About the convergence of the kinetic equation for gravitational and Coulomb systems.

Léon Brenig

Physique des Systèmes Dynamiques. Faculté des Sciences. Université Libre de Bruxelles. 1050 Brussels. Belgium. *Ibrenig@ulb.ac.be*

Collisionless Boltzmann (Vlasov) Equation and Modeling of Self-Gravitating Systems and Plasmas. CIRM 30/10 - 3/11/2017.

Collaboration

This is a joint work with

Tarcisio M. da Rocha Filho, Brasilia University (UnB)

and

Yassin Chaffi, Brussels University (ULB).

Motivation

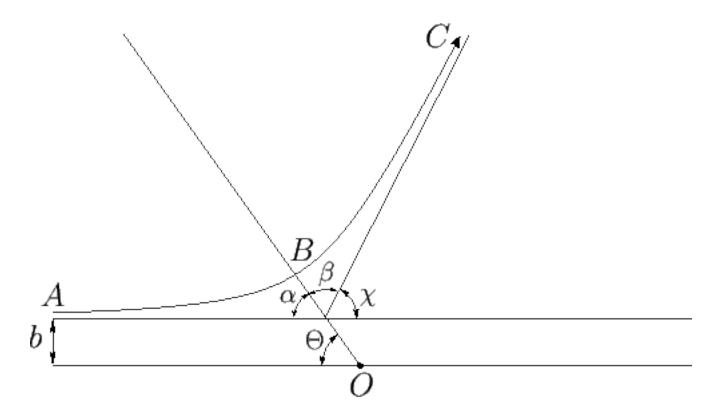
Description of collisional relaxation to equilibrium needs inclusion of collision term into Vlasov equation

$$\frac{\partial}{\partial t}f(\vec{r},\vec{v},t) + \vec{v}\cdot\frac{\partial}{\partial \vec{r}}f(\vec{r},\vec{v},t) = -\frac{1}{m}\int d^3r'\int d^3v'F(\vec{r}-\vec{r}')\cdot\frac{\partial}{\partial \vec{v}}f(\vec{r},\vec{v},t)f(\vec{r}',\vec{v}',t) + C[f]$$

However: Collision term *C*[*f*] **diverges** for

$$\vec{F}(\vec{r}-\vec{r}') = \gamma \frac{\vec{r}-\vec{r}'}{\left|\vec{r}-\vec{r}'\right|^3}$$

Two-body collision geometry



Center of mass frame

- **b**: impact parameter
- **<u>x</u>**: deflection angle

Collision terms and their divergences for systems with 1/r interaction potentials.

1. Boltzmann collision term (dilute systems):

$$C_{B}[f] = \int d^{3}v_{2} \int d\Omega(\chi, \varphi) \frac{d\sigma}{d\Omega} |\vec{v}_{1} - \vec{v}_{2}| [f(\vec{r}_{1}, \vec{v}_{1}')f(\vec{r}_{1}, \vec{v}_{2}') - f(\vec{r}_{1}, \vec{v}_{1})f(\vec{r}_{1}, \vec{v}_{2})]$$
with
$$\frac{d\sigma}{d\Omega} = \left(\frac{\gamma}{m|\vec{v}_{1} - \vec{v}_{2}|^{2}}\right)^{2} \frac{1}{\sin^{4}(\chi/2)}.$$

 $C_B[f]$ diverges for deflection angle $\chi \rightarrow 0$ $(b \rightarrow \infty)$: weak interactions but converges for $\chi \rightarrow \pi$ $(b \rightarrow 0)$: strong interactions

Origin of the divergence: The effective screening of the potential due to the long-range interactions of many other particles with the two colliding particles is not taken into account!

Collision terms and their divergences for systems with 1/r interaction potentials.

2. Balescu-Lenard collision term (only weak interactions):

$$C_{BL} = 8\pi^{4} \int d^{3}v_{2} \int d^{3}k \vec{k} \cdot \frac{\partial}{\partial v_{1}} \delta[\vec{k} \cdot (\vec{v}_{1} - \vec{v}_{2})] \frac{\tilde{V}(k)^{2}}{\left|\varepsilon(\vec{k}, \vec{v}_{1})\right|^{2}} \vec{k} \cdot \frac{\partial}{\partial \vec{v}_{1}} f(\vec{r}_{1}, \vec{v}_{1}) f(\vec{r}_{1}, \vec{v}_{2})$$

$$\tilde{V}(k) = Fourier[\gamma/r] = \frac{\gamma}{2\pi^{2}k^{2}}$$

$$\varepsilon(\vec{k}, \vec{v}_{1}) = dielectric function = 1 + 8\pi^{4}\tilde{V}(k) \int d^{3}v \delta_{-}[\vec{k} \cdot (\vec{v}_{1} - \vec{v})] i\vec{k} \cdot \frac{\partial}{\partial \vec{v}} f(\vec{r}_{1}, \vec{v})$$

$$\delta_{-}(x) = \delta(x) - iP(\frac{1}{x})$$

 $\tilde{V}_{eff}(\vec{k},\vec{v}_1) = \frac{\tilde{V}(k)}{\left|\varepsilon(\vec{k},\vec{v}_1)\right|} \quad : \text{ Effective short-range potential with Debye-like shielding}$

Integral over k in C_{BL} diverges for $k \rightarrow \infty$ (small distances): No strong interactions!! But converges for $k \rightarrow 0$ (long distances): includes weak interactions during collision

Divergence opposite to the Boltzmann collision term!

