James Binney (University of Oxford)

Modelling our barred Galaxy with angles & actions

Galaxy surveys

- Massive surveys of our Galaxy now underway (LAMOST, APOGEE, Galah,...,Gaia)
 - Extraction of science from these a major focus of astronomy in next decade
- How is it structured?
- How does it function (as a machine)?
- How did it form?

Outline

- Axisymmetric galaxy models
- Quasiperiodic orbits --> f(J) modelling
- Staeckel Fudge (successes, limitations) -->
- Torus Mapping
- Mapped tori near resonance --> p-theory
- Non-axisymmetry via p-theory
 - OLR
 - CR
- f(J) --> local v-space
- Getting J(x,v)
- Conclusions & outlook

Axisymmetric Galaxy models

- MW a cooperative exercise
- ullet generated by stars of many types and zillions of DM particles
- We have to track the DM, & we can do that only in so far as the MW is in statistical equilibrium
- So our 1st job is construction of axisymmetric mean-field models

Orbits

- Orbits in plausible (strongly flattened) Φ s are quasiperiodic
- Implies that orbits admit 3 constants of motion
- For many reasons it's wise to choose these to be α ction integrals
 - Actions are (nearly) unique
 - In standard axisymmetric case they are $J_r J_z J_\phi$
- Analogy to gyrokinetics?

Distribution functions

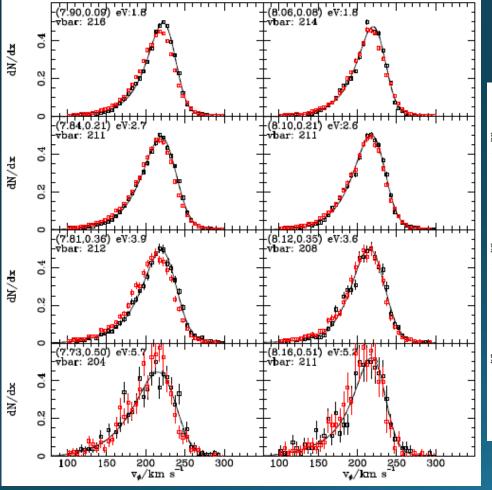
- Each species (G MS stars, WDs, ..., DM particles) has a DF f(J)
- Given J(x,v) and the DFs f(J) we can compute ρ (x) and from Poisson find Φ (x)
- The form of J(x,v) depends on Φ so we have to iterate
- But the iterations converge rapidly (B 2014, Piffl Penoyre & B 2015)

How to get actions J(x,v)

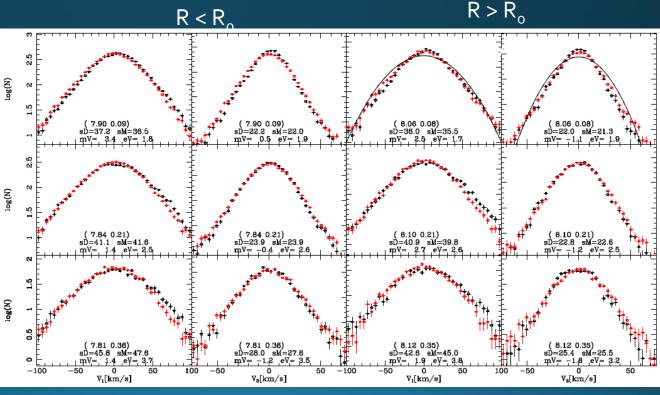
- Classically we get J(x,v) by solving the Hamilton-Jacobi eqn
- We need H-J eqn to separate, which requires either spherical symmetry or Φ is of Staeckel form
- B 2012 introduced the Staeckel Fudge which extends J(x,v) to general axisymmetric Φ
- ullet Sanders & B 2016 extended SF to non-rotating triaxial Φ s
- SF is a non-rigorous uncontrolled approximation but it works
 - Errors in J <~ 5% typically

