intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 0000 000 000 0000 000

nonequilibrium states with temperature inversion in long-range interacting systems

Lapo Casetti

Dipartimento di Fisica e Astronomia, Università di Firenze, Italy INFN, sezione di Firenze, Italy INAF-Osservatorio di Arcetri, Italy

collisionless Boltzmann (Vlasov) equation and modeling of self-gravitating systems and plasmas

CIRM Marseille, October 31, 2017

joint work with Pierfrancesco Di Cintio, Shamik Gupta, and Tarcísio N. Teles

LC & Gupta European Physical Journal B 87, 91 (2014) Teles, Gupta, Di Cintio & LC Physical Review E 92, 020101(R) (2015) Teles, Gupta, Di Cintio & LC Physical Review E 93, 066102 (2016) Gupta & LC New Journal of Physics 18, 103051 (2016) Di Cintio, Gupta & LC arXiv:1706.01955, MNRAS (submitted, 2017)

introduction & motivation

• temperature inversion

- nonequilibrium states with anticorrelation between density & temperature the sparser the hotter, the denser the colder
- observed at astrophysical scales

solar corona, filaments in molecular clouds, (some) cD galaxies, hot gas in galaxy clusters...

• "universal" phenomenon?

- from a simple idea... velocity filtration
- ...to a toy model...

the Hamiltonian Mean Field (HMF) model

• ...and beyond toy models...

from astrophysical to atomic scales:

filaments in molecular clouds (2d self-gravity) and atoms in a cavity (mean-field dynamics)

• ...to a physical picture

minimal ingredients: long-range interactions & inhomogeneous states

basic physical mechanism: interplay between spatial inhomogeneity & wave-particle interaction

(日) (日) (日) (日) (日) (日) (日) (日) (日)

temperature inversion	velocity filtration	toy model 000	kick & quench 000	astro to atoms 00000	physical picture 00	summary

temperature inversion

temperature \propto locally averaged kinetic energy \propto squared velocity dispersion

temperature inversion	velocity filtration	toy model 000	kick & quench 000	astro to atoms 00000	physical picture	summary

temperature inversion

- → many examples in astrophysical systems
 - the "classic" example: the solar corona temperature rises from 10³ to 10⁶ K while density drops by eight orders of magnitude
 - filaments in molecular clouds clear measurements for dust, only indirect evidence for gas yet [Palmeirim *et al.* 2013; Toci & Galli 2015]
 - dense cores in molecular clouds
 velocity dispersion measurements [Goodman et al. 1998; Padoan et al. 2001; Pineda et al. 2010]
 - cool cores in galaxy clusters gas
 [Wise et al. 2004]
 - plasma torus around Jupiter's moon lo [Meyer-Vernet et al. 1993, 1995; Saur et al. 2004]
 - some cD galaxies

velocity dispersion profile of NGC 3311 in Hydra [Loubser et al. 2008]

 \rightarrow very different systems and energy/length scales...treated as unrelated phenomena

(日) (日) (日) (日) (日) (日) (日) (日)

 \rightarrow some basic physics in common?

	temperature inversion	velocity filtration	toy model 000	kick & quench 000	astro to atoms 00000	physical picture	summary
velocity filtration							

1990s: J. D. Scudder to explain coronal heating [J. D. Scudder, ApJ 1992 & 1994]

...without great success in the solar physics community...

1990s: J. D. Scudder to explain coronal heating [J. D. Scudder, ApJ 1992 & 1994]

...without great success in the solar physics community...