Starting from first principles: BBKY hierarchy.

$$\begin{aligned} \partial_{t}f(\vec{r}_{1},\vec{v}_{1};t) &= L_{1}^{0}f(\mathbf{1};t) + \int d^{3}r_{2} d^{3}v_{2}L_{12}'f(\vec{r}_{1},\vec{v}_{1};t)f(\vec{r}_{2},\vec{v}_{2};t) + \int d^{3}r_{2} d^{3}v_{2}L_{12}'g_{2}(\vec{r}_{1},\vec{v}_{1};\vec{r}_{2},\vec{v}_{2};t) \\ &\frac{\partial}{\partial t}g_{2}(\mathbf{1},2;t) = \left[L_{1}^{0} + L_{2}^{1}\right]g_{2}(\mathbf{1},2;t) + L_{2}'\left[g_{2}(\mathbf{1},2;t) + f(\mathbf{1};t)f(2;t)\right] + \int d^{3}\left\{L_{2}'f(\mathbf{1};t)g_{2}(2,3;t) + L_{2}'f(2;t)g_{2}(\mathbf{1},3;t) + (L_{2}' + L_{2}')[f(3;t)g_{2}(\mathbf{1},2;t) + g_{3}(\mathbf{1},2;3,t)]\right\} \\ &\frac{\partial}{\partial t}g_{3}(\mathbf{1},2;3;t) = \dots \\ &i = \mathbf{1}, \mathbf{2}, \mathbf{3} = (\vec{r}_{i},\vec{v}_{i}); \ d\mathbf{i} = d^{3}r_{i}d^{3}v_{i} \\ &L_{1}^{0} = -\vec{v}_{i}\cdot\frac{\partial}{\partial\vec{r}_{i}}; \ i = \mathbf{1}, \mathbf{2} \qquad : \ \mathbf{free \ motion \ operator} \\ &L_{2}'' = -\vec{u}_{i}\cdot\frac{\partial}{\partial\vec{v}_{1}} - \frac{\partial}{\partial\vec{v}_{2}} \big) \qquad : \ \mathbf{interaction \ operator} \\ &V \ \mathbf{lasov \ equation:} \qquad \partial_{t}f(\vec{r}_{1},\vec{v}_{1};t) = L_{1}^{0}f(\vec{r}_{1},\vec{v}_{1};t) + \int d^{3}r_{2}d^{3}v_{2}L_{12}'f(\vec{r}_{1},\vec{v}_{1};t)f(\vec{r}_{2},\vec{v}_{2};t) \end{aligned}$$

Collision term stems from: $C = \int d^3 r_2 d^3 v_2 L'_{12} g_2(\vec{r}_1, \vec{v}_1; \vec{r}_2, \vec{v}_2; t)$

Split *C* into two terms: $C = C_1 + C_2$

$$C_{1} = \int_{S_{1}} d^{3}r_{2} \int d^{3}v_{2}L_{12}' g_{2}(\vec{r}_{1}, \vec{v}_{1}; \vec{r}_{2}, \vec{v}_{2}; t)$$
$$C_{2} = \int_{\mathbb{R}^{3} \setminus S_{1}} d^{3}r_{2} \int d^{3}v_{2}L_{12}' g_{2}(\vec{r}_{1}, \vec{v}_{1}; \vec{r}_{2}, \vec{v}_{2}; t)$$

 S_1 : Small spherical volume of radius L centered at particle 1.

L : Landau length such that
$$\frac{\gamma}{L} = E_{kin}$$

The second BBGKY equation must be solved for $g_2(\vec{r}_1, \vec{v}_1; \vec{r}_2, \vec{v}_2; t)$ with different approximations in the case of C_1 or C_2 !

