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Kinetic theory of stellar systems

The Hamiltonian system

We consider an isolated system of N stars with identical mass m in Newtonian
gravitational interaction. Their dynamics is fully described by the Hamilton
equations

mdri

dt = ∂H
∂vi

, mdvi

dt = −∂H
∂ri

,

H = 1
2

N∑
i=1

mv2
i −Gm2

∑
i<j

1
|ri − rj |

.

(1)
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Kinetic theory of stellar systems

The Liouville equation

The evolution of the N -body distribution function PN (r1,v1, ..., rN ,vN , t) is
governed by the Liouville equation

∂PN

∂t +
N∑

i=1

(
vi ·

∂PN

∂ri
+ Fi ·

∂PN

∂vi

)
= 0, (2)

where
Fi = −∂Φd

∂ri
= −Gm

∑
j 6=i

ri − rj

|ri − rj |3
=
∑
j 6=i

F(j → i) (3)

is the gravitational force by unit of mass experienced by the i-th star due to
its interaction with the other stars.

Remark : another possible starting point is the Klimontovich equation.

Pierre-Henri Chavanis Kinetic theory of stellar systems systems and plasmas 24 May 2016 3 / 23



Kinetic theory of stellar systems

The BBGKY hierarchy

From the Liouville equation (2) we can construct the complete BBGKY
hierarchy for the reduced distribution functions

Pj(x1, ...,xj , t) =
∫

PN (x1, ...,xN , t) dxj+1...dxN , (4)

where the notation x stands for (r,v). The generic term of this hierarchy reads

∂Pj

∂t +
j∑

i=1
vi ·

∂Pj

∂ri
+

j∑
i=1

j∑
k=1,k 6=i

F(k → i) · ∂Pj

∂vi

+(N − j)
j∑

i=1

∫
F(j + 1→ i) · ∂Pj+1

∂vi
dxj+1 = 0. (5)

Remark : the BBGKY hierarchy was applied to self-gravitating systems by
Gilbert (1968). Hierarchy not closed. Expansion in powers of ε = 1/N � 1.
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Kinetic theory of stellar systems

The truncation of the BBGKY hierarchy at the order
1/N
If we introduce the notations f = NmP1 (distribution function) and
g = N 2m2P ′2 (two-body correlation function), we get at the order 1/N :

∂f
∂t (1) + v1 ·

∂f
∂r1

(1) + N − 1
N 〈F〉(1) · ∂f

∂v1
(1) =

− 1
m

∂

∂v1
·
∫

F(2→ 1)g(1, 2) dx2, (6)

1
2
∂g
∂t (1, 2) + v1 ·

∂g
∂r1

(1, 2) + F(2→ 1) · ∂g
∂v1

(1, 2)

+〈F〉(1) · ∂g
∂v1

(1, 2) + F̃(2→ 1) · ∂f
∂v1

(1)f (2)

+ 1
m

[∫
F(3→ 1)g(2, 3) dx3

]
· ∂f
∂v1

(1) + (1↔ 2) = 0. (7)

Equations (6) and (7) are exact at the order 1/N . They form the right basis to
develop the kinetic theory of stellar systems at this order of approximation.
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Kinetic theory of stellar systems

The limit N → +∞ : the Vlasov equation (collisionless
regime)

For N → +∞, we can neglect correlations between stars and we obtain the
(mean field) Vlasov equation (1938)

∂f
∂t + v · ∂f

∂r + 〈F〉 · ∂f
∂v = 0,

〈F〉 = −∇Φ, ∆Φ = 4πG
∫

f dv.
(8)

The Vlasov equation (introduced by Jeans 1915) describes the collisionless
evolution of stellar systems ⇒ Collisionless Boltzmann equation

Remark : The Vlasov-Poisson equation can experience a process of violent
relaxation towards a quasistationary state (QSS) (Lynden-Bell 1968)
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Kinetic theory of stellar systems

The order O(1/N ) : collisional regime

If we neglect strong collisions and collective effects, the first two equations of
the BBGKY hierarchy can be written symbolically as

∂f
∂t + Vf = C[g],

∂g
∂t + Lg = S[f ].

(9)

The first equation gives the evolution of the one-body distribution function.
The l.h.s. corresponds to the (Vlasov) advection term. The r.h.s. takes into
account correlations (finite N effects, graininess, discreteness effects) between
stars that develop due to their interactions. These correlations correspond to
encounters (“collisions”).
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Kinetic theory of stellar systems

The generalized Landau equation
Substituting the two-body correlation function in the first equation of the
BBGKY hierarchy, we obtain (Gilbert 1968, Severne & Haggerty 1976,
Kandrup 1981, Chavanis 2013) :

∂f
∂t + v · ∂f

∂r + N − 1
N 〈F〉 · ∂f

∂v = ∂

∂vµ

∫ +∞

0
dτ
∫

dr1dv1Fµ(1→ 0)

×G(t, t − τ)
[
F̃ν(1→ 0) ∂

∂vν + F̃ν(0→ 1) ∂
∂vν

1

]
f (r,v, t) f

m (r1,v1, t),

in which we must move the particles between t and t − τ according to the
mean field trajectories.

