The arrow of time in the collapse of collisionless self-gravitating systems

Non-validity of Vlasov-Poisson in violent relaxation

Leandro Beraldo e Silva

Universidade de São Paulo / University of Michigan

Walter Pedra, Laerte Sodré, Leonardo Duarte, Marcos Lima

CIRM – Marseille Oct/Nov 2017

• Microscopic descr.

- Microscopic descr.
- Time-reversible eqs.

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

• Macroscopic descr.

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

- Macroscopic descr.
- Time-irreversible eqs.

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod. (entropy increase)

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod.

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod.

(entropy increase)

• Irreversible eq. referring to one particle: $\frac{df}{dt} = \Gamma[f]$

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod.

- Irreversible eq. referring to one particle: $\frac{df}{dt} = \Gamma[f]$
- $\Gamma[f]$ introduces "arrow of time" (entropy increase)

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod.

- Irreversible eq. referring to one particle: $\frac{df}{dt} = \Gamma[f]$
- $\Gamma[f]$ introduces "arrow of time" (entropy increase)
- $\Gamma[f]$: collisional term (molecular gas)

- Microscopic descr.
- Time-reversible eqs.
- Newton's Laws

Thermodynamics

- Macroscopic descr.
- Time-irreversible eqs.
- 2nd Law of Thermod.

- Irreversible eq. referring to one particle: $\frac{df}{dt} = \Gamma[f]$
- $\Gamma[f]$ introduces "arrow of time" (entropy increase)
- $\Gamma[f]$: collisional term (molecular gas)
- One particle ~ whole system: Mechanics + Statistics

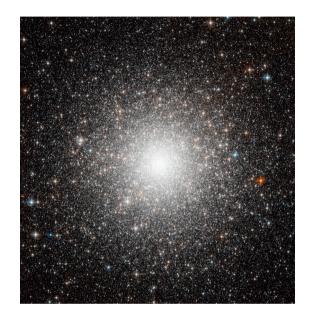
Globular cluster $N\approx 10^6~{\rm stars}$

Credit: ESA/Hubble & NASA

Globular cluster $N \approx 10^6 \, {\rm stars}$

Elliptical galaxy $N \approx 10^{11} \, {\rm stars}$

Credit: ESA/Hubble & NASA



Globular cluster

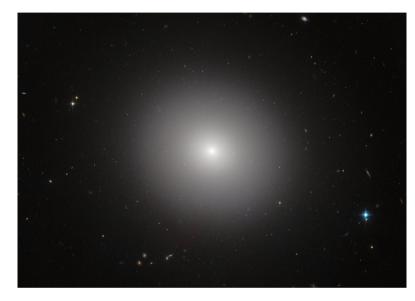
 $N \approx 10^6$ stars

 $\tau_{cr} \approx R/\langle v \rangle$

Elliptical galaxy $N \approx 10^{11} \, {\rm stars}$

Credit: ESA/Hubble & NASA

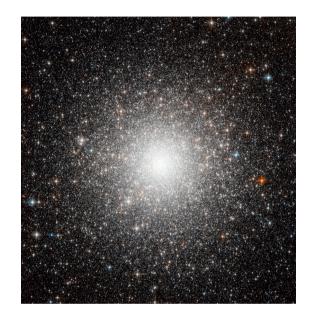
 $\tau_{cr} \approx R/\langle v \rangle$ $\tau_{col} \approx (N/\ln N)\tau_{cr}$



Globular cluster $N \approx 10^6 \, {\rm stars}$

Elliptical galaxy $N \approx 10^{11}$ stars

Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

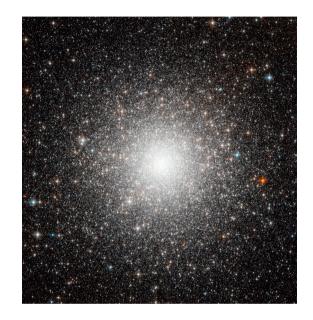
Binney & tremaine 2008



Elliptical galaxy $N \approx 10^{11} \, {\rm stars}$

Globular cluster $N \approx 10^6$ stars

Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

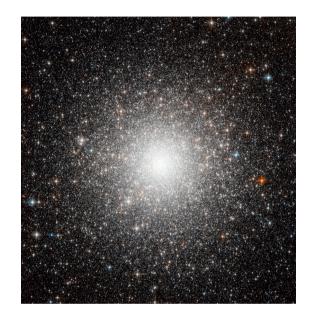
Binney & tremaine 2008

Elliptical galaxy $N \approx 10^{11} \, {\rm stars}$

$$\frac{N \approx 10^{6} \text{ stars}}{\tau_{col} \approx 10^{9} \text{ yr}}$$

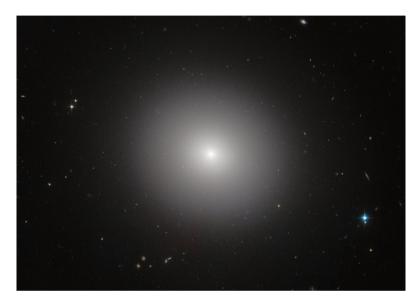
Globular cluster

Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

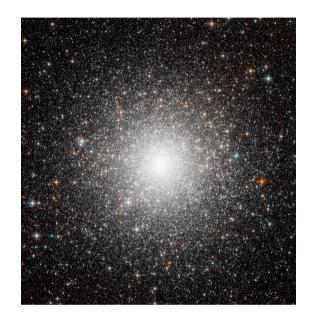
Binney & tremaine 2008



Elliptical galaxy $N \approx 10^{11} \, {\rm stars}$

Globular cluster $N \approx 10^6$ stars $\tau_{col} \approx 10^9 \,\mathrm{yr} \rightarrow \mathrm{collisional}$

Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

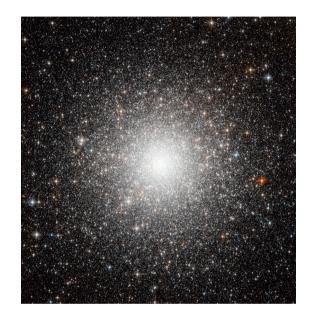
Binney & tremaine 2008

Elliptical galaxy $N \approx 10^{11} \text{ stars}$ $\tau_{col} \gtrsim 10^{17} \text{ yr}$

Globular cluster

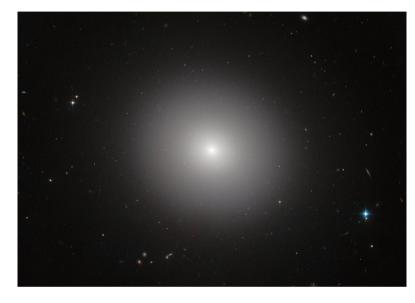
 $N \approx 10^6 \text{ stars}$ $\tau_{col} \approx 10^9 \text{ yr} \rightarrow \text{ collisional}$

Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

Binney & tremaine 2008



Globular cluster $N \approx 10^6$ stars $au_{col} pprox 10^9 \, \mathrm{yr}$ collisional

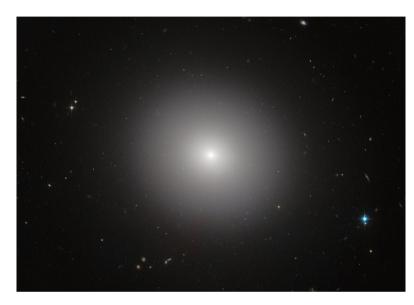
Elliptical galaxy $\frac{N \approx 10^{11} \, \rm stars}{\rm collisionless} \rightarrow \boxed{\tau_{col} \gtrsim 10^{17} \rm yr}$

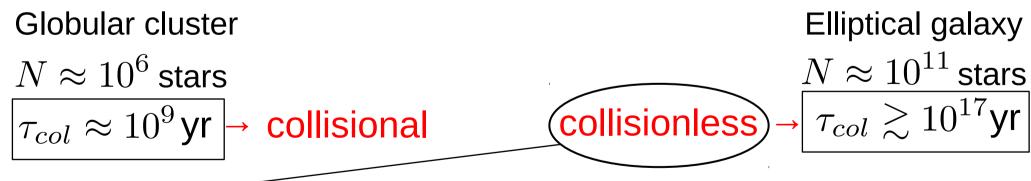
Credit: ESA/Hubble & NASA



$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

Binney & tremaine 2008



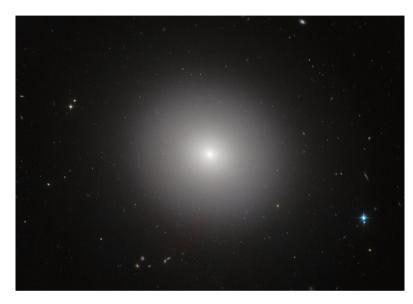


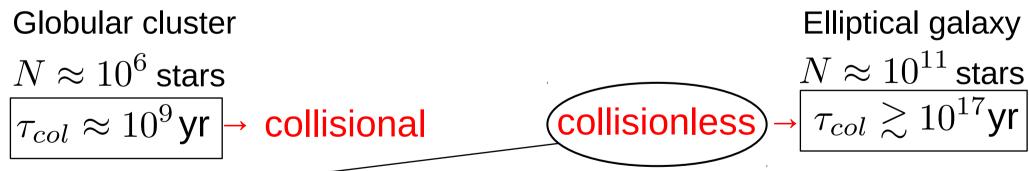
- Collisionless relaxation: typical particle in collective $\phi(r,t)$

