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Mo1va1on	

	
Descrip1on	of	collisional	relaxa1on	to	equilibrium	needs	inclusion	of		
collision	term	into	Vlasov	equa1on	
	
	
	
	
However:	Collision	term	C[f]	diverges	for		
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Two-body	collision	geometry	

	
	
	
	
	
	
	
Center	of	mass	frame	

b:	impact	parameter	
χ:	deflec1on	angle	
	



Collision	terms	and	their	divergences	for	systems	with	1/r	
interac1on	poten1als.	

1.   Boltzmann	collision	term	(dilute	systems):		
	

	
with	
	
	
	
	
CB[f]	diverges	for	deflec1on	angle	χ	è	0			(bè∞):				weak	interacKons	
but	converges	for	χ	èπ (bè0):					strong	interacKons 	
	
Origin	of	the	divergence:	The	effec,ve	screening	of	the	poten,al	
due	to	the	long-range	interac,ons	of	many	other	par,cles	with	
the	two	colliding	par,cles	is	not	taken	into	account!	
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Collision	terms	and	their	divergences	for	systems	with	
1/r	interac1on	poten1als.	

2.	Balescu-Lenard	collision	term	(only	weak	interacKons):	
	
	
	
	
	
	
	
	
																																									
	
	
	
																																																:	Effec1ve	short-range	poten1al	with	Debye-like	shielding	
	
	
Integral	over	k	in	CBL	diverges	for	k	è∞	(small	distances):	No	strong	interac1ons!!	
But	converges	for	k	è	0	(long	distances):	includes	weak	interac1ons	during	collision	

	

Divergence	opposite	to	the	Boltzmann	collision	term!	
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Convergent	kine1c	equa1on	

Star1ng	from	first	principles:	BBKY	hierarchy.	
	
	
	
	
	
	
	

	 	 	 	:	free	mo1on	operator	
	

	 	 	 	 	:	interac1on	operator	
	
Vlasov	equa1on:		
	
Collision	term	stems	from:		
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Convergent	kine1c	equa1on	
		
Split	C	into	two	terms:	C	=	C1	+	C2	
	
	
	
	
S1:	Small	spherical	volume	of	radius	L	centered	at	par1cle	1.	

L	:	Landau	length	such	that		
	

The	second	BBGKY	equa1on	must	be	solved	for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	with	
different	approxima1ons	in	the	case	of	C1	or	C2	!	
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Convergent	kine1c	equa1on	
Assump1on	that	system	is	globally	weakly	coupled:	
		
Γ	=	(Average	poten1al	energy/average	kine1c	energy)	<<	1	
	
	
a.	For	C1	:				-In	small	sphere	S1,		interac1ons	are	dominant	over	free	mo1on		
																						-probability	of	third	par1cle	being	in	sphere	S1	negligible	(dilute	

	 								gas).		 	 	 			 	 	 					 	 	 		 		 	 										
																							keep	only	second	term	in	2d	BBGKY	equa1on.	
	
b.	 For	 C2	 :	 -Interac1ons	 are	 weak	 between	 par1cle	 2	 located	 in	 R3\S1	 and																		

	 	 	par1cle	1	in	S1.		
	 	 	 	 	 	 	 	 	 	 	 -Interac1ons	between	par1cles	 1,	 2	 and	 a	 third	par1cle	 3	play	 an																			

	 								important	role.	
																							-But	3-par1cle	correla1on	g3	can	be	neglected	(Γ	<<	1)	.																				
								
																							all	terms		kept	in	2d	BBGKY	equa1on	except	term	with	g3		
																						:	leads	to	Balescu-Lenard	collision	term	CBL	with	natural	cut-off	at	L	



Convergent	kine1c	equa1on	
3D	systems	with	poten1al	V(r)	=	γ/r			:	

	

	
	
						
							Kine1c	equa1on	
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Convergent	kine1c	equa1on	

Remarks	about	C1:	
	
C1	is	nonlinear	in	f(r,v,t).	It	is	non-Markovian	due	to	a	fracKonal	
iterated	integral	in	Kme.		
	
C1	is	the	first	term	of	a	convergent	series	expansion	whose	terms	
are	correcKons	in	even	integer	powers	of	the	Laplacian	Δv.	
	
The	small	parameter	of	this	expansion	corresponds	to	a	short-Kme	
expansion.		
	
So,	for	larger	Kmes,	the	abnormal	non-markovian	diffusion	in	
velocity-space	due	to	the	new	term	is	progressively	transformed	
into	a	normal	diffusion.					
	
	



Kine1c	equa1on	for	homogeneous	system	

For	homogeneous	systems:	Vlasov	and	free	mo1on	terms	vanish.		
Time-scale	of	new	term	compared	to	relaxa1on	1me:	
																
																	only	the	new	term	is	ac1ng	for	short	1mes:	
	
	
	
Solu1on:	
	
	
	
E3/2(z):	Mijag-Leffler	func1on	of	index	3/2.		
Dt

3/2:	Riemann-Liouville	frac1onal	1me	deriva1ve	of	order	3/2.	
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Kine1c	equa1on	for	homogeneous	systems	

•  For	most	iniKal	velocity	distribuKons,	the	
velocity	distribuKon	obtained	at	Kme	t	has	a	
long	algebraic	tail	in	1/v5/2.	

•  This	algebraic	tail	is	truncated	at	very	large	v	
due	to	the	growth	with	Kme	of	the	diffusive	
correcKons	to	the	new	term.	



Simula1ons	

Previous	result	should	hold	for	short	1mes	amer	a	homogenous	ini1al	condi1on.		
Molecular	dynamics	with	4th	order	symplec1c	integrator	for	a	3D	system	of	131,072	
par1cles	with	ajrac1ve	regularized	poten1al:																													
	
Ini1al	condi1on:	homogeneous	in	a	sphere.	Algebraic	tail:	1/vα	
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Other	results	and	conclusion	
-Generalisa1on	to	poten1als	in	1/rs	.		
	
-Deriva1on	from	quantum	BBGKY	hierarchy	with	Wigner	reduced	distribu1ons:	leads	
to	same	new	term	in	the	classical	approxima1on	plus	quantum	correc1ons.	
	
-New	term	introduces	irreversibility	(abnormal	diffusion	in	velocity	space).	
	
-New	term	is	1/N	with	respect	to	Vlasov	term.		
	
-For	1-D	systems	such	as	the	Ring	model:	collision	term	vanishes	at	order	1/N	but	
not	the	new	term:	See	next	talk	by	Tarcisio	M.	Rocha	Filho. 	 	 	 !
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                                                                                                  The End																			THANK	YOU!																																			
		