Predicting kinematics Binney, Burnett + RAVE 2014

- Binney (2012) fitted disc f(J) to GCS data (s <~ 0.1 kpc)
- Binney + (2014) tested its *predictions* for kinematics of RAVE stars in 8 volumes with s <~ 2 kpc

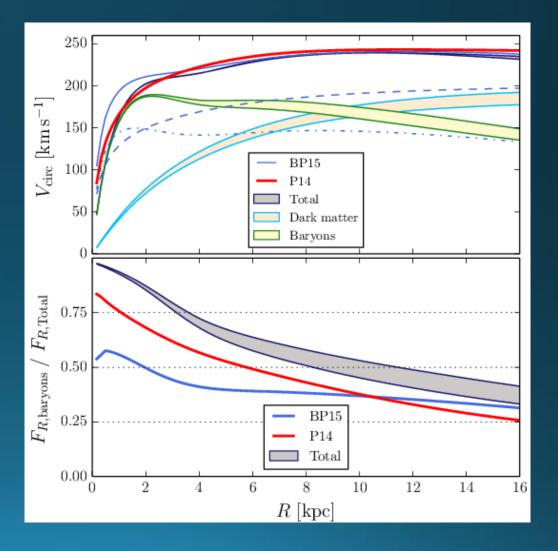


Cool dwarfs



Models with self-consistent Φ

• Show that dark halo of MW has *not* been adiabatically compressed (B & Piffl 2015, Cole & B 2017)



From Fudge to tori

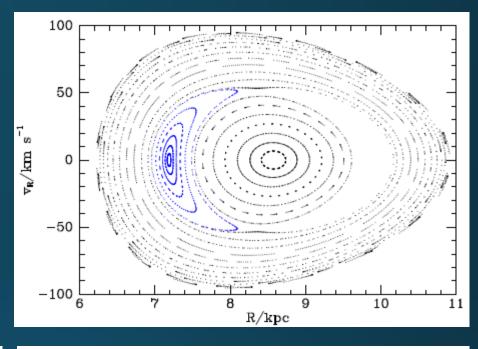
- ullet SF based on separable arPhi
- Assumes existence of global AA coordinates
- ullet Actually even in axisymmetric ${\it \Phi}$ there are islands of "resonantly trapped orbits"
- ullet Also necessary to consider rotating non-axisymmetric Φ s
- Torus Mapping provides a way forward (B & McMillan 2016)

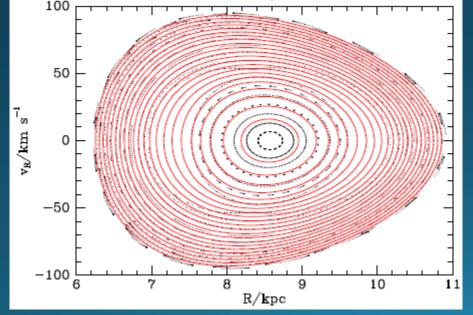
Torus Mapping

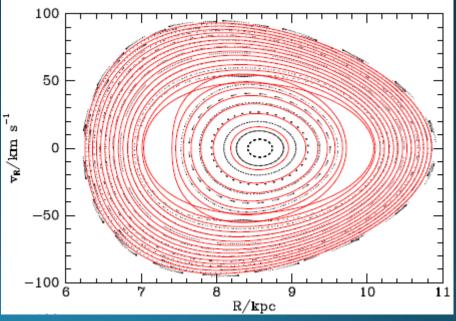
- Numerically construct generating function that maps analytic torus (of harmonic oscillator or isochrones potential) into MW's phase space such that H ~ const on a given torus J
 - Technique started with McGill & B 1990, much developed by Kaasalainen 1994
 - Code released by B & McMillan 2016
 - Extended to resonantly trapped orbits (B 2016, 2017)