Generalized Fokker-Planck equation : diffusion and friction

Temporal intergral of the force auto-correlation function weighted by f
(diffusion) or by ∇vf (friction) ⇒ generalized Kubo formula.

Remark : we have used Bogoliubov’s synchronization ansatz (g varies much
faster than f ) valid at the order 1/N .
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Kinetic theory of stellar systems

The Vlasov-Landau equation
Within the local approximation, we can proceed as if the system were spatially
homogeneous. The stars have rectilinear orbits (v(t − τ) = v(t) and
r(t − τ) = r(t)− v(t)τ) and the integrals over τ and r1 can be calculated
explicitly. We then find that the evolution of the distribution function is
governed by the Vlasov-Landau equation

∂f
∂t + v · ∂f

∂r + N − 1
N 〈F〉 · ∂f

∂v = π(2π)3m

× ∂

∂vµ

∫
kµkνδ(k ·w)û2(k)

(
f1
∂f
∂vν − f ∂f1

∂vν1

)
dv1dk,

(10)

where we have noted w = v− v1, f = f (r,v, t), f1 = f (r,v1, t), and where
(2π)3û(k) = −4πG/k2 represents the Fourier transform of the gravitational
potential. Under this form, we see that the collisional evolution of a stellar
system is due to a condition of resonance

k · v = k · v1 (11)

encapsulated in the δ-function.
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The Vlasov-Landau equation
The Vlasov-Landau equation may also be written as

∂f
∂t + v · ∂f

∂r + N − 1
N 〈F〉 · ∂f

∂v = ∂

∂vµ

∫
Kµν

(
f1
∂f
∂vν − f ∂f1

∂vν1

)
dv1,

Kµν = 2πmG2 lnΛw2δµν − wµwν

w3 ,

(12)
where

lnΛ =
∫ dk

k = +∞ (13)

is the Coulombian logarithm. It has to be regularized with appropriate
cut-offs.

Plasmas : collective effects (Debye scale kD).

Stellar systems : spatial inhomogeneity (Jeans scale kJ)
Remark : The r.h.s. of Eq. (12) is the original form of the collision operator
given by Landau (1936) for the Coulombian interaction.
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Kinetic theory of stellar systems

The Vlasov-Lenard-Balescu equation
The Vlasov-Lenard-Balescu equation (1960) writes

∂f
∂t + v · ∂f

∂r + N − 1
N 〈F〉 · ∂f

∂v = π(2π)3m

× ∂

∂vµ

∫
kµkνδ(k ·w) û2(k)

|ε(k,k · v)|2

(
f1
∂f
∂vν − f ∂f1

∂vν1

)
dv1dk,

(14)

where

ε(k, ω) = 1 + (2π)3û(k)
∫ k · ∂f

∂v
ω − k · v dv (15)

is the dielectric function (appearing in connexion with the linearized Vlasov
equation). The Landau equation is recovered for |ε(k,k · v)|2 = 1
Dressed potential of interaction :

ûbare(k) = û(k)⇒ ûdressed(k) = û(k)
|ε(k,k · v)| (16)
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Kinetic theory of stellar systems

Debye-Hückel approximation
• Debye-Hückel approximation for plasmas : static screening |ε(k, 0)| +
Maxwell distribution :

(2π)3ûDH(k) = 4πe2

m2
1

k2 + k2
D

lnΛ =
∫

0
k3

(k2+k2
D)2 dk

(17)

No large scale divergence anymore ! Collective effects (Debye shielding) solve
the large scale divergence.
• Debye-Hückel approximation for stellar systems :

(2π)3ûDH(k) = −4πG 1
k2 − k2

J
lnΛ =

∫
kJ

k3

(k2−k2
J)2 dk

(18)

Even worse divergence at large scales ! (Jeans instability). If we want to take
collective effects into account, we must also account for spatial inhomogeneity.
Collective effects (anti-shielding) can boost the relaxation (see Fouvry et al.
2015).
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The inhomogeneous Landau equation
The generalized Landau equation can be simplified by making an adiabatic
approximation and using angle-action variables : f ' f (J, t)
If we neglect collective effects we get the inhomogeneous Landau equation
(Polyachenko & Shukhman 1982, Luciani & Pellat 1987, Chavanis 2007, 2010) :

∂f
∂t = π(2π)dm ∂

∂J ·
∑
k,k′

∫
dJ′ k |Ak,k′(J,J′)|2δ(k · Ω− k′ · Ω′)

×
(
k · ∂

∂J − k′ · ∂
∂J′

)
f (J, t)f (J′, t),

(19)

where Ω = Ω(J, t) and Ω′ = Ω(J′, t) are the pulsations of the orbits and
Ak,k′(J,J′) is the Fourier transform of the potential of interaction written in
angle-action variables. The condition of resonance (distant encounters) is

k · Ω = k′ · Ω′ (20)

see Lynden-Bell & Kalnajs (1972), Tremaine & Weinberg (1984), Rauch &
Tremaine (1996)...
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The inhomogeneous Lenard-Balescu equation
If we take collective effects into account we get the inhomogeneous
Lenard-Balescu equation (Heyvaerts 2010, Chavanis 2012) :