Credit: ESA/Hubble & NASA

$$au_{cr} pprox R/\langle v
angle$$
 $au_{col} pprox (N/\ln N) au_{cr}$
Age: $pprox 10^{10} ext{ yr}$

Binney & tremaine 2008





- Collisionless relaxation: typical particle in collective $\phi(r,t)$

- Violent relaxation in $pprox au_{cr}$ Lynden-Bell 1967; King 1962; Hénon 1964

• Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov 1965

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov 1965
- Std. solution: coarse-graining (subjective)

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov 1965
- Std. solution: coarse-graining (subjective)
- Alternative: is Vlasov-Poisson valid?

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov
- Std. solution: coarse-graining (subjective)
- Alternative: is Vlasov-Poisson valid? Define $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov
- Std. solution: coarse-graining (subjective)
- Alternative: is Vlasov-Poisson valid? Define $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$

• If
$$\frac{df}{dt} = 0$$

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov 1965
- Std. solution: coarse-graining (subjective)
- Alternative: is Vlasov-Poisson valid?
- Define $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$
- If $\frac{df}{dt} = 0 \rightarrow \frac{d\breve{S}}{dt} = 0$ Tremaine, Hénon, Lynden-Bell 1986

- Traditionally assumed: $\frac{df}{dt} = 0$ (Vlasov equation)
- Time-reversible (no arrow of time)
- "Fundamental paradox of stellar dynamics" Ogorodnikov 1965
- Std. solution: coarse-graining (subjective)
- Alternative: is Vlasov-Poisson valid?
- Define $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$
- If $\frac{df}{dt} = 0 \rightarrow \frac{d\breve{S}}{dt} = 0$ Tremaine, Hénon, Lynden-Bell 1986
- N-body simulation \rightarrow Estimate S \rightarrow Is it conserved?

Testing Vlasov-Poisson

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

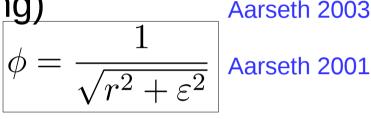
BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)

Aarseth 2003

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$



Aarseth 2001

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi =$
 - GADGET-2 (tree code, softening)

Aarseth 2003 Aarseth 2001

 $\sqrt{r^2 + \varepsilon^2}$

Springel 2005

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$
 - GADGET-2 (tree code, softening)
- ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$

Aarseth 2003

Aarseth 2001

Springel 2005

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

Aarseth 2003

Aarseth 2001

Springel 2005

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$ GADGET-2 (tree code, softening)

• ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$ $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

Aarseth 2003

Springel 2005

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$ Aarseth 2003 GADGET-2 (tree code, softening) Springel 2003

• ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$ $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \hat{S} = -\frac{1}{N} \sum_{i=1}^N \ln \hat{f}_i$

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

Aarseth 2003

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$ Aarseth 2001 GADGET-2 (tree code, softening) Springel 2005
- ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$ $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$
- where $\hat{f}_i : \begin{cases} \bullet \text{ Nearest Neighbor} \\ \bullet \text{ Variable Kernel} \\ \bullet \text{ EnBiD} \end{cases}$ Sharma & Steinmetz 2006 Ascasibar & Binney 2005

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$ Aarseth 2001 GADGET-2 (tree code, softening) Springel 2005
- ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$ $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \hat{S} = -\frac{1}{N} \sum_{i=1}^N \ln \hat{f}_i$
- where $\hat{f}_i : \{ \begin{array}{l} \bullet \text{ Nearest Neighbor} \\ \bullet \text{ Variable Kernel} \end{array} \}$ Metric-dependent EnBiD

Aarseth 2003

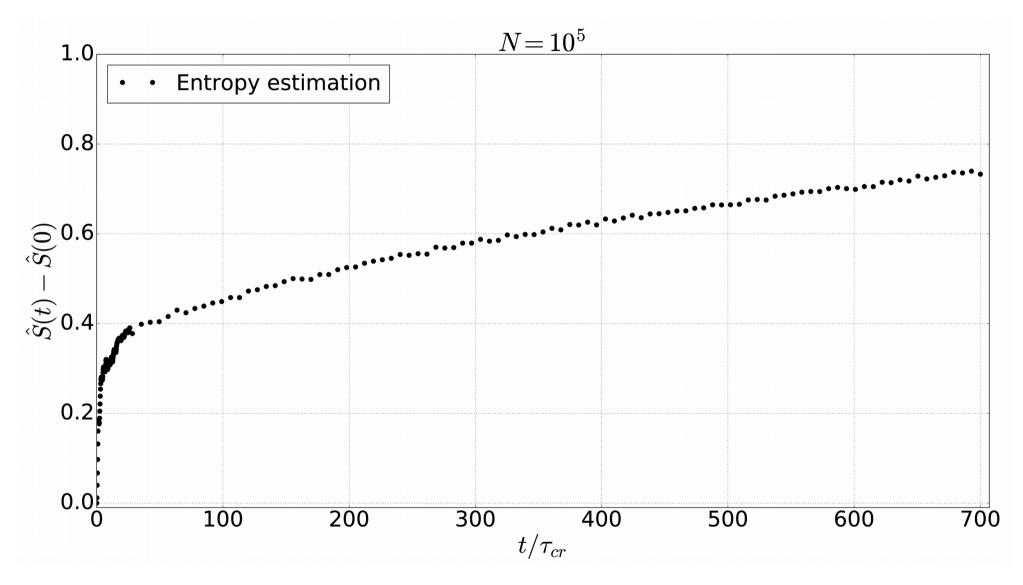
Sharma & Steinmetz 2006 Ascasibar & Binney 2005

BeS, Siqueira-Pedra, Sodré, Duarte, Lima 2017

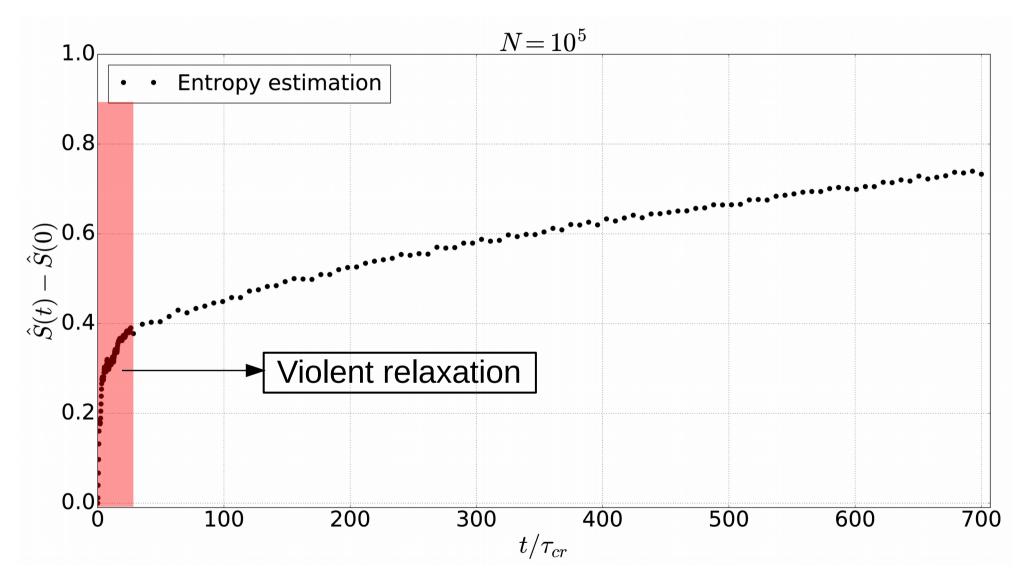
Aarseth 2003

- N-body simulations (Newtonian dynamics):
 - NBODY-6 (direct sum, no softening)
 - NBODY-2 (direct sum, softening) $\phi = \frac{1}{\sqrt{r^2 + \varepsilon^2}}$ Aarseth 2001 GADGET-2 (tree code, softening) Springel 2005
- ICs: Uniform sphere, Maxwell vels., $Q_0 = T/|W| = 0.5$ $S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \hat{S} = -\frac{1}{N} \sum_{i=1}^N \ln \hat{f}_i$
- where $\hat{f}_i : \left\{ \begin{array}{l} \bullet \text{ Nearest Neighbor} \\ \bullet \text{ Variable Kernel} \\ \bullet \text{ EnBiD} \end{array} \right\} \xrightarrow{\text{Metric-dependent}} S \xrightarrow{\text{Beirlant et al 1997}} S$ Sharma & Steinmetz 2006 Ascasibar & Binney 2005