Resonance Omega_r = Omega_z

- Force-fitting tori of wrong type
- We flop from one minimum to another

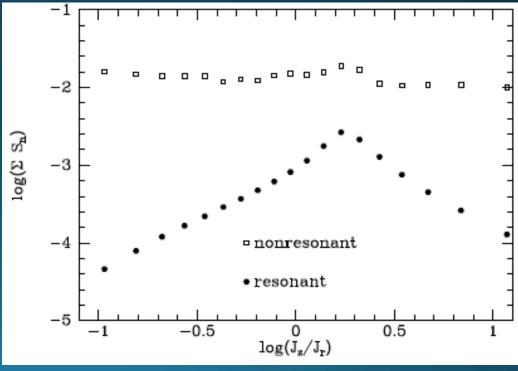


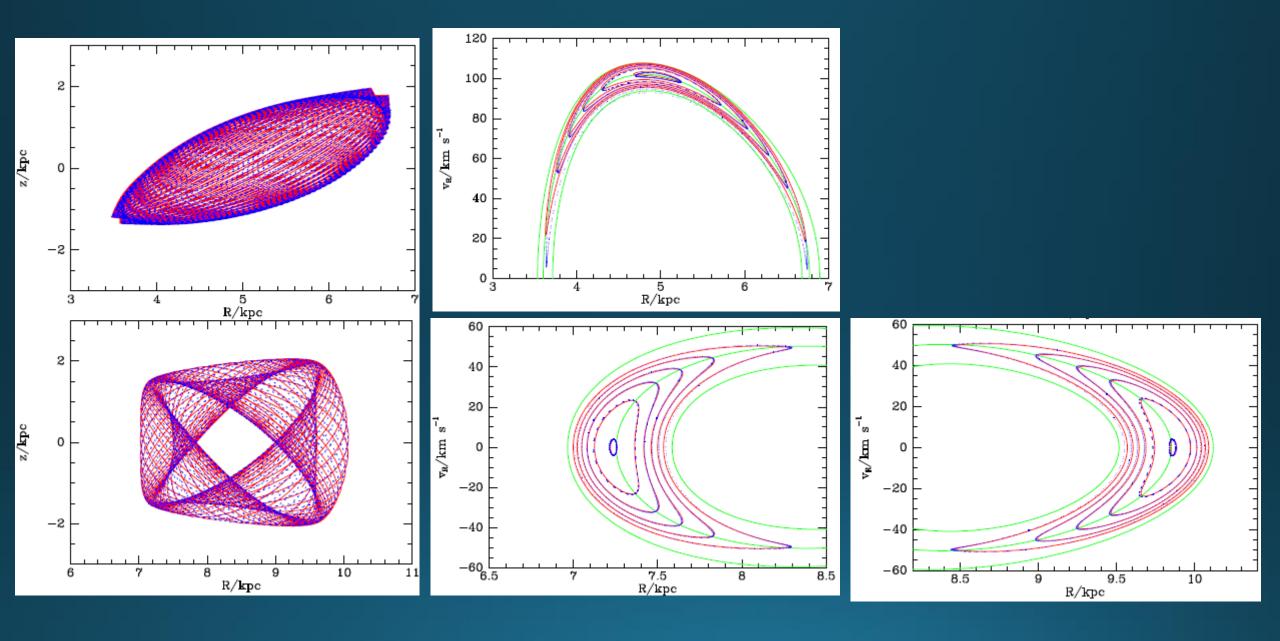




Application of perturbation theory

- Use AA cords obtained by interpolating between good tori on either side of trapping zone
- Fourier decompose complete H on these tori
- Drop non-resonant terms
- Solve enhanced pendulum eqn for 1d motion