∂f
∂t = π(2π)dm ∂

∂J ·
∑
k,k′

∫
dJ′ k 1

|Dk,k′(J,J′,k · Ω)|2 δ(k · Ω− k′ · Ω′)

×
(
k · ∂

∂J − k′ · ∂
∂J′

)
f (J, t)f (J′, t),

where 1/Dk,k′(J,J′, ω) = ψ
(α)
k (J)ε−1

αβ(ω)ψ(β)∗
k′ (J′) with the “dielectric” function

εαβ(ω) = δαβ − (2π)d
∑

k

∫
dJ

k · ∂f
∂J

ω − k · Ωψ
(α)∗
k (J)ψ(β)

k (J) (21)

expressible in terms of the elements of a biorthogonal basis (Kalnajs 1976,
Weinberg 1986, 1989). The inhomogeneous Lenard-Balescu equation is the
most refined kinetic equation of stellar systems : exact at the order 1/N ,
spatial inhomogeneity, collective effects.
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The test particle approach : Fokker-Planck equation

Test particle : f (J, t)⇒ P(J, t)

Field particles : f (J′, t)⇒ f (J′)
This procedure transforms an integrodifferential equation (LB) into a
differential (FP) equation (Chavanis 2012, Heyvaerts et al. 2017) :

∂P
∂t = π(2π)dm ∂

∂J ·
∑
k,k′

∫
dJ′ k 1

|Dk,k′(J,J′,k · Ω)|2 δ(k · Ω− k′ · Ω′)

×
(
k · ∂

∂J − k′ · ∂
∂J′

)
P(J, t)f (J′).

(22)
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Friction by polarization
The Lenard-Balescu equation may be rewritten in the form of a “modified”
Fokker-Planck equation

∂P
∂t = ∂

∂Ji

(
Dij

∂P
∂Jj
− PFpol

i

)
, (23)

where the diffusion coefficient is “sandwiched” between the ∂i and ∂j
derivatives.

Diffusion tensor :

Dij = π(2π)dm
∑
k,k′

∫
dJ′ kikj

1
|Dk,k′(J,J′,k′ · Ω′)|2 δ(k · Ω− k′ · Ω′)f (J′),

Friction by polarization :

Fpol = π(2π)dm
∑
k,k′

∫
dJ′ k 1

|Dk,k′(J,J′,k · Ω)|2 δ(k · Ω− k′ · Ω′)
(
k′ · ∂f

′

∂J′

)
.

Linear response theory.
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True friction
General form of the Fokker-Planck equation :

∂P
∂t = ∂2

∂Ji∂Jj
(DijP)− ∂

∂Ji

(
PF fric

i
)
,

Dij = 1
2

〈
∆Ji∆Jj

∆t

〉
, Ffric =

〈∆J
∆t
〉
.

(24)

The total friction is
F fric

i = Fpol
i + ∂Dij

∂Jj
, (25)

True friction :

Ffric = π(2π)dm
∑
k,k′

∫
dJ′ f (J′)

(
k · ∂

∂J − k′ · ∂
∂J′

)
× 1
|Dk,k′(J,J′,k · Ω)|2 δ(k · Ω− k′ · Ω′). (26)

For homogeneous systems, we recover the results of Hubbard (1961)
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The thermal bath approximation
• Thermal bath (Boltzmann distribution) :

f (J) = Ae−βmH(J), ∂H/∂J = Ω(J). (27)

• Einstein relation :

Fpol
i = −βmDij(J)Ωj(J). (28)

The Einstein relation is satisfied by Fpol, not by Ffric ( !)
• Fokker-Planck equation :

∂P
∂t = ∂

∂Ji

[
Dij(J)

(
∂P
∂Jj

+ βmPΩj(J)
)]

. (29)

Dij is anisotropic and depends on J.
Remark : For homogeneous systems with collective effects neglected, we
recover the seminal results of Chandrasekhar (1943) and Rosenbluth et al.
(1957) with Ffric = 2Fpol = m+mf

m Fpol.
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References

General formalism :
J. Heyvaerts, J.B. Fouvry, P.H. Chavanis, C. Pichon Dressed diffusion and
friction coefficients in inhomogeneous multicomponent self-gravitating systems,
Month. Not. Royal Astron. Soc. 469, 4193 (2017)
and references therein.

Astrophysical applications :
See the papers of Fouvry et al. (2015-2017) and Sridhar & Touma (2016-2017).
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Applications

Solve the gravitational Lenard-Balescu equation with angle-action variables in
simplified geometries : stellar disks, globular clusters...

Joined work with Jean-Baptiste Fouvry and Christophe Pichon.
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Out of equilibrium phase transition induced by finite N
effects
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Secular formation of a ridge in action space

Left : result of direct N -body simulations (Sellwood 2012).
Right : prediction of the Lenard-Balescu equation (Fouvry, Pichon, Magorrian,
and Chavanis 2015).
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