Scudder model

- noninteracting particles in an external field, e.g. gravity one dimension: x height above ground
- stationary boundary condition at x = 0

collisionless Boltzmann equation for f(x, p, t)

$$\frac{\partial \mathbf{f}}{\partial t} + p \frac{\partial \mathbf{f}}{\partial x} - \frac{d\psi}{dx} \frac{\partial \mathbf{f}}{\partial p} = 0$$

... just single-particle energy conservation in this case...

velocity filtration

only particles with kinetic energy $k(0) \ge \psi(x)$ reach x where $k(x) = k(0) - \psi(x)$

・ロト ・聞 ・ ・ 画 ト ・ 画 ・ うらの

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary • 000 000 000 000 00

velocity filtration thermal boundary condition

thermal boundary condition (Maxwellian) from now on $k_B = 1$

$$f_0^{M}(p) = \frac{n_0}{\left(2\pi T_0\right)^{1/2}} \exp\left(-\frac{p^2}{2T_0}\right) \implies f(x,p) = \exp\left[-\frac{\psi(x)}{T_0}\right] f_0^{M}(p) \implies T(x) \equiv T_0$$

only with thermal boundary condition f_0^M

▲□▶ ▲圖▶ ▲厘▶

3.0

plot $\ln f$ as a function of (signed) kinetic energy k

velocity filtration how does it work?

rescale f with n

velocity filtration suprathermal boundary condition

suprathermal f_0 , i.e., with tails fatter than a Maxwellian

$$f_0(p) = \frac{\sqrt{2}}{\pi \left(1 + p^4\right)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 00 ● 0 000 000 0000 00

velocity filtration suprathermal boundary condition

temperature inversion

▲日▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ○○○

intro temperature inversion velocity filtration ooo toy model kick & quench astro to atoms physical picture summary ooo

velocity filtration summary

pros

- simple and general mechanism for temperature inversion
- needs no active energy injection in sparser regions of the system
- makes no use of specific ingredients (magnetic fields, turbulence,...)

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 000 000 000 0000 00000 00

velocity filtration summary

pros

- simple and general mechanism for temperature inversion
- needs no active energy injection in sparser regions of the system
- makes no use of specific ingredients (magnetic fields, turbulence,...)

cons

- what about interactions?
- needs a non-thermal boundary condition for all times a very strong assumption, seems to rule out isolated systems
- who keeps the system in a non-thermal state at the boundary? still an ad hoc "active" ingredient

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

	temperature inversion	velocity filtration	toy model ●○○	kick & quench 000	astro to atoms 00000	physical picture 00	summary
a t	oy model						

N unit mass particles, generic long-range interaction V

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{1}{N} \sum_{i=1}^{N} \sum_{j < i}^{N} \boldsymbol{V} \left(\left| \mathbf{r}_i - \mathbf{r}_j \right| \right)$$

restrict to d = 1 and expand V in a Fourier series to the lowest order

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{J}{N} \sum_{i=1}^{N} \sum_{j < i}^{N} \left[1 - \cos\left(\vartheta_i - \vartheta_j\right) \right]$$

Hamiltonian Mean Field (HMF) model

particles on a ring with all-to-all interactions

XY spins on a complete graph (mean-field interactions)

J > 0 attractive/ferromagnetic interactions; J < 0 repulsive/antiferro

J > 0 equilibrium phase transition breaking the O(2) symmetry at small energy (temperature)

broken symmetry phase: clustered/magnetized

[M. Antoni & S. Ruffo PRE 1995]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

	temperature inversion	velocity filtration	toy model ○●○	kick & quench 000	astro to atoms 00000	physical picture 00	summary
ΗN	1F dynamics						

$$t < \tau_{coll} \Longrightarrow$$
 Vlasov equation for $f(\vartheta, p, t)$

$$\frac{\partial f}{\partial t} + p \frac{\partial f}{\partial \vartheta} - \frac{\partial \left(\langle u \rangle + \psi\right)}{\partial \vartheta} \frac{\partial f}{\partial p} = 0$$

self-consistent interaction

$$\langle u \rangle(\vartheta,t) = \int d\vartheta' \int dp' \, u(\vartheta - \vartheta') f(\vartheta',p',t)$$

+ (possibly) external field ψ

・ロト ・四ト ・ヨト ・ヨト

æ

for the HMF model

$$\begin{aligned} u(\vartheta - \vartheta') &= J \left[1 - \cos(\vartheta - \vartheta') \right] \\ \psi(\vartheta) &= -h \cos \vartheta \end{aligned}$$