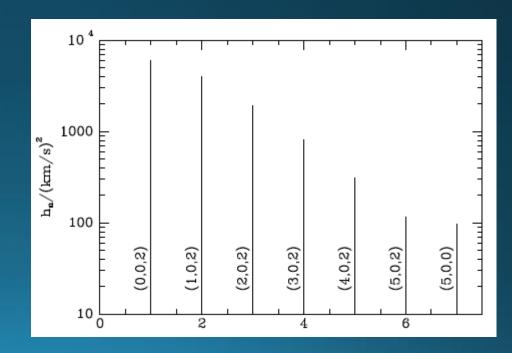




Non-axisymmetric tori from p-theory

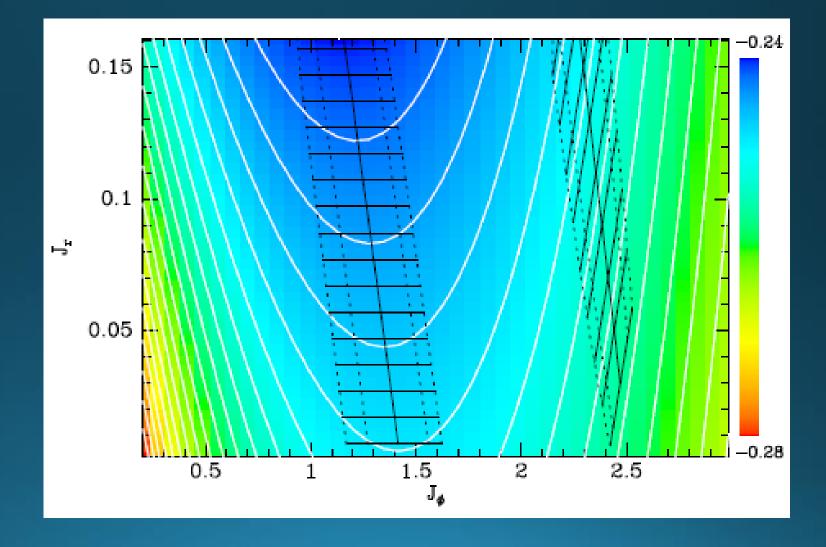
2 0 0 2 x/kpc

- ullet Superpose an analytic but realistic bar on detailed MW Φ
- Split $H(\theta, \mathbf{J}) = \{\overline{H}(\mathbf{J}) \omega_{\mathrm{p}} J_{\phi}\} + H_1(\theta, \mathbf{J})$
- Fourier analyse H₁
- Apply enhanced pendulum eqn to resonant terms
- Add in effects of non-resonant terms



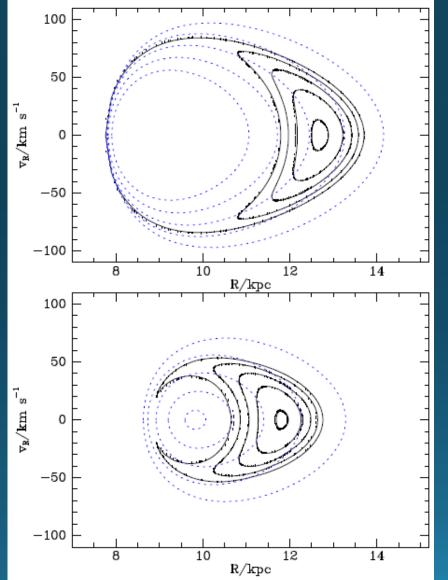
Trapping at CR & OLR takes space!