Overview

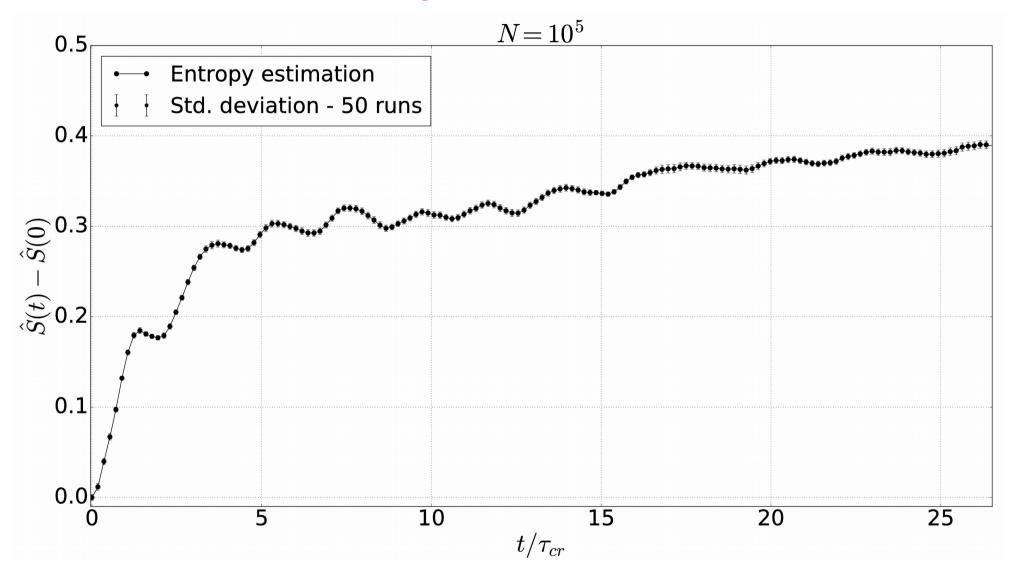


Overview



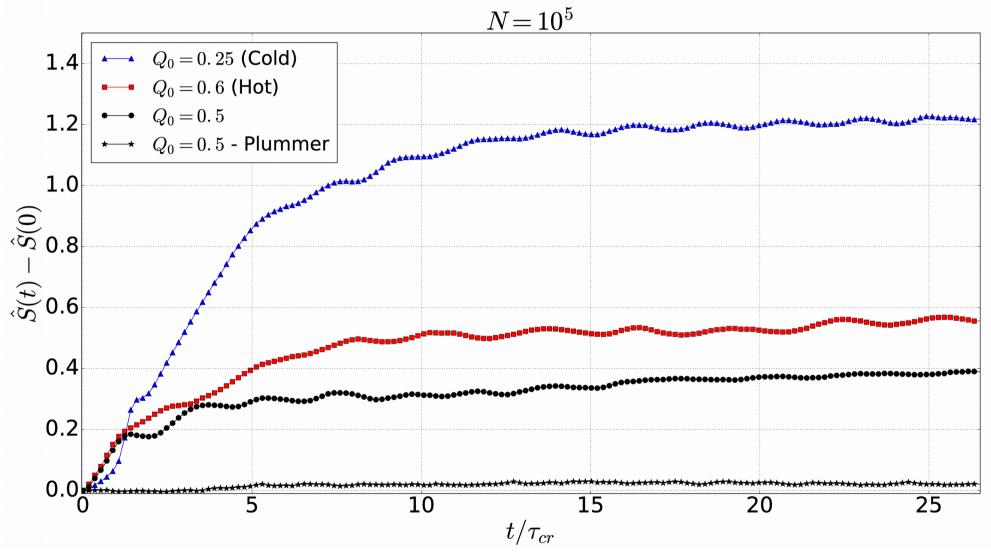
Early evolution

Early evolution



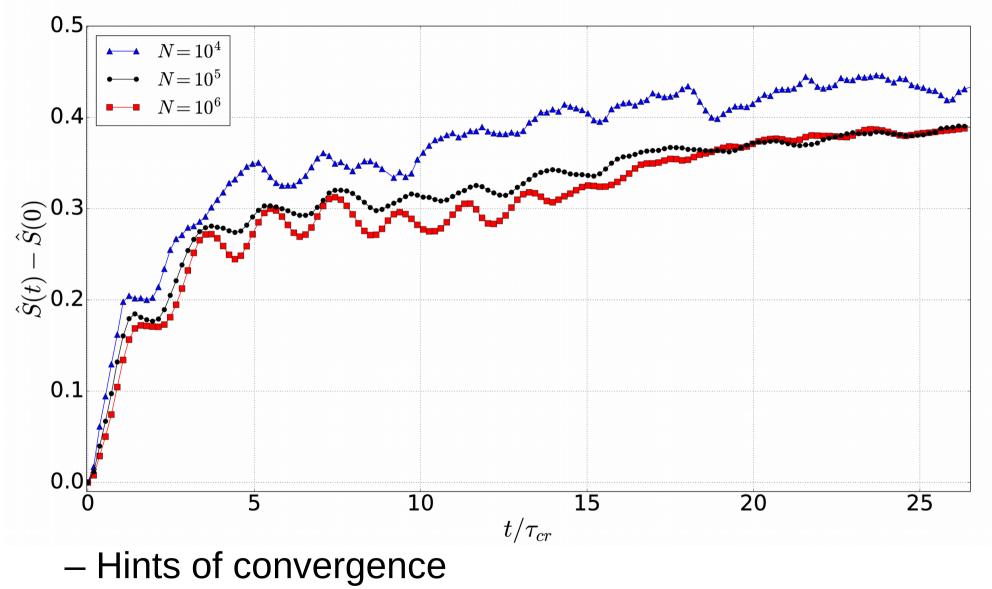
S increases \rightarrow Vlasov not valid in violent relaxation