 $\begin{array}{ll} \mbox{initial conditions} \longrightarrow \begin{tabular}{ll} \mbox{'violent relaxation''} & \longrightarrow \mbox{QSS} \mbox{ (stable stationary Vlasov solution)} & \longrightarrow \mbox{thermal equilibrium} \\ t = 0 & t = \mathcal{O}(1) & t < \tau_{coll} & t > \tau_{coll} \\ \end{array}$

intro temperature inversion velocity filtration toy model oo high with the second seco

HMF velocity filtration and temperature inversion

- if *f* is stationary (QSS)
- if the net effect of $\langle u \rangle + \psi$ is attractive (clustered QSS)

Vlasov equation for HMF \approx collisionless Boltzmann equation of the Scudder model

(日) (日) (日) (日) (日) (日) (日) (日) (日)

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 0000 000 000 0000 00000 00

HMF velocity filtration and temperature inversion

- if f is stationary (QSS)
- if the net effect of $\langle u \rangle + \psi$ is attractive (clustered QSS)

Vlasov equation for HMF \approx collisionless Boltzmann equation of the Scudder model

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• velocity filtration may induce temperature inversion also in the HMF... ...if the velocity distribution is suprathermal! intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 0000 000 000 0000 00000 00

HMF velocity filtration and temperature inversion

- if f is stationary (QSS)
- if the net effect of $\langle u \rangle + \psi$ is attractive (clustered QSS)

Vlasov equation for HMF \approx collisionless Boltzmann equation of the Scudder model

 velocity filtration may induce temperature inversion also in the HMF... ...if the velocity distribution is suprathermal!

 \rightarrow suprathermal velocity distribution as initial condition of the dynamics

[LC & Gupta EPJB 2014]

...still not very appealing as a general mechanism...it seems you need to prepare such a very particular state

- prepare a HMF model in a clustered (magnetized) thermal equilibrium at t = 0

*ロ * * ● * * ● * * ● * ● * ● * ●

- evolve until $t = t_0$ then switch on an external field for a short time τ
- look what happens next...

kicking a long-range system away from equilibrium

- prepare a HMF model in a clustered (magnetized) thermal equilibrium at t = 0
- evolve until $t = t_0$ then switch on an external field for a short time τ
- look what happens next...

[T. N. Teles, S. Gupta, P. Di Cintio & LC PRE(R) 2015]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- prepare a HMF model in a clustered (magnetized) thermal equilibrium at t = 0
- evolve until $t = t_0$ then switch on an external field for a short time τ
- look what happens next...

[T. N. Teles, S. Gupta, P. Di Cintio & LC PRE(R) 2015]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary 0000 000 000 000 0000 00

quenching a long-range system from equilibrium to nonequilibrium

- prepare a HMF model in a clustered (magnetized) thermal equilibrium at t = 0 with external field h

- evolve until $t = t_0$ then quench the external field to another value h'
- look what happens next...

quenching a long-range system from equilibrium to nonequilibrium

- prepare a HMF model in a clustered (magnetized) thermal equilibrium at t = 0 with external field h
- evolve until $t = t_0$ then quench the external field to another value h'
- look what happens next...

the same also by quenching J

[S. Gupta & LC NJP 2016]

э

イロト イポト イヨト イヨト

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary

beyond toy models: from astrophysical scales...

filaments in molecular clouds

[esa/Herschel]

model: cylindrical symmetry \implies two-dimensional self-gravitating system (2DSGS)

$$\mathcal{H} = \sum_{i=1}^{N} \frac{|\mathbf{p}_i|^2}{2m} + Gm^2 \sum_{i=1}^{N} \sum_{j < i}^{N} \ln |\mathbf{r}_i - \mathbf{r}_j|$$

[Katz & Lynden-Bell 1978; Marcos PRE 2013; Toci & Galli MNRAS 2014]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary

beyond toy models: from astrophysical scales...

