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Overview

Fourier–Hermite spectral expansion for the 1+1D Vlasov–Poisson system

Free energy diagnostics and Landau damping

Propagation of free energy between Hermite modes

Suppression of Landau damping by nonlinearity

Further application to quasineutral drift (gyro) kinetics



The one-dimensional Vlasov–Poisson system

Start with the 1+1D Vlasov–Poisson system for f̃

∂f̃

∂t
+ v

∂f̃

∂z
− E

∂f̃

∂v
= C[f̃ ], E = − ∂Φ

∂z
, − ∂2Φ

∂z2
= 1−

∫ ∞

−∞
dv f̃ .

Decompose f̃ = f0 + f , where f0(v) is a stationary, spatially-uniform

distribution function satisfying
∫∞
−∞ dv f0 = 1. Equivalent to writing f̃ as a

particular integral f0 plus a complementary function f (not necessarily small).

The Vlasov–Poisson system becomes

∂f

∂t
+ v

∂f

∂z
− E

∂

∂v
(f0 + f ) = C[f ], E = − ∂Φ

∂z
,
∂2Φ

∂z2
=

∫ ∞

−∞
dv f.

The overall charge neutrality condition becomes∫ L

0
dz

∫ ∞

−∞
dv f (z, v, t) = 0.

This makes E and Φ periodic functions of z ∈ [0, L].



Relative entropy

The decomposition f̃ = f0 + f motivates introducing the spatially-integrated
relative entropy [eg Bardos et al. 1993]

R[f̃ |f0] =
∫ L

0
dz

∫ ∞

−∞
dv f̃ log(f̃/f0)− f̃ + f0.

Expanding for small perturbations f ≪ f0 gives a positive-definite quadratic:

R[f̃ |f0] =
∫ L

0
dz

∫ ∞

−∞
dv f 2/(2f0) +O

(
f 3

)
.

Taking f0 = π−1/2e−v2 gives

R[f̃ |f0] = H[f̃ ] +

∫ L

0
dz

∫ ∞

−∞
dv

collision invariants︷ ︸︸ ︷(
1
2 log π − 1

)
f̃ + v2f̃ + f0,

a combination of ⟨n⟩, ⟨E⟩, and the spatially-integrated Boltzmann entropy

H[f̃ ] =

∫ L

0
dz

∫ ∞

−∞
dv f̃ log f̃ .



A quadratic approximate free energy

Relative entropy is not conserved in a collisionless plasma, since f0 couples to
the electric field through −E∂vf0.
What is conserved (without collisions) is the free energy per unit length:

Wexact =
1

L

[
1

2
R[f̃ |f0] +

1

2

∫ L

0
dz |E|2

]
,

with a 1/2 because f0 = π−1/2e−v2 has dimensionless temperature 1/2.

Using the quadratic approximation for the relative entropy leads to

W = Wf +WE.

Both pieces

Wf =
1

2L

∫ L

0
dz

∫ ∞

−∞
dv

f 2

2f0
, WE =

1

2L

∫ L

0
dz |E|2,

will be expressed neatly later in terms of Fourier–Hermite expansion
coefficients using Parseval’s theorem (with the 1/L).



Fourier–Hermite expansion

Following Armstrong (1967), Grant & Feix (1967) etc etc we expand

f (z, v, t) =
Nm−1∑
m=0

Nϑ∑
j=−Nϑ

ajm(t)e
ikjzϕm(v),

where kj = 2πj/L, and for m = 0, 1, 2, . . .

Hm(v) = (−1)mev
2 dm

dvm
e−v2, ϕm(v) =

Hm(v)√
2mm!

, ϕm(v) =
e−v2

√
π
ϕm(v).

Each ϕm(v) → 0 as v → ±∞. The ϕm and ϕn satisfy the biorthogonality
relations ∫ ∞

−∞
dv ϕn(v)ϕ

m(v) = δnm for m,n ≥ 0.

The Poisson equation is −k2jΦ̂j = aj0. The quadratic free energy terms are

Wf =
1

4

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

|ajm|2, WE =
1

2

Nϑ∑
j=−Nϑ

|Êj|2, Êj = −ikjΦ̂j.



Evolution equations for the ajm

Substituting this expansion into the Vlasov–Poisson system gives

dajm
dt

+ ikj

[√
m + 1

2
aj,m+1+

√
m

2
aj,m−1

]
+
√
2Êjδm1+Njm = Cjm,

for |j| ≤ Nϑ and m < Nm. It is closed by setting aj,−1 = 0 and aj,Nm
= 0.

The nonlinear term is the discrete Fourier convolution

Njm =
√
2m

Nϑ∑
j′=−Nϑ

Êj′aj−j′,m−1.