Varying Initial Conditions

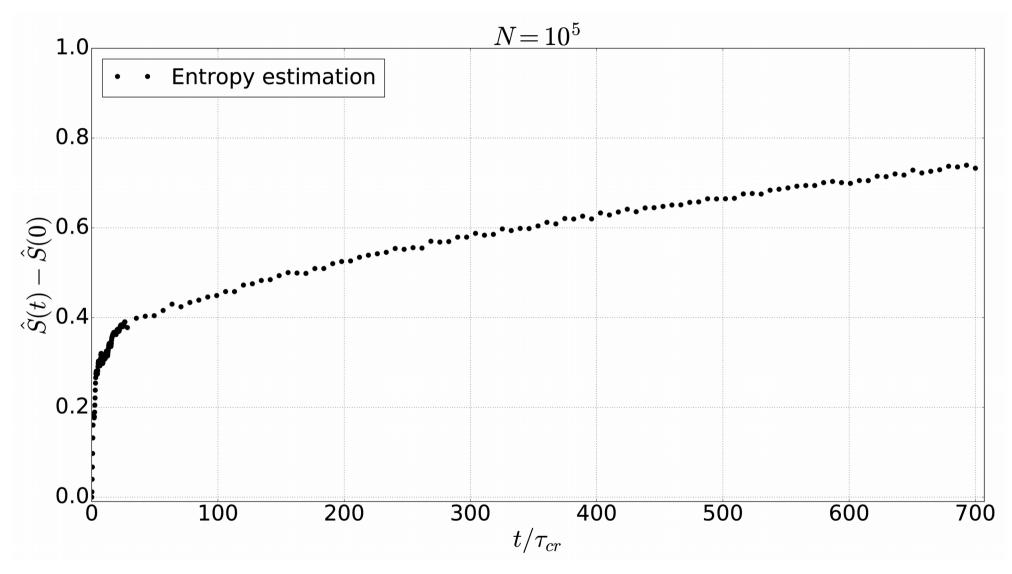


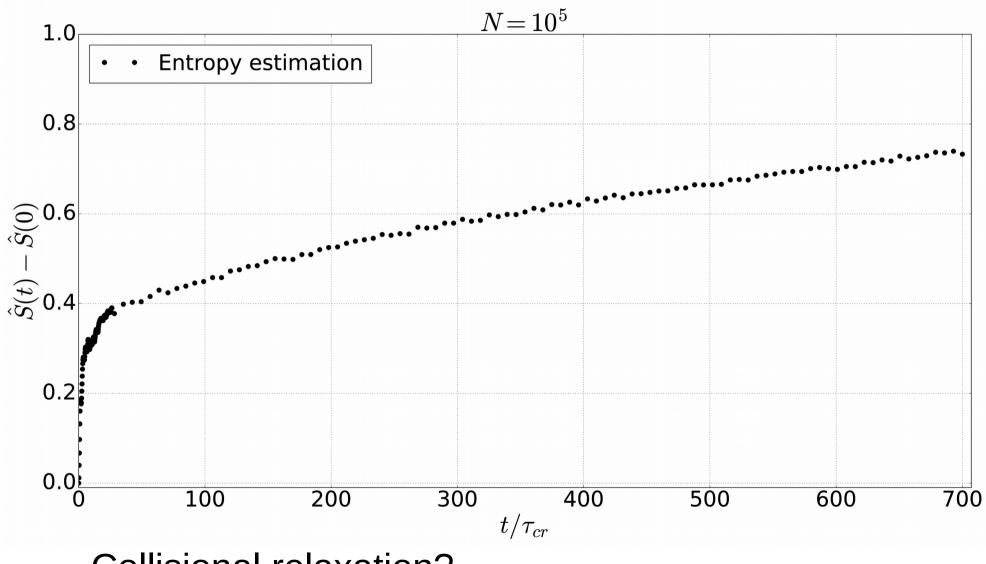
– Farther from equilibrium \rightarrow larger entropy production – Self-consistent model \rightarrow entropy is conserved

N dependence

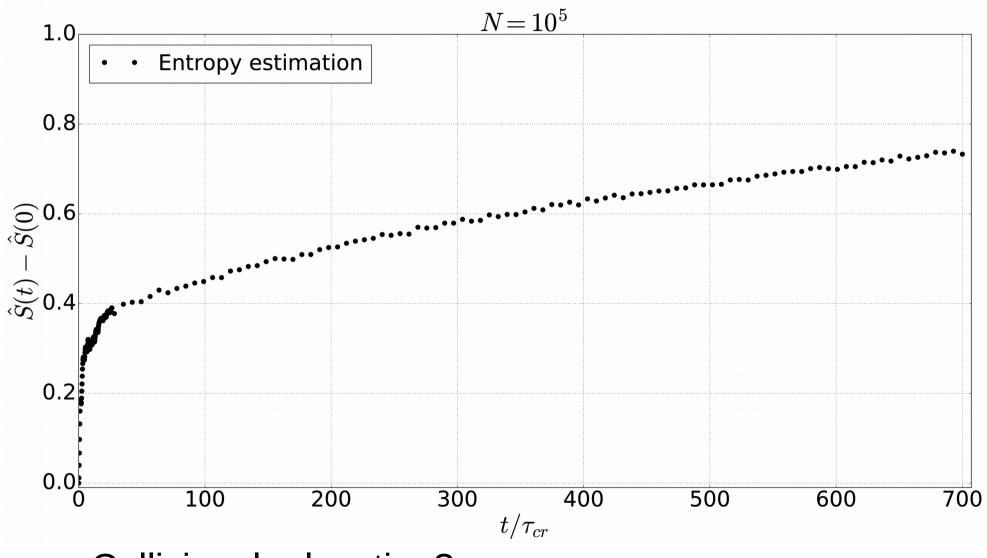


Not due to collisional relaxation





- Collisional relaxation?



- Collisional relaxation?
- Are these estimators reliable?

• Collisional relaxation?

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$
 - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$
 - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

$$\Gamma_{FP} \approx -\frac{d}{dE} \left[f(E) \langle \Delta E \rangle \right] + \frac{1}{2} \frac{d^2}{dE^2} \left[f(E) \langle (\Delta E)^2 \rangle \right]$$

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$
 - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

$$\Gamma_{FP} \approx -\frac{d}{dE} \left[f(E) \langle \Delta E \rangle \right] + \frac{1}{2} \frac{d^2}{dE^2} \left[f(E) \langle (\Delta E)^2 \rangle \right]$$

 $\left. \begin{array}{l} \left\langle \Delta E \right\rangle \propto \ln \Lambda (I_0 - I_{1/2}) \\ \left\langle (\Delta E)^2 \right\rangle \propto \ln \Lambda (I_0 + I_{3/2}) \end{array} \right\}$

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$ Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

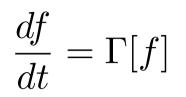
$$\Gamma_{FP} \approx -\frac{d}{dE} \left[f(E) \langle \Delta E \rangle \right] + \frac{1}{2} \frac{d^2}{dE^2} \left[f(E) \langle (\Delta E)^2 \rangle \right]$$

 $\langle \Delta E \rangle \propto \ln \Lambda (I_0 - I_{1/2})$ where $\ln \Lambda = \ln (R/b_{90})$ $\langle (\Delta E)^2 \rangle \propto \ln \Lambda (I_0 + I_{3/2})$ (Coulomb Logarithm)

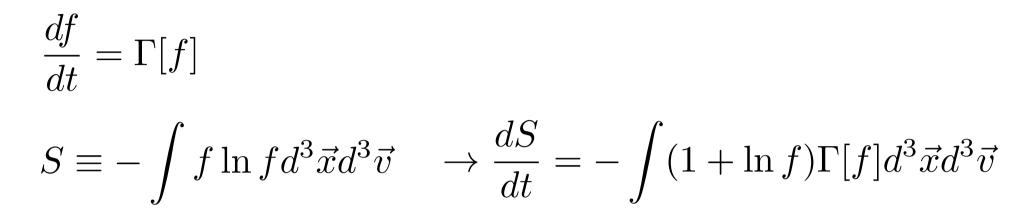
- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck: $\frac{df}{dt} = \Gamma_{FP}[f]$
 - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

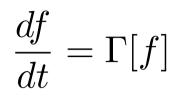
$$\Gamma_{FP} \approx -\frac{d}{dE} \left[f(E) \langle \Delta E \rangle \right] + \frac{1}{2} \frac{d^2}{dE^2} \left[f(E) \langle (\Delta E)^2 \rangle \right]$$

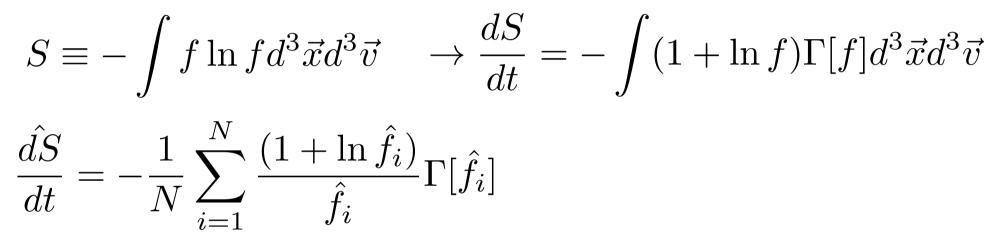
 $\langle \Delta E \rangle \propto \ln \Lambda (I_0 - I_{1/2})$ where $\ln \Lambda = \ln (R/b_{90}) \approx \ln (0.4N)$ $\langle (\Delta E)^2 \rangle \propto \ln \Lambda (I_0 + I_{3/2})$ (Coulomb Logarithm)

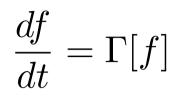


$$\frac{df}{dt} = \Gamma[f]$$
$$S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$$



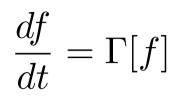






$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1+\ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1+\ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \end{split}$$

$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t)\Delta t$$



$$S \equiv -\int f \ln f d^{3} \vec{x} d^{3} \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^{3} \vec{x} d^{3} \vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N} \sum_{i=1}^{N} \frac{(1 + \ln \hat{f}_{i})}{\hat{f}_{i}} \Gamma[\hat{f}_{i}]$$
(Coulomb Logarithm)

 $a = \ln \Lambda$

$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{dS}{dt}(t)\Delta t$$

$$\frac{df}{dt} = \Gamma[f]$$

$$S \equiv -\int f \ln f d^{3} \vec{x} d^{3} \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^{3} \vec{x} d^{3} \vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N} \sum_{i=1}^{N} \frac{(1 + \ln \hat{f}_{i})}{\hat{f}_{i}} \Gamma[\hat{f}_{i}]$$
$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{\hat{dS}}{I}(t) \Delta t \qquad \text{(Coulomb Logarithm)}$$
$$a = \ln \Lambda$$