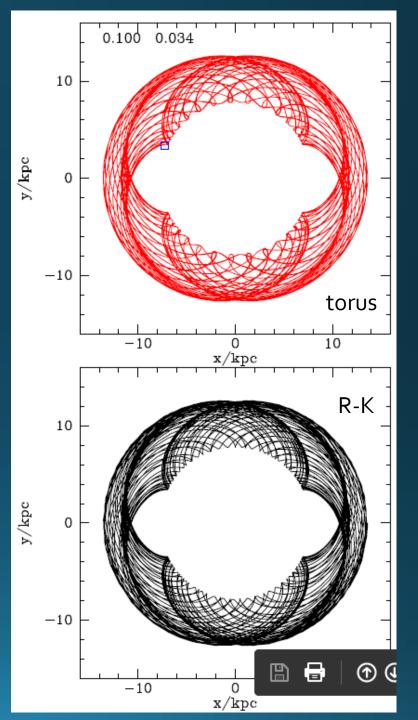
• Slice of J-space



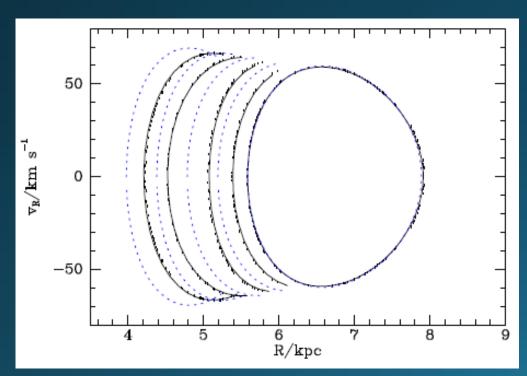
Enhanced pendulum really works

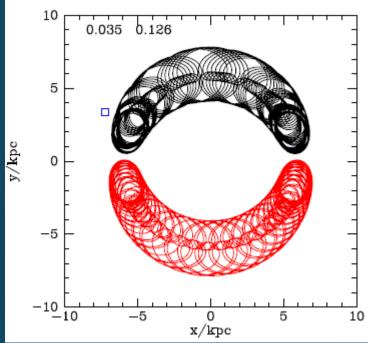
• Orbit at OLR

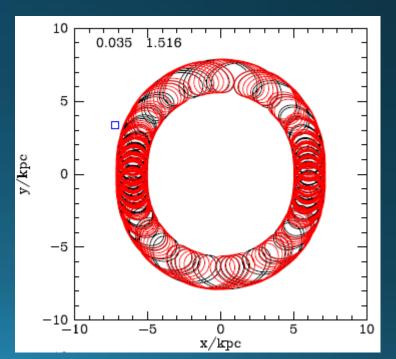




At CR too

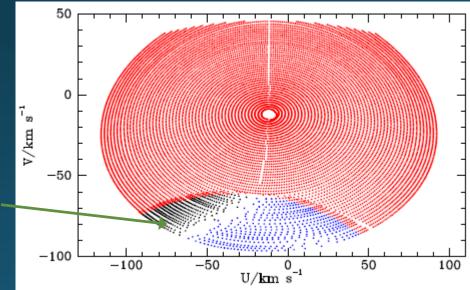


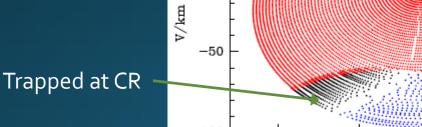


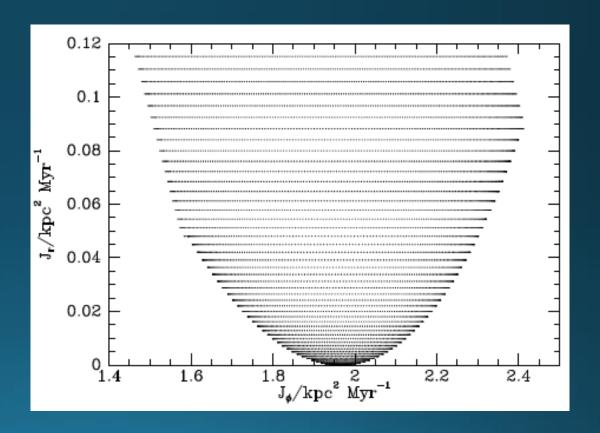


Computing observables

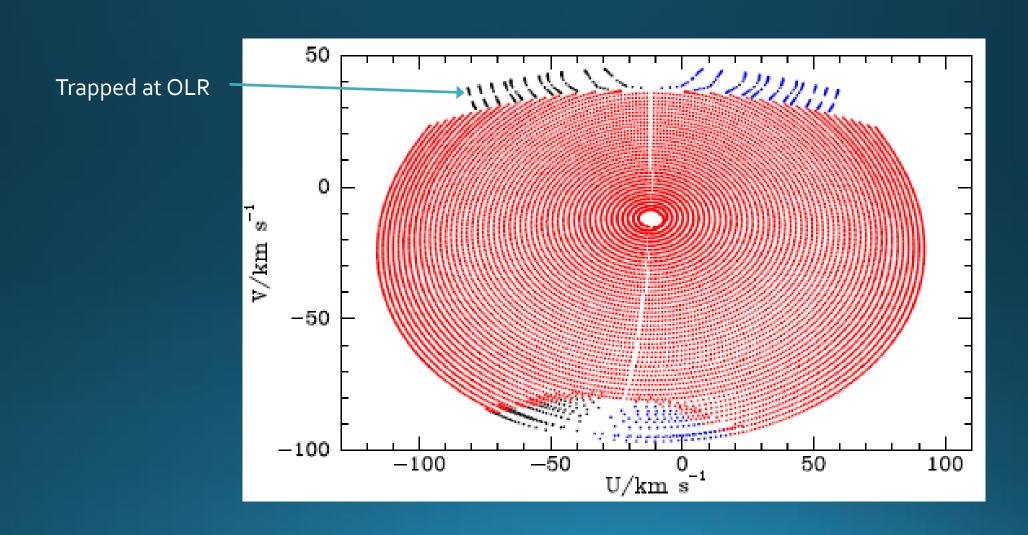
- A feature of a torus is ability to find v given x
- Unfortunately v-space samples J-space very non-uniformly
- With care can sample v-space ~uniformly





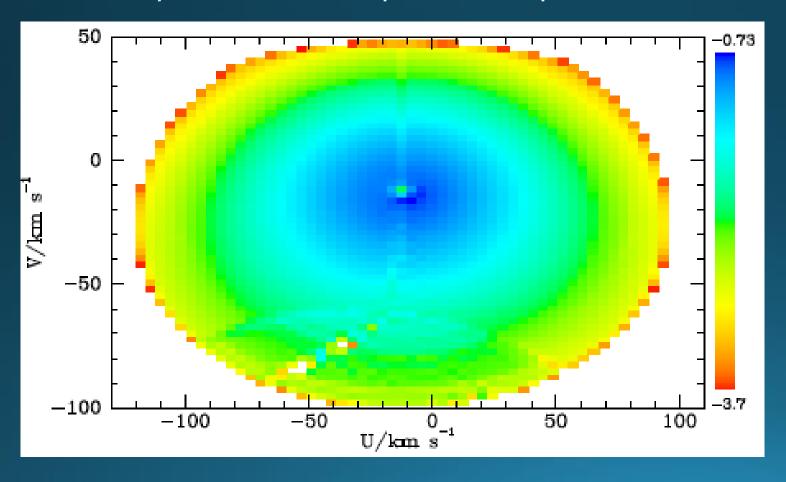


A higher pattern speed



Qualitative modification to orbits may have small impact on observables

• Density of stars in v-space for a particular (realistic) f(J)



Getting J(x,v)

• Alternatively on a grid of x determine J(v) and interpolate to get

V(J)

• Magenta const J_r

- ullet Blue dashed const ${\sf J}_\phi$
- Grey const J_{libration}



Conclusions & outlook

- f(J) modelling enables
 - Multicomponent modelling
 - In self-consistent potential
- Through the Staeckel Fudge we have had good success in axisymmetric case
- ullet Must move on to steadily rotating non-axisymmetric Φ
- Then SF not available and must resort to orbit-based techniques
- Torus modelling supersedes Schwarzschild modelling
- Basic axisymmetric tori are obtained non-perturbatively
- Enhanced pendulum eqn produces trapped tori with remarkable precision
- Next steps:
 - Build self-consistent axisymmetric model via tori
 - Build self-consistent barred model via tori