We consider model collision operators Cjm = −νcjmajm for constants cjm,
such as the Lenard–Bernstein (1958) with A = v, D = 1/2, and Kirkwood
(1946) with A = v − u, D = T , Fokker–Planck collision operators

C[f̃ ] = ∂v
(
Af̃ + ∂v(Df̃ )

)
,

that yield

cLBjm = m, and cKirkwoodjm = mI{m≥3}, where I{m≥3} =

{
1 m ≥ 3,

0 otherwise.



Energy diagnostics

The evolution equation for aj0 implies
d

dt
WE + F = 0, where F = Re

 Nϑ∑
j=−Nϑ,j ̸=0

ia∗j0aj1

kj
√
2

 .

We find later that ia∗j0aj1 is the free energy flux from the m = 0 to the
m = 1 Hermite mode. The electric field can only decay via a net forward flux.

More generally, the equations for dtajm imply

d

dt
(Wf +WE +WN) = C, where C = −ν

2

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

cjm|ajm|2,

is the free energy dissipated by collisions (non-negative when the cjm ≥ 0).

We account for the O(f 3) difference between Wexact and Wf +WE using

WN =
1

2
Re

∫ t

0
dt′

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

a∗jmNjm



Landau damping

Following previous work, we study Landau damping from the initial conditions

f̃ (v) = (1 + A cos kz)e−v2/
√
π

with A = 1/2 and k = 1/2 in a box of length L = 4π.

We switch off the E∂vf term to obtain linear Landau damping.

Landau’s Fourier–Laplace transform solution is

f̂ (k, v, t) =
1

2πi

∫
Γ

(
f̂ (k, v, t = 0)

p + ikv︸ ︷︷ ︸
phase mixes

− ikΦ∂vf0(v)

p + ikv︸ ︷︷ ︸
decays

)
eptdp,

where f̂ (k, v, t = 0) is the Fourier transform of the initial perturbation, and
Φ(k, p) is the Fourier–Laplace transform of the electrostatic potential.

The first term phase-mixes but does not decay. The second term decays like
e−γt at the Landau damping rate γ.



Amplitude of the first electric field Fourier mode |E1|

linear nonlinear
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Oscillations due to beats between two counter-propagating modes ω = ±ωR + iγ



Evolution of energy diagnostics
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Evolution of energy diagnostics (single mode)
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Initial conditions that project onto only one Landau damped mode give monotonic decay.



Phase space plots

f (x, v, t) at t ∈ {1, 10, 40, 80} computed with Nk = 256 and Nm = 2048



Hermite spectra at t = 10
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Hermite spectra at t = 40
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Fluxes in Hermite space

The quadratic approximate free energy Wf is a sum of |ajm|2.
Writing ãjm = (isgnkj)

majm gives an equation with real coefficients

dãjm
dt

+ |kj|
(√

(m + 1)/2 ãj,m+1 −
√
m/2 ãj,m−1

)
= 0, (†)

for m ≥ 2 in the linearised collisionless system [Zocco & Schekochihin 2011].

If f (z, v, 0) is even in z and v, the ãjm are initially real, and remain real.

The spectral free energy density thus obeys the discrete conservation law

1

2

dã2jm
dt

+
(
Γj,m+1/2 − Γj,m−1/2

)
= 0,

with flux

Γj,m−1/2 = |kj|
√
m/2 ãjmãj,m−1 = kj

√
m/2 Im

(
a∗jmaj,m−1

)
.

We set Γj,−1/2 = 0 for consistency with aj,−1 = 0.



Characteristics in Hermite space

If ãjm varies slowly in m, in the sense that ãjm ≈ ãj,m+1, we can
approximate the discrete flux

Γj,m−1/2 = |kj|
√
m/2 ãjmãj,m−1

by the slowly varying flux

ΓSV
jm = |kj|

√
m/2 ã2jm

Treating m as a continuous variable leads to the conservation law

1

2

∂ã2jm
∂t

+
∂ΓSV

jm

∂m
= 0,

which may be rewritten as(
1

2

∂

∂t
+ |kj|

∂

∂
√
2m

)(√
2mã2jm

)
= 0.

The free energy density propagates along characteristics labelled by m0:√
m =

√
m0 +

√
2|kj|t



Eigenmodes based on “continuous m” approximation
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Matrix eigenvector versus

|ajm|2 = (c/
√
2m) exp

(
−sgn(γ) (m/mγ)

1/2 − (m/mc)
n+1/2

)
where the growth rate cutoff mγ and collisional cutoff mc are

mγ = 1/(8γ2), mc = Nn(n + 1/2)1/(n+1/2)/(
√
2 ν)



A forward propagating “phase-mixing” mode



Backwards propagating “anti-phase-mixing” modes

The previous result approximates the semi-discrete system
1
2dt ã

2
jm +

(
Γj,m+1/2 − Γj,m−1/2

)
= 0,

under the assumption that ãjm ≈ ãj,m+1, by the PDE
1
2∂tã

2
jm + ∂mΓ

SV
jm = 0.