$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{dS}{dt}(t)\Delta t$$

Agama: Smooth $\phi(r)$

Vasiliev 2017

$$\frac{df}{dt} = \Gamma[f]$$

Vasiliev 2017

$$S \equiv -\int f \ln f d^{3}\vec{x}d^{3}\vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1+\ln f)\Gamma[f]d^{3}\vec{x}d^{3}\vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N}\sum_{i=1}^{N}\frac{(1+\ln \hat{f}_{i})}{\hat{f}_{i}}\Gamma[\hat{f}_{i}]$$
$$\hat{S}(t+\Delta t) = \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t)\Delta t \qquad \text{(Coulomb Logarithm)}$$
$$a = \ln \Lambda$$

$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{aS}{dt}(t)\Delta t$$

Agama: Smooth $\phi(r)$ f(E)

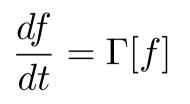
$$\frac{df}{dt} = \Gamma[f]$$

$$S \equiv -\int f \ln f d^{3} \vec{x} d^{3} \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^{3} \vec{x} d^{3} \vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N} \sum_{i=1}^{N} \frac{(1 + \ln \hat{f}_{i})}{\hat{f}_{i}} \Gamma[\hat{f}_{i}]$$
$$\hat{O}(Coulomb \text{ Logarithm})$$

$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{dS}{dt}(t)\Delta t$$

 $a = \ln \Lambda$

Agama: Smooth $\phi(r)$ f(E) g(E)Vasiliev 2017

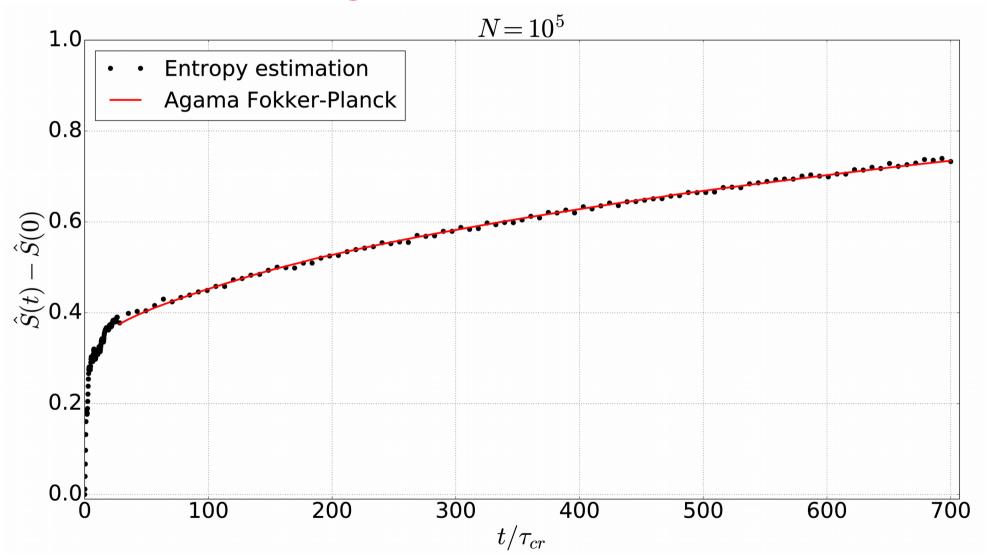


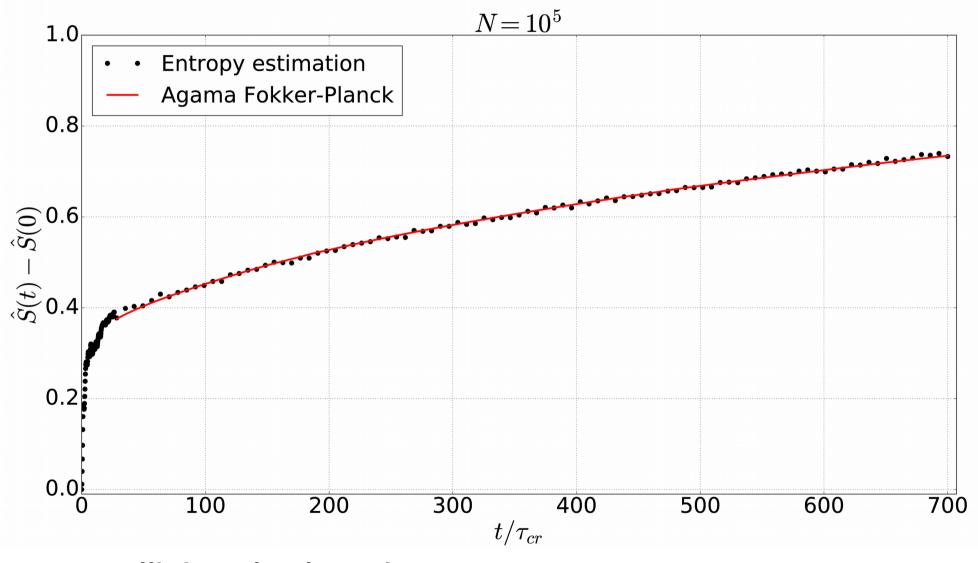
$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t + \Delta t) &= \hat{S}(t) + a \cdot \frac{d\hat{S}}{dt}(t) \Delta t \qquad \qquad \text{(Coulomb Logarithm)} \\ \underline{a = \ln \Lambda} \end{split}$$
Agama: Smooth $\phi(r) \quad f(E) \quad g(E) \quad \frac{df}{dE} \quad \frac{d^2 f}{dE^2}$

Vasiliev 2017

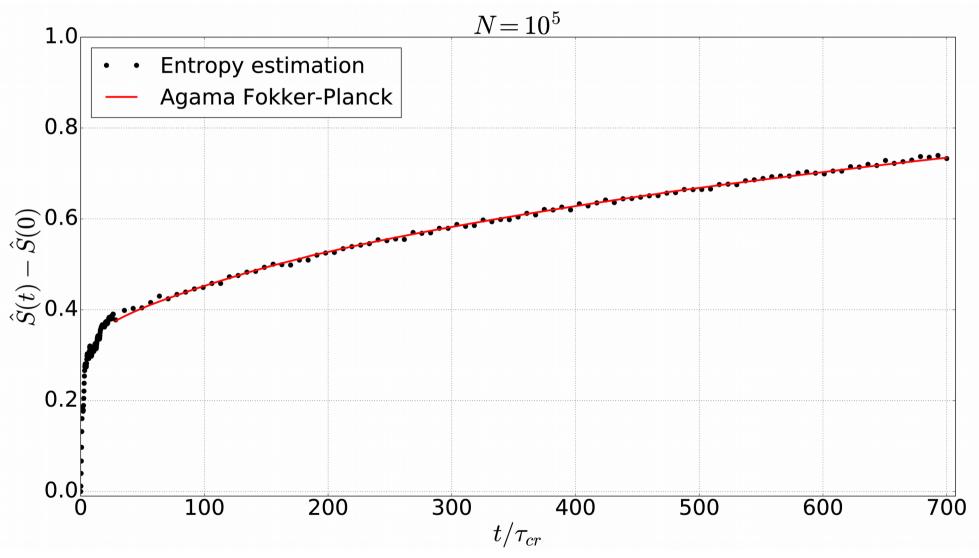
$$\frac{df}{dt} = \Gamma[f]$$

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^{N} \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t + \Delta t) &= \hat{S}(t) + a \cdot \frac{d\hat{S}}{dt}(t) \Delta t \qquad \qquad \text{(Coulomb Logarithm)} \\ \hline{Agama: Smooth } \phi(r) \quad f(E) \quad g(E) \quad \frac{df}{dE} \quad \frac{d^2 f}{dE^2} \quad \langle \Delta E \rangle \ \langle (\Delta E)^2 \rangle \\ \text{Vasiliev 2017} \end{split}$$



