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Motivation

Description of collisional relaxation to equilibrium needs inclusion of
collision term into Vlasov equation
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However: Collision term C[f] diverges for
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Two-body collision geometry
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Center of mass frame

b: impact parameter
x: deflection angle



Collision terms and their divergences for systems with 1/r
interaction potentials.
1. Boltzmann collision term (dilute systems):
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C;[f] diverges for deflection angle x = 0 (b=>»): weak interactions
but converges for x =21t (b=>»0): strong interactions

Origin of the divergence: The effective screening of the potential
due to the long-range interactions of many other particles with
the two colliding particles is not taken into account!



Collision terms and their divergences for systems with
1/r interaction potentials.

2. Balescu-Lenard collision term (only weak interactions):
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| v )‘ . Effective short-range potential with Debye-like shielding
E ,V1
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Integral over k in C;, diverges for k =» oo (small distances): No strong interactions!!
But converges for k = 0 (long distances): includes weak interactions during collision

Divergence opposite to the Boltzmann collision term!



Convergent kinetic equation

Starting from first principles: BBKY hierarchy.
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Vlasov equation: 9, f(F,V,;t)=L f(F.V,;t)+ [d’r,d’v L, f(F.,V;t) f(7,,V,3t)

Collision term stems from:  C=[drd'vL g (F.v ;7,7 ;t)



Convergent kinetic equation

Split Cinto two terms: C=C, + C,
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S,: Small spherical volume of radius L centered at particle 1.

L : Landau length such that ¥ _
L kin

The second BBGKY equation must be solved for g (r,v
different approximations in the case of C, or C, !



Convergent kinetic equation

Assumption that system is globally weakly coupled:

I = (Average potential energy/average kinetic energy) << 1

a. For C,: -Insmall sphere S,, interactions are dominant over free motion
-probability of third particle being in sphere S, negligible (dilute
gas).

wmmmm)>  keep only second term in 2d BBGKY equation.

b. For C, : -Interactions are weak between particle 2 located in R%\S, and
particle1in §,.

-Interactions between particles 1, 2 and a third particle 3 play an
important role.

-But 3-particle correlation g, can be neglected (<< 1).

all terms kept in 2d BBGKY equation except term with g,
: leads to Balescu-Lenard collision term Cg, with natural cut-off at L



Convergent kinetic equation

3D systems with potential V(r) =vy/r :
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Convergent kinetic equation

Remarks about C,:

C, is nonlinear in f(r,v,t). It is non-Markovian due to a fractional
iterated integral in time.

C, is the first term of a convergent series expansion whose terms
are corrections in even integer powers of the Laplacian A,

The small parameter of this expansion corresponds to a short-time
expansion.

So, for larger times, the abnormal non-markovian diffusion in
velocity-space due to the new term is progressively transformed
into a normal diffusion.



Kinetic equation for homogeneous system

For homogeneous systems: Vlasov and free motion terms vanish.

Time-scale of new term compared to relaxation time:
t Jt =T'«1

:> only the new term is acting for short times:
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E;/,(z): Mittag-Leffler function of index 3/2.
D,*/2: Riemann-Liouville fractional time derivative of order 3/2.



Kinetic equation for homogeneous systems

* For most initial velocity distributions, the
velocity distribution obtained at time t has a
long algebraic tail in 1/v3/2.

e This algebraic tail is truncated at very large v
due to the growth with time of the diffusive
corrections to the new term.



Simulations

Previous result should hold for short times after a homogenous initial condition.

Molecular dynamics with 4th order symplectic integrator for a 3D system of 131,072
particles with attractive regularized potential:
—M JNr*+€°

Initial condition: homogeneous in a sphere. Algebraic tail: 1/v®
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Other results and conclusion

-Generalisation to potentials in 1/r5.

-Derivation from quantum BBGKY hierarchy with Wigner reduced distributions: leads
to same new term in the classical approximation plus quantum corrections.

-New term introduces irreversibility (abnormal diffusion in velocity space).
-New term is 1/N with respect to Vlasov term.

-For 1-D systems such as the Ring model: collision term vanishes at order 1/N but
not the new term: See next talk by Tarcisio M. Rocha Filho.
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