein action:
Sy = — [(F?/4)\/—gdtd’z
> For taking into account both the interactions, the lagrangian density is the sum

L=—pnm— Ay J* — F?/4 — R/(167G)
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Kaluza-Klein mechanism

e A Hilbert-Einstein action in a 5D space-time is

R
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e A 5D Kaluza-Klein metric tensor
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e Considering a Ricci tensor in 5D and Christoffel symbols in 5D
e The cylinder condition: dropping all derivatives with respect to the fifth coordinate

e Then

4 + 167G + 3k p?

SHE = —/d433\/ —g¥ [90

> Kaluza-Klein set ¢ = 1.

o FogFP R 2 8ag080‘90]

e REJECTED: no observation of the 5% dimension and inconsistency of mass scale in compact-
ification schemes.
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Plasma modeling

e The lagrangian for describing electrodynamics in plasmas is the sum of the single particle
lagrangian, £(t, x, v), times the distribution function of particles, f(t, x, v), with the e.m.
lagrangian. The action is often expressed like:

F,3F°P
Splasma = /dtd?’xd%f(t,x,v)at,a:,v) — /6Tdtd3x, (2)

e There is an asymmetry in the action between the matter action and the field one.

e In principle, for restoring the symmetry between the two lagrangians, it should be simple to
think at an action written as

Splasma — / d tdg xdg 'U/Cplasmaa (3)

where Lplasma = f(t, x,v)€(t, x,v) + ”somethingnew” and the property that

F.gFP

- (4)

: 3
/”somethmgnew”d v = —
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Non-perturbative guiding center transtormation

For the general plasma modeling:

> general e.m. fields (tokamak magnetic fields)
> extended to relativistic energies (runaway electrons)
> Independent from ordering

e pr ~ a ( edge phenomena)

e w, is finite (high frequency phenomena)

e time dependency (non static equilibrium and transport time scale)
e FE # 0 (MHD ordering and plasma rotation)

> The ordering and the perturbative approach become relevant when fluctuations are considered
(from guiding center to gyrocenter).

> The non perturbative guiding center transformation is based on:

e Lorentz’s force law solutions,
e guiding center description,

e scalar extended phase-space Lagrangian.
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Lorentz’s force law solutions of motion

e A charge e with mass m that (non-relativistically) moves in a externally given and static e.m.
field is classically described by the system of equations:

T = v; ()
v = (e/m)(E+v X B) (6)
within eulerian description £ = v (¢, x, ) with & - Vv = 0. Substituting £ = —0; A —

V® and B =V X A, eq. (i) becomes
Oww—+a-Vo+&-Vev=(e/m)(—0:A—VP+vxXxV XA), (7)

or
v+ (e/m)A] + V[v° /2 + (e/m)®] = v X V X [v + (e/m)A]. (8)

Equivalent to the velocity law:
E.+v x B, =0, (9)

if the canonical e.m. fields are defined as

(e/m)E. = —0yp — Ve and (e/m)B. =V X p (10)
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The guiding center description of motion

e The guiding center description of motion is not eulerian nor lagrangian.
r =X+ p(7), (11)
=V +o(v). (12)
o X =V(t,X,pn,e)with E.+V x B, =0.

o If & =V?/2+ (e/m)®(t, X), then the cyclotron frequency, 4, is chosen to be
(m/e)uy=e—-¢& (13)

e the guiding center momentum is P =V + (e/m)A(t, X).
e The lagrangian doesn’t explicitly depend on the gyro-phase, v is cyclic.
e The constant of motion for such symmetry is the magnetic moment, .

e The differences are that in the perturbative approach

> the latter items are considered at each perturbative order,

> v = v by + v instead of v = V 4 o, (unfortunate choice if B departs too much
from being straight).
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The guiding center Lagrangian

e The single (charged) particle Lagrangian, L, must be gauge independent: if
L —L+S, (14)
the equations of motion are the same.
e L must be a scalar: if the index A runs over the extended phase-space dimensions then
L = ~y,3° (15)
> Canonical coordinates:
24 = (t, x,v) and v4 = (—e&,p,0).
> Non canonical, guiding center coordinates:

Z4 = (¢, X,v,pu,e)  and  Tu=(=E,P, —(m/e)u,0,0).

o L=p-i—ec=P-X—E—(m/e)pyy<=p-&=P -Xife=E+ (m/e)u?.
o If S = (m/e)py then guiding center Lagrangian is

Lie=L+S=P-X—ec+ (m/e)u?.
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General relativity on extended phase-space

e Let’s indicate with L the phase-space relativistic Lagrangian: L = ya(dz?/d§) = ya2"

e Thus, let’s introduce a metric tensor: gap so that Lds = @AB'yAdzB. ’yA are the contra-
variant momenta in the extended phase space (6+1)D.

e An Hilbert-Einstein lagrangian is added to address the metric tensor. The total lagrangian
(distribution) becomes:

A

R
167TCA;7

ta = f, L — (16)

e f,, is the scalar distribution function of masses, G and R are the gravitational constant and
the scalar curvature for the extended phase space, respectively.

e A field theory on the extended phase-space is simply given by the action

S = /ea, dM, (17)

e If the guiding center coordinates are used then dM = /—¢ dt d*>X d~ de dp.
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The misleading symmetry

e Relativistic guiding center transformation:

2 = X+ p% () (18)
' =U" 4+ v7). (19)
> If u # O the guiding center is not a particle: UU,, # 1.

> The time is separated in slow and fast component: t = tgow + ttast (77),
being X = tgow and p° = teast (7).

e The misleading symmetry is the condition: (m/e)uy’ = 1 — U“UL,,.
(it corresponds to (m/e)uy =€ — € inn.r. )

e The relativistic Lagrangian has the same form after the transformation:

> In general: L = vou® = DU — (m/e) .
> In particular: L = —1 4+ (e/m)Aq(z”)u® = —1 + (e/m) A (XP)U?,

e The form of the Lagrangian remains the same after a translation on phase-space = The
extended energy momentum tensor, 1’4 g, is conserved:

GAB — 871G TAB. Einstein’s equation on the extended phase space (20)
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Kaluza-Klein solution

o m5D: L = gupIl®Z"% a,b=0,1,2,3,4 and La = f,,L — R/(167G).
e The misleading symmetry: UU, = 1.

e The following KK metric tensor is adopted:

s = | 95y Kl s 1)
KE(m/e)uAs  —k(m/e)u
being kg = V167G,
o if /=g =+/—g(m/e)*kgu and G = G [(m/e)?kauJpdydedp.
e then 5
F, Fa
/ /—gdtd®Xx —20— (22)

e Even if the terms in the lagrangian density, £, are the desired ones, they are referring to fields
on (t, X) where X is the guiding center position and it doesn’t indicate the position of a
particle = the present theory is NON LOCAL

e In the pasma action, the term "somethingnew" is Hilbert-Einstein in extended phase-space.
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Conclusion

e In general relativity theory, it is possible to think at a consistency between the gravitational
field and the motion of masses. Indeed, what is said is that the space-time coincides with the
gravitational field thanks to the Einstein’s equation.

> Finally, the gravitational field coincides with the extended phase-space not with the
only space-time. The important difference with the standard approach is that from

giving a geometry to the extended phase-space it is possible to obtain both gravitation
and electromagnetism.
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