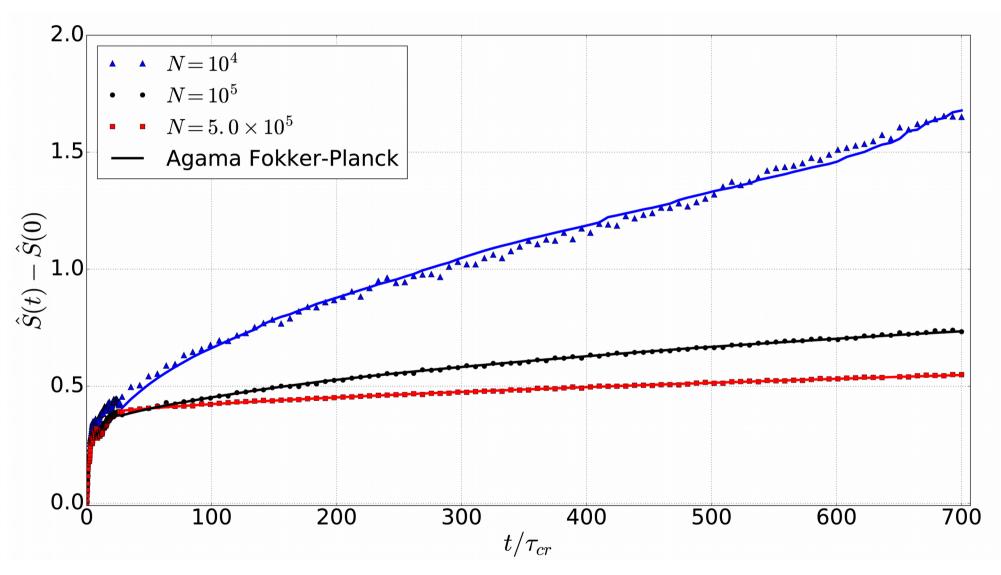


– Collisional relaxation? Yes



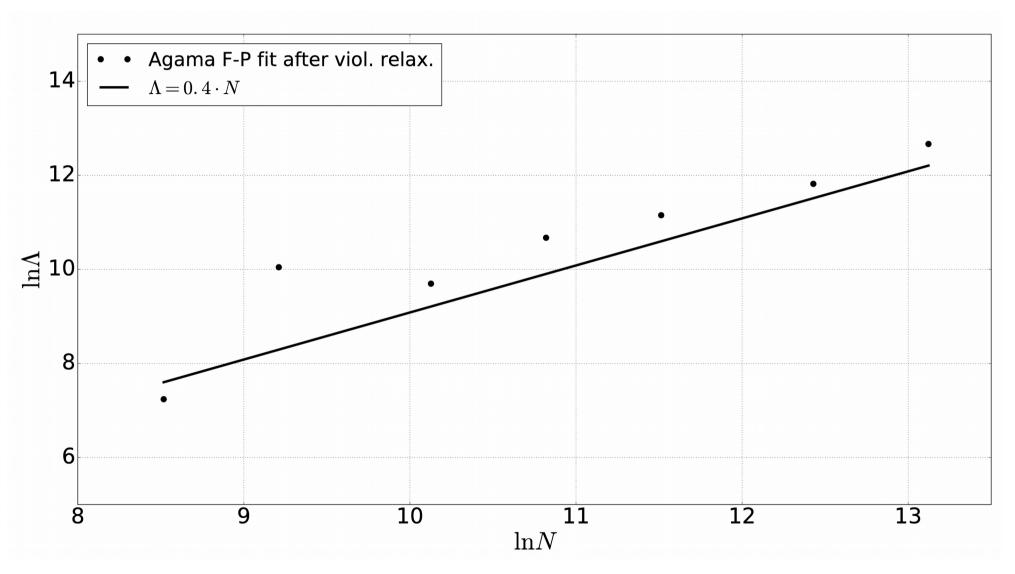
- Collisional relaxation? Yes
- Are these estimators reliable? Yes

N dependence



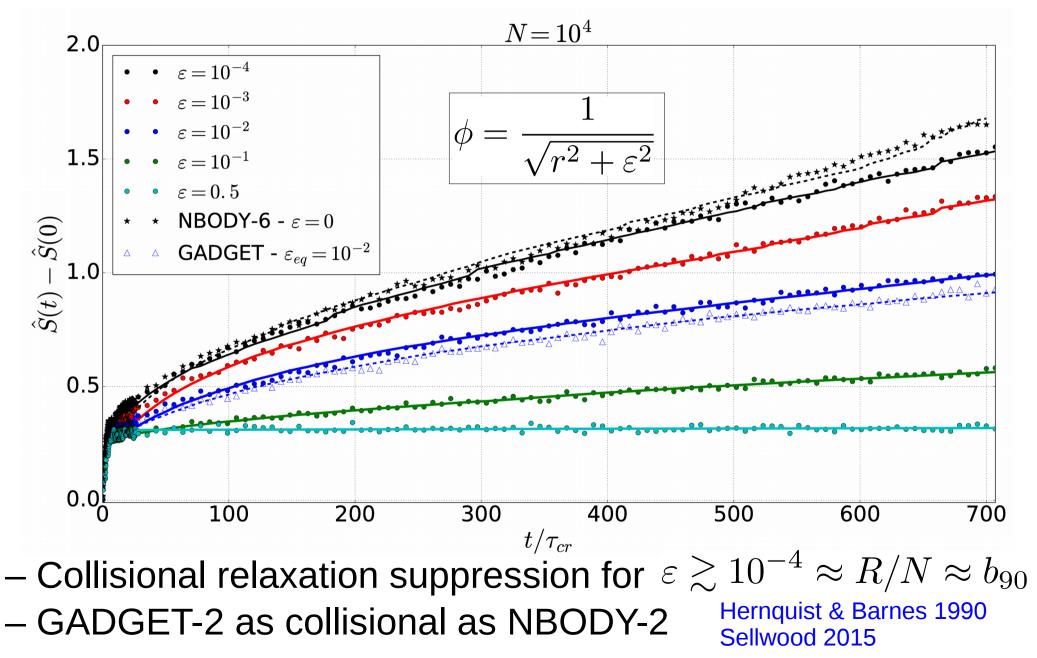
Collisionless for large N

Coulomb logarithm



Agreement with theoretical expectation

Varying softening length



with Monica Valluri

• Farther from steady-state \rightarrow larger S increase

- Farther from steady-state \rightarrow larger S increase
- Now orbits (not N-boby problem)

- Farther from steady-state \rightarrow larger S increase
- Now orbits (not N-boby problem)
- Orbits in steady-state in the correct potential

- Farther from steady-state \rightarrow larger S increase
- Now orbits (not N-boby problem)
- Orbits in steady-state in the correct potential
- Evolve same ICs in different potentials

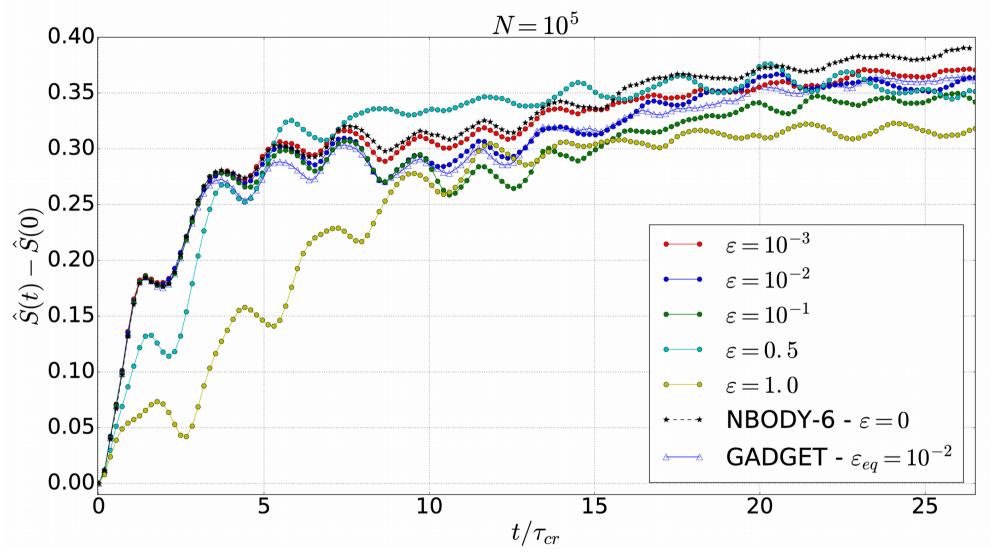
- Farther from steady-state \rightarrow larger S increase
- Now orbits (not N-boby problem)
- Orbits in steady-state in the correct potential
- Evolve same ICs in different potentials
- Recover potential with minimum S production

- Farther from steady-state \rightarrow larger S increase
- Now orbits (not N-boby problem)
- Orbits in steady-state in the correct potential
- Evolve same ICs in different potentials
- Recover potential with minimum S production
- Possible application to Gaia data

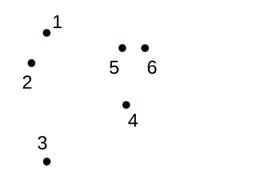
Summary

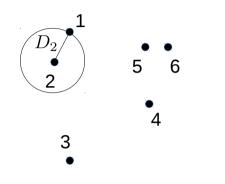
- Violent relaxation:
 - Entropy increase (macroscopic irreversibility)
 - \rightarrow Non-validity of Vlasov-Poisson
 - Theoretical alternative?
- Long-term evolution:
 - Collisional relaxation $(R/N \lesssim b \lesssim R)$
 - Agreement with theory
- Possible applications:
 - Testing other theoretical transport equations
 - Constraining Milky Way potential