Numerical analysis of the semi-discrete “finite difference scheme” shows that it
has a second set of “parasitic” solutions with ãjm ≈ −ãj,m+1.
Writing ãjm = (−1)mâjm transforms (†) into

dâjm
dt

− |kj|
(√

(m + 1)/2 âj,m+1 −
√
m/2 âj,m−1

)
= 0.

Assuming âjm is slowly varying
(

while ãjm ∼ (−1)m
)

leads to
1
2∂tâ

2
jm − ∂mΓ

SV
jm = 0.

Free energy propagates backwards (towards low m) along characteristics√
m =

√
m0 −

√
2|kj|t.



Hermite flux diagnostics

We introduce the decomposition [Schekochihin et al. ’14, Kanekar et al. ’15]

ã+jm = 1
2 (ãjm + ãj,m+1) , ã−jm = (−1)m1

2 (ãjm − ãj,m+1) .

These modes evolve according to

dtã
±
jm + S±

jm + E±
jm +N±

jm = 0.

The streaming term is

S±
jm =± 1

2|kj|
(
(sm+2 + sm+1)ã

±
j,m+1 − (sm+1 + sm)ã

±
j,m−1

)
± 1

2|kj|(−1)m
(
(sm+2 − sm+1)ã

∓
j,m+1 − (sm+1 − sm)ã

∓
j,m−1

)
,

where sm =
√
m/2. The second line is O(1/m) smaller than the first line.

We compare the Hermite flux Γjm to ΓSV
jm using the normalized flux

ΓN
jm =

Γjm

ΓSV
jm

=
(ã+jm)

2 − (ã−jm)
2

(ã+jm + (−1)mã−jm)
2
.

The approximation Γjm ≈ ΓSV
jm is thus valid when |ã+jm| ≫ |ã−jm|.



Dissipation and collision operators

We absorb any cascade of free energy to the highest resolved Fourier modes
using the Hou–Li (2007) spectral filter

exp
(
−36(|kj|/kmax)

36
)

applied to the ajm coefficients every timestep. This filter is highly selective in
kj but produces no noticable reflections and has no tunable parameters.

To absorb free energy at the highest resolved Hermite modes we used either a
Hermite version of the Hou–Li filter

exp
(
−36(m/(Nm − 1))36

)
or an iterated Lenard–Bernstein collision operator

chyperjm = ν(m/Nm)
αajm.

The latter with α = 6 was effective for computing the correct growth and
decay rates in a linear gyrokinetic model, even with Nm = 10, over a large
range of ν values.

However, it is harder to establish convergence with increasing Nm.



Plateau in hypercollision operator parameters

Landau damping rate in a 1D drift kinetics problem with n = 6 hypercollisions.



Propagation of Hermite modes |a±
jm|

Left |a+jm| and right |a−jm|. Top with Hou-Li filter in m, bottom without.



Convergence to an eigenfunction after rescaling amplitude



Quasi-steady amplitudes of Hermite modes |a±
jm|

Free energy in k = 1 and forwards (+) and backwards (-) modes
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Time-averaged normalised Hermite flux

ΓN
jm =

(
(ã+jm)

2−(ã−jm)
2
)
/
(
ã+jm+(−1)mã−jm

)2
averaged over t∈ [40, 80]



A similar story in drift (gyro)kinetics

∂tf + v∥∂∥(f + Φf0) + u⊥ · ∇⊥f = C[f ] + ITG forcing

Φ = ZTe/Ti

∫ ∞

−∞
f, and u⊥ = 1

2ρi ẑ ×∇⊥Φ

Steeper m−5/2 spectrum due to diversion of free energy into k⊥ instead of higher m.



Normalised flux ΓN in drift (gyro)kinetics

Normalised flux ΓN from m = 30 to m = 31 plotted against k∥ & k⊥
Line on which parallel streaming time equals perpendicular eddy turn-over time



Conclusions

Phase-space diagnostics based on a Fourier–Hermite spectral expansion of f .

Formation of fine scales in velocity space (Landau damping) appears as free
energy propagating towards larger Hermite modes along straight characteristics.

The system also supports backwards propagating “anti-phase-mixing” modes.

Recurrence occurs when the fine-scale cut-off generates these modes by
reflection. Can be avoided with a “hypercollision operator” or Hermite filter.

Nonlinearity produces almost perfect statistical reflection of phase-mixing
modes into anti-phase-mixing modes, leaving no net flux to fine scales in
velocity space, and no Landau damping.

Holds both for Vlasov–Poisson and drift gyrokinetics with different nonlinearities.
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