Assumption that system is globally weakly coupled:

Γ = (Average potential energy/average kinetic energy) << 1

a. For C₁: -In small sphere S₁, interactions are dominant over free motion
 -probability of third particle being in sphere S₁ negligible (dilute gas).

keep only second term in 2d BBGKY equation.

b. For C₂: -Interactions are weak between particle 2 located in R³\S₁ and particle 1 in S₁.
-Interactions between particles 1, 2 and a third particle 3 play an important role.
-But 3-particle correlation g₃ can be neglected (Γ << 1).

all terms kept in 2d BBGKY equation except term with g_3 : leads to *Balescu-Lenard* collision term C_{BL} with natural cut-off at L

3D systems with potential $V(r) = \gamma/r$:

$$C_{1} = -\frac{1}{5} \left(\frac{2\pi |\gamma|}{m} \right)^{3/2} \int_{0}^{t} \frac{d\tau}{\sqrt{\tau}} n(\vec{r}_{1}; t - \tau) \left(-\Delta_{\vec{v}_{1}} \right)^{3/4} f(\vec{r}_{1}, \vec{v}_{1}; t - \tau)$$

$$\left(-\Delta_{\vec{v}_{1}}\right)^{3/4}e^{i\vec{\zeta}_{1}\cdot\vec{v}_{1}} \equiv \left(\vec{\zeta}\cdot\vec{\zeta}_{1}\right)^{3/4}e^{i\vec{\zeta}_{1}\cdot\vec{v}_{1}} = \zeta_{1}^{3/2}e^{i\vec{\zeta}_{1}\cdot\vec{v}_{1}}$$

$$n(\vec{r}_{1};t) \equiv \int d^{3}v f(\vec{r}_{1},\vec{v};t)$$

Kinetic equation

$$\frac{\partial}{\partial t}f(\vec{r},\vec{v},t) + \vec{v}.\frac{\partial}{\partial \vec{r}}f(\vec{r},\vec{v},t) = Vlasov + C_1 + C_{BL}$$

Remarks about C₁:

 C_1 is nonlinear in f(r,v,t). It is non-Markovian due to a fractional iterated integral in time.

 C_1 is the first term of a convergent series expansion whose terms are corrections in **even integer** powers of the Laplacian Δ_v .

The small parameter of this expansion corresponds to a short-time expansion.

So, for larger times, the abnormal non-markovian diffusion in velocity-space due to the new term is progressively transformed into a normal diffusion.

Kinetic equation for homogeneous system

For homogeneous systems: Vlasov and free motion terms vanish. Time-scale of new term compared to relaxation time:

$$t_{new} / t_{rel} = \Gamma^3 \ll 2$$

only the new term is acting for short times:

$$D_t^{3/2} \varphi(\vec{v};t) = -\frac{n\pi^2}{5} \left(\frac{2|\gamma|}{m}\right)^{3/2} (-\Delta_{\vec{v}})^{3/4} \varphi(\vec{v};t)$$

Solution:

$$\varphi(\vec{v};t) = \int \frac{d^{3}\zeta}{(2\pi)^{3}} e^{i\vec{\zeta}\cdot\vec{v}} \, \tilde{\varphi}(\vec{\zeta};0) \, E_{3/2} \left(-\frac{n\pi^{2}}{5} \left[\frac{2|\gamma|}{m} \right]^{3/2} \, \zeta^{3/2} \, t^{3/2} \right)$$

 $E_{3/2}(z)$: Mittag-Leffler function of index 3/2. $D_t^{3/2}$: Riemann-Liouville fractional time derivative of order 3/2.

Kinetic equation for homogeneous systems

For most initial velocity distributions, the velocity distribution obtained at time t has a long algebraic tail in 1/v^{5/2}.

• This algebraic tail is truncated at very large v due to the growth with time of the diffusive corrections to the new term.

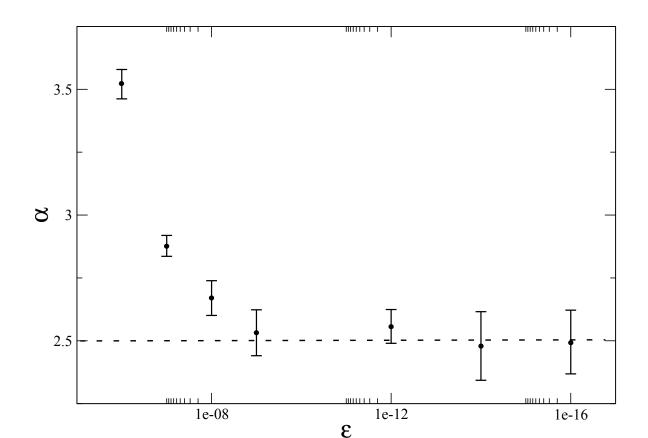
Simulations

Previous result should hold for short times after a homogenous initial condition.

Molecular dynamics with 4th order symplectic integrator for a 3D system of 131,072 particles with attractive regularized potential:

 $-|\gamma|/\sqrt{r^2+\varepsilon^2}$

Initial condition: homogeneous in a sphere. Algebraic tail: $1/v^{\alpha}$



Other results and conclusion

-Generalisation to potentials in 1/r^s.

-Derivation from quantum BBGKY hierarchy with Wigner reduced distributions: leads to same new term in the classical approximation plus quantum corrections.

-New term introduces irreversibility (abnormal diffusion in velocity space).

-New term is 1/N with respect to Vlasov term.

-For 1-D systems such as the Ring model: collision term vanishes at order 1/N but not the new term: See next talk by Tarcisio M. Rocha Filho.

The End