Different N-body codes

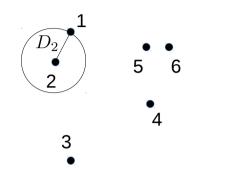


- Same entropy evolution
- Suppression only for $\varepsilon > \overline{d} \approx 0.02$



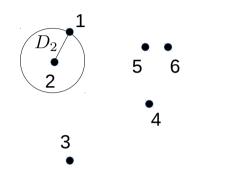


$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$



$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$

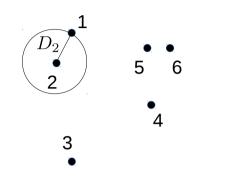
$$\hat{f}_i = \frac{1}{ND_i^6}$$



$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$

$$\hat{f}_i = \frac{1}{ND_i^6}$$

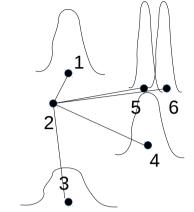
$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$

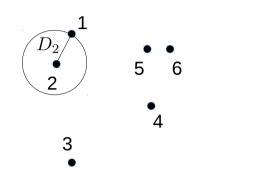


$$D_2 = \sqrt{(\vec{x}_2 - \vec{x}_1)^2 + (\vec{v}_2 - \vec{v}_1)^2}$$

$$\hat{f}_i = \frac{1}{ND_i^6}$$

$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$

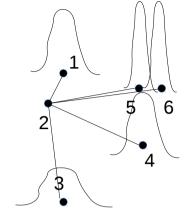


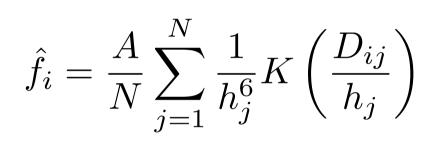


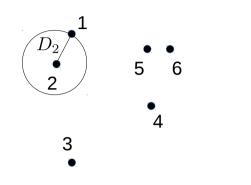
$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$

$$\hat{f}_i = \frac{1}{ND_i^6}$$

$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$





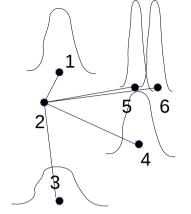


$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$

$$\hat{f}_i = \frac{1}{ND_i^6}$$

$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$

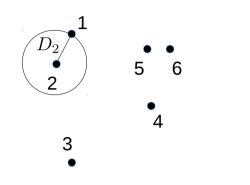
Kernel estimator





 $K\left(\frac{D_{ij}}{h_j}\right) = \frac{1}{(D_{ij}/h_j)^8 + 1}$

Heavy tails; Hall, Morton (1993)

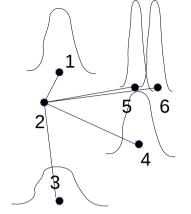


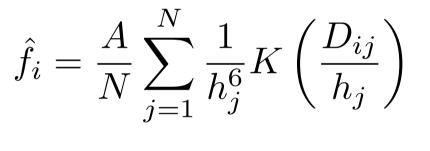
$$D_2 = \sqrt{\left(\vec{x}_2 - \vec{x}_1\right)^2 + \left(\vec{v}_2 - \vec{v}_1\right)^2}$$

$$\hat{f}_i = \frac{1}{ND_i^6}$$

$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$

Kernel estimator



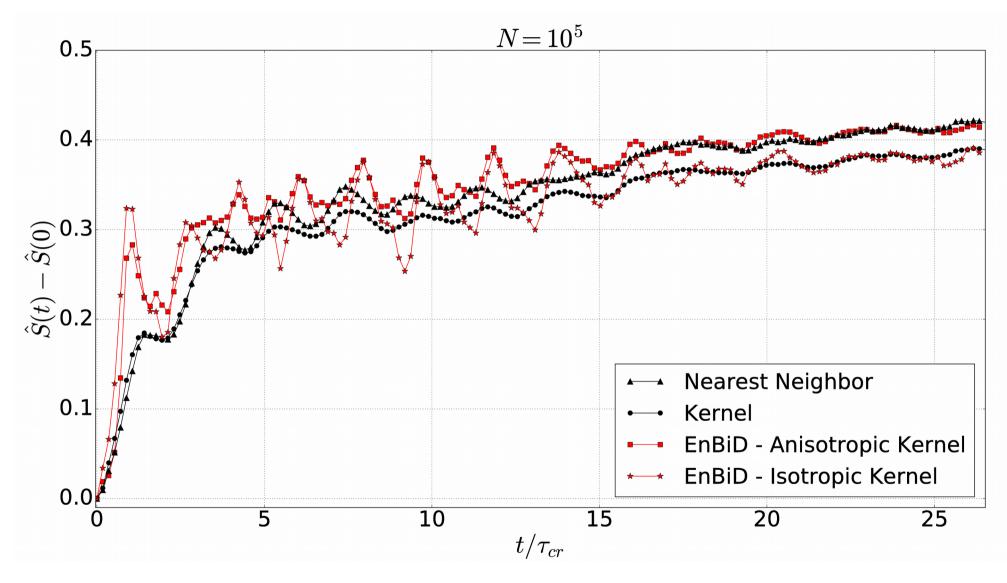


 $K\left(\frac{D_{ij}}{h_j}\right) = \frac{1}{(D_{ij}/h_j)^8 + 1}$

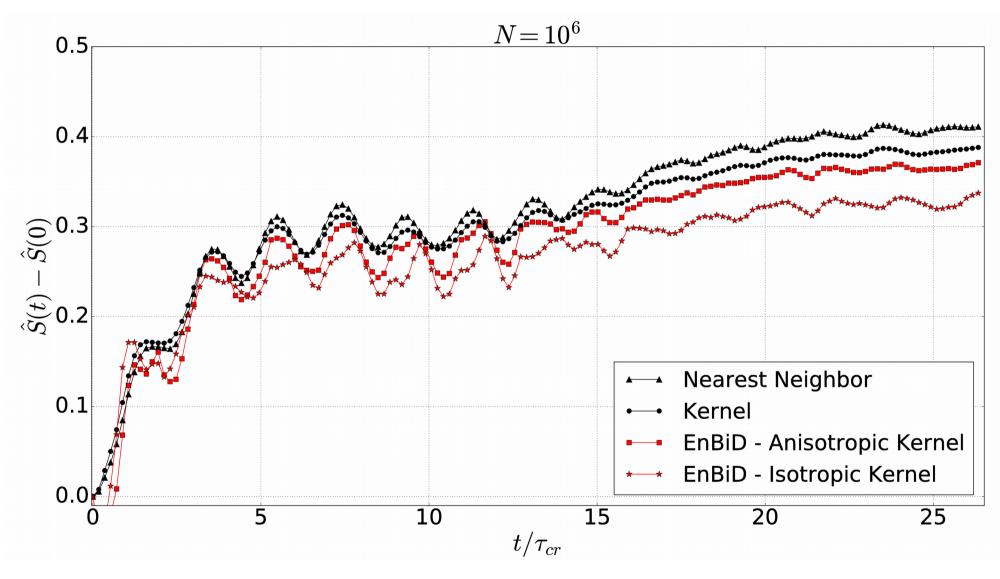
Heavy tails; Hall, Morton (1993)