- prepare a 2DSGS model in a thermal equilibrium state at t = 0
- evolve until $t = t_0$ then apply a radial perturbation
- look what happens next...

- prepare a 2DSGS model in a thermal equilibrium state at t = 0
- evolve until $t = t_0$ then apply a radial perturbation
- look what happens next...

[T. N. Teles, S. Gupta, P. Di Cintio & LC PRE(R) 2015]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

beyond toy models: from astrophysical scales...

cold collapse

initial condition: Gaussian overdensity with kinetic energy < virialized

- colder collapses consistent with observed density profiles

[Di Cintio, Gupta & LC arXiv 2017 (MNRAS subm)]

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

cold atoms trapped in a 1-d single-mode optical cavity

model: semiclassical + dissipationless limit \implies mean-field Hamiltonian dynamics

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{J}{N} \left[\sum_{j=1}^{N} \cos(kx_j) \right]^2 \text{ with } J \propto \text{laser intensity}$$

[Schütz & Morigi PRL 2014]

intro temperature inversion velocity filtration toy model ooo kick & quench astro to atoms ooo by bysical picture summary oo beyond toy models: ...to atomic scales

- take k = 1 and prepare the system in an inhomogeneous thermal equilibrium state at t = 0

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

- evolve until $t = t_0$ then quench J by suddenly changing the laser intensity
- look what happens next...

- take k = 1 and prepare the system in an inhomogeneous thermal equilibrium state at t = 0
- evolve until $t = t_0$ then quench J by suddenly changing the laser intensity
- look what happens next...

[S. Gupta & LC NJP 2016]

 generic feature of long-range-interacting systems both mean-field & slowly decaying forces, attractive/repulsive with confining external field, 1-d & 2-d (hopefully 3-d too)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- robust w.r.t. changes in the parameters & in the protocol temperature inversion is always there!
- what is going on?
 a general mechanism at work...

temperature inversion	velocity filtration	toy model 000	kick & quench 000	astro to atoms 00000	physical picture	summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

wave-particle interaction

- the perturbation induces a wave in the system after the kick the system gains energy and *m* oscillates a cold collapse starts with virial oscillations
- the wave is damped and the system settles in a QSS how can it be? no collisions!
- wave-particle interactions! (Landau damping) particles interact with the oscillating mean field
- wave-particle interactions ≈ selective in velocity interaction ≈ locally changes f(v) after the kick let's check it...

wave-particle interaction

cumulative momentum distribution f(p) as a function of time (* t = 0)

[T. N. Teles, S. Gupta, P. Di Cintio & LC PRE(R) 2015]

イロト イポト イヨト イヨト

ж

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary ooo oo ooo ooo oo

wave-particle interaction and velocity filtration

velocity filtration is back!

- f(v) has suprathermal tails in the QSS
- velocity filtration produces temperature inversion

[T. N. Teles, S. Gupta, P. Di Cintio & LC PRE(R) 2015]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture summary

summary & outlook

summary

- temperature inversion from astrophysical to atomic scales astrophysics: examples of a general phenomenon rather than a collection of unrelated phenomena may occur in any system with long-range interactions, also at atomic scales: "universality"
- minimal ingredients of temperature inversion
 long-range interactions, clustered steady nonequilibrium state, fat-tailed velocity distributions
- basic and general physical mechanism temperature inversion spontaneously appears after the damping of collective oscillations interplay between wave-particle interaction and spatial inhomogeneity leading to velocity filtration

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 long-living quasi-stationary states obtained disturbing equilibrium typically show nonuniform temperature profiles and temperature inversion intro temperature inversion velocity filtration toy model kick & quench astro to atoms physical picture **summary**

summary & outlook

what next?

3-d self-gravitating systems

 cD galaxies, Larson's power laws for molecular clouds... (work in progress)

 trapped ions and particle beams
 close to (antiferrro) HMF and 2-d Coulomb systems, respectively (work in progress)
 experiments (hopefully)
 atoms in a cavity, trapped ions, particle beams...
 physical picture => theory?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• physical picture => theory?