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Direct Vlasov solvers in the warm case

Vlasov-Poisson equations: af

f : phase space density ot vV = Vid - Vof =0,

@: gravitational potential

p : projected density Arp =4nGp, px, 1) = /f(x, v, f)dv

Warm case (e.g. relaxed dark matter halo, stars in galaxies): numerous methods mainly
invented for plasma physics, mostly of semi-Lagrangian nature (e.g. Yoshikawa’s,
Grandgirard’s and Imodura’s talks, review of Besse). Among them:

-  The waterbag method (DePackh 1962, Robert & Berk 1967, and followers, e.g.
Colombi & Touma 2008, 2014)

- The splitting algorithm (Cheng & Knorr 1976) and its variants and improvements, e.g
Discontinuous Galerkin methods (e.g. Mehrenberger’s talk)

- But many others: finite differences (e.g., Dominguez Fernandez’s poster), finite
elements, lattice dynamics (e.g. Mocz’s talk), Schrodinger method (e.g., Kopp’s talk)
etc

Some bibliographic details: e.g. Alard & Colombi 2005, Sousbie & Scolombi 2016,

Besse’s talks, 2015 and 2017: http://www.vlasix.org/uploads/Main/Besse.pdf and BesseTalk.pdf
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Classical semi-Lagrangian code: the splitting algorithm

The splitting algorithm of Cheng & Knorr (1976, JCP 22, 330) exploits
Liouville theorem, namely conservation of phase-space density along
characteristics: flr(t),u(t),t] = constant

- The phase space distribution function is sampled on a grid

- A test particle is associated to each grid site and followed backwards
in time to find its position at previous time step.

- fis interpolated from previous time step at the root of the
characteristic using e.g. spline interpolation

- This is performed in a split fashion:

f*(r,u) = f(r —uAt/2,u,t), Drift,
f(r,u) = f*(r,u+ V,¢At), Kick,

f(r,u,t + At) = f**(r —uAt/2,u), Drift,
First applications in astrophysics: Fujiwara (1981), Nshida et al. (1981), Watanabe et al. (1981)
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Improvement over the splitting algorithm: the "'metric’”’ approach

Colombi & Alard 2017, J. Plasma Phys. 83, 705830302
See also Campos Pinto & Charles, HAL-01385676

* A set of metric elements is used to follow locally the flow and its deformation
Lagrangian space PQ,t=0)=0 Eulerian space

Initial position Q proposed
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* Finding the root of the characteristics: 2nd order Lagrangian perturbation theory
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Lagrangian regions of influence:
Percolation algorithm

A percolation algorithm is implemented to compute accurately the Lagrangian region of
influence of each metric element.
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Improvement over the splltl'mg algorithm: the "'metric’”’ approach

One can find the initial (Lagrangian) position Q(P) of any test particle P by expanding at
second order the geometry of the motion in the vicinity of the closest metric element

Reconstruction of the phase-space distribution function at each time step is performed using
Liouville theorem, by interpolation of f on initial position Q(P), similarly as in the splitting
method, however a lower 2" order interpolation is used:

(infn*1)

(icjc+1) (ic+1,j+1) f(Qx, qv) - F(ln,Jn)(l - dquc - in)
o X164 + 3 F (. ju + 1) dgu(1+dgy) + 3F G — 1) dgu (1 — dgy)
i) L) +[F(i. + 1, je + 1)+ Flc, jo) = F(ic + 1, jo) = F(ic, jo + D1dg. dg,

(in-lrjn) (inljn) (in+1ljn) . .
(lna.]n) - (I_(qx - CIx,mid)/Ax-l s I_(Qv - qv,mid)/Av—l)a

(ic,jc) = (I_(Qx qx, mzd)/AxJ s I.(QU - qv,mid)/AvJ),
dqx (qx qx,mid)/Ax — Ip,
(injn2) ® qv = (Qv qv,mid)/Av _jn’

When deformation of the metric elements is too high, new isotropic elements are set along
with new initial conditions corresponding to the current state: cubic B-splines are used at the

moment of resampling and Q(P) is computed more accurately using interpolation between
neighbouring metric elements.

Because re-samplings of the phase-space distribution function are much more seldom, the
metric scheme is much less diffusive than the standard splitting algorithm
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Evolution of metric elements: 2" order drift-kick-drift

x(t+ At/2) =x(t) + ;v() At,
* Drift step At/2 Tij(t+ At/2) = Tij(0) + LT, (DAL, i< D,
Hijx(t 4+ At/2) = Hji(8) + SHisp e, i< D

* Calculation of phase-space density at t+At/2, hence acceleration a(t+At/2)

v(t+ At)=v(t) +a(t+ At/2) At,

D
Ba,-
Tunit+AD)=Ti(O+> o Trit+ A1/2)At,
r=1 r
* Kick step At
- 8a,~
Hiipjx(t+ At) = Hipji(t) + Z 87Hr’j,k(t + At/2) At
r=1

r

D
Bza,-
T,:(t+ At/2)T, . (t + At/2) At
+Zaxrxs SO+ A2 T (1 4 At)2)

r,s=1

x(t+ Af) =x(t+ At/2) + Jv(t + A At,
 Drift step At/2 Tij(t+ A =Tt + At/2) + S Tipj(t + ADAL, <D,
Hijk(t + A1) = Hiji(t + At/2) + SHippju(t + A AL, i< D
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Metric versus waterbag
Example phase-space of a 1D simulation with Gaussian initial conditions
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Metric versus splitting (and waterbag)
Example: phase-space of a 1D simulation with Gaussian initial conditions

Gaussian, t=100

050 Waterbag exact solution](Colombi & Touma 2014)
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The metric scheme allows one to improve actual spatial resolution by a factor 2 or more for a
computational cost of the same order
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Performances in 1D: metric versus splitting

Designation A Am ng  tcpu

I 0.002 002 25

II 0.002 0.04 25 1.0

111 0.002 0.01 25 Increasing metric element density slightly
IV 0.002 0.005 25 1.4 | increases computational cost

V 0.002 0.02 100 1.1

VI 0.002 0.02 50 1.1 * A:spatial resolution

VII 0.002 002 10 1.2 * A, :inter-element of metric
VIII 0.002 0.02 5 1.5 distance

IX 0.002 0.02 1 3.2 * n_: number of time step

X 0.001 001 25 (4.0] between full resamplings
Xl 0.004 0.04 25 0.4 * t.,: total CPU time spentin
XII 0.0005 — — W units of simulation I

XIII 0.00707 — — 4.5

XTIV 0.001 _ _ |23| tey~A7P D:dimension of space
XV 0.00141 — - 1.2

XVI 0.002 _ — (0.7} Metric code slightly more costly than

splitting algorithm for D=1
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Conclusions

Energy conservation: metric algorithm does slightly worse than splitting scheme but can
conserve energy at a very good level (e.g. below the 10~ level) if metric element density is
sufficiently high (e.g. distance between metric elements of the order of 2.5 grid element size)

Information (entropy) conservation: metric algorithm does as well as splitting scheme but by
using twice or even 4 times less resolution

Computational cost: splitting along dimensions is not possible in the metric algorithm, which
makes resampling phase much more costly than in the splitting scheme (in 6D, a factor 171 for
cubic B-splines) but this is more than compensated by the gain in effective resolution. In 6D, the
metric method is expected to be much less costly than the splitting method with similar level of
diffusion.

Extension to higher number of dimensions and parallel programming: extension to 6D is
straightforward and the metric method not more complex to parallelize than the standard
splitting scheme (e.g. Crouseilles et al. 2009) even with the percolation algorithm part.

Issues: improvements exploiting splitting for efficiency cannot be trivially implemented (e.g.
Discontinuous Galerkin methods).