$$\hat{S} = -\frac{1}{N} \sum_{i=1}^{N} \ln \hat{f}_i$$

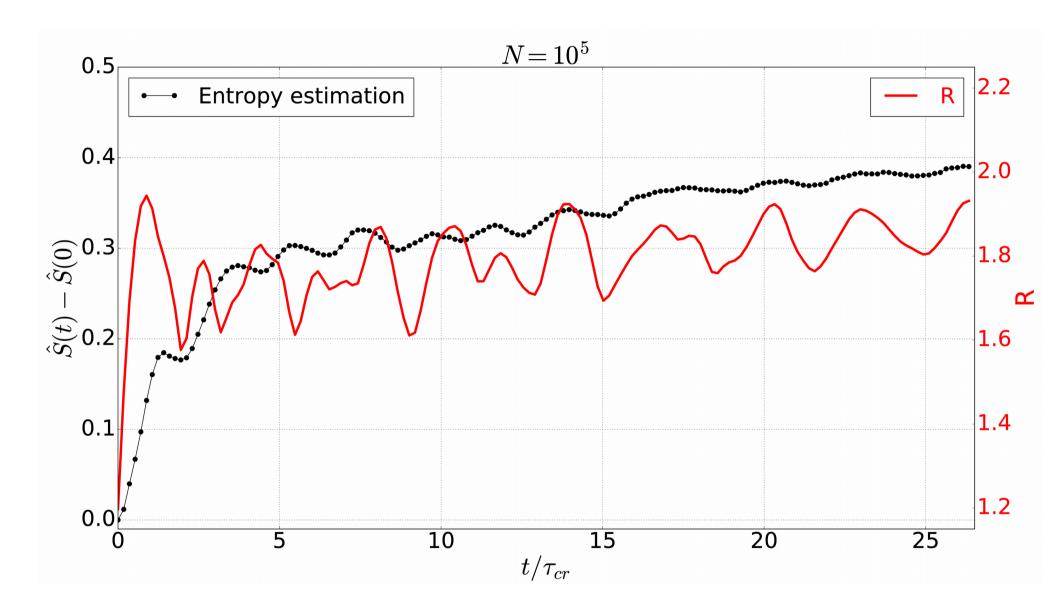
Different estimators

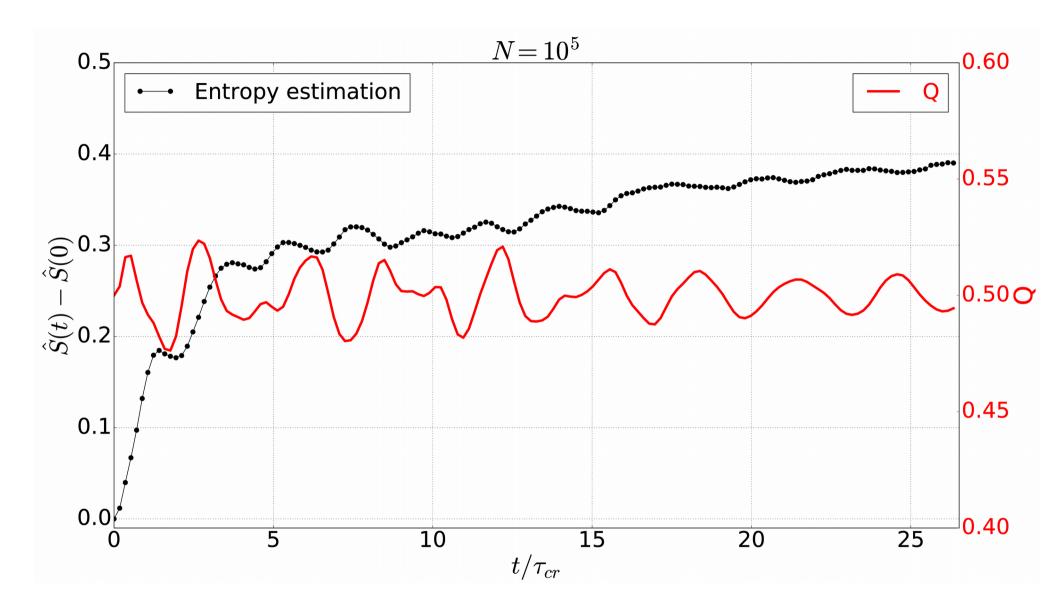


Different estimators



Faster convergence of NN and Kernel





- Collisional relaxation?
- Fokker-Planck equation: $\frac{df}{dt} = \Gamma_{FP}[f]$ - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E) $\Gamma_{FP} \approx -\frac{d}{dE} \left[f(E) \langle \Delta E \rangle \right] + \frac{1}{2} \frac{d^2}{dE^2} \left[f(E) \langle (\Delta E)^2 \rangle \right]$

$$\langle \Delta E \rangle \propto \ln \Lambda (I_0 - I_{1/2})$$
 where $\ln \Lambda = \ln (R/b_{90}) \approx \ln (0.4N)$
 $(\Delta E)^2 \rangle \propto \ln \Lambda (I_0 + I_{3/2})$ (Coulomb Logarithm)

$$I_0 = \int_v^\infty f(r, v') v' dv' \qquad I_{n/2} = v \int_0^v \left(\frac{v'}{v}\right)^{n+1} f(r, v') dv'$$

• Collisional relaxation?

- Collisional relaxation?
- Orbit-averaged Fokker-Planck
 - Weak encounters, static potential, f = f(E)

- Collisional relaxation?
- Orbit-averaged Fokker-Planck
 - Weak encounters, static potential, f = f(E)

$$S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v}$$

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v}$$

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1+\ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1+\ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \end{split}$$

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$S \equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N} \sum_{i=1}^N \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i]$$
$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t) \Delta t \qquad \boxed{a = \ln \Lambda}$$

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1+\ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1+\ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t+\Delta t) &= \hat{S}(t) + a \cdot \frac{d\hat{S}}{dt}(t) \Delta t \qquad \boxed{a=\ln\Lambda} \end{split}$$

Agama: Smooth $\phi(r)$ Vasiliev 2017

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$S \equiv -\int f \ln f d^{3} \vec{x} d^{3} \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^{3} \vec{x} d^{3} \vec{v}$$
$$\frac{\hat{dS}}{dt} = -\frac{1}{N} \sum_{i=1}^{N} \frac{(1 + \ln \hat{f}_{i})}{\hat{f}_{i}} \Gamma[\hat{f}_{i}]$$
$$\hat{S}(t + \Delta t) = \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t) \Delta t \qquad \boxed{a = \ln \Lambda}$$

Agama: Smooth $\phi(r) g(E)$ Vasiliev 2017

- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{d\hat{S}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t + \Delta t) &= \hat{S}(t) + a \cdot \frac{d\hat{S}}{dt}(t) \Delta t \qquad \boxed{a = \ln \Lambda} \end{split}$$

Agama: Smooth $\phi(r) \ g(E) \ f(E)$

Vasiliev 2017

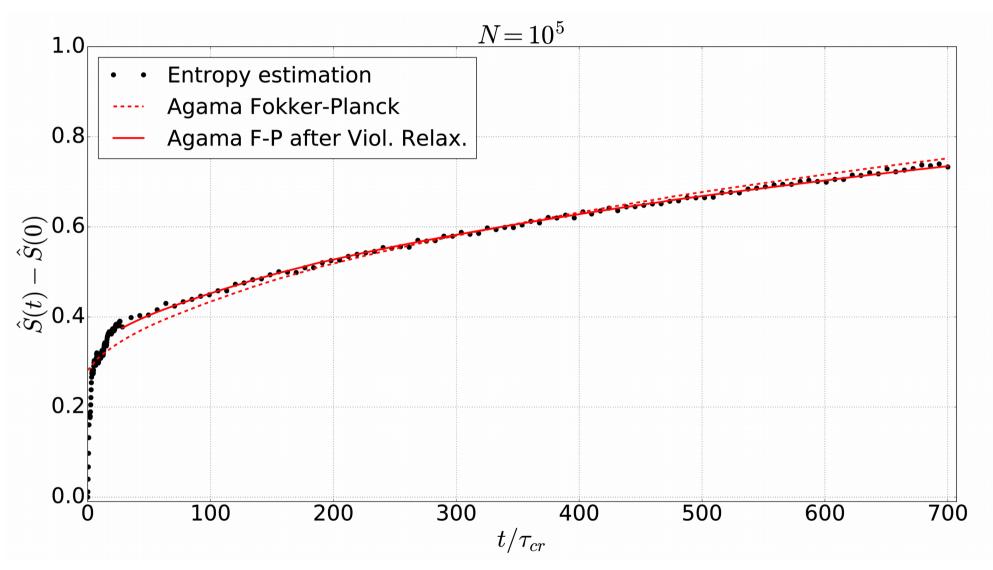
- Collisional relaxation?
- Orbit-averaged Fokker-Planck

– Weak encounters, static potential, f = f(E)

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{\hat{dS}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t + \Delta t) &= \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t) \Delta t \qquad \boxed{a = \ln \Lambda} \\ \text{Agama: Smooth } \phi(r) \ g(E) \ f(E) \ \frac{df}{dE} \ \frac{d^2 f}{dE^2} \end{split}$$

- Collisional relaxation?
- (Orbit-averaged) Fokker-Planck $\frac{df}{dt} = \Gamma_{FP}[f]$
 - Weak encounters $(b \gtrsim b_{90})$, static potential, f = f(E)

$$\begin{split} S &\equiv -\int f \ln f d^3 \vec{x} d^3 \vec{v} \quad \rightarrow \frac{dS}{dt} = -\int (1 + \ln f) \Gamma[f] d^3 \vec{x} d^3 \vec{v} \\ \frac{\hat{dS}}{dt} &= -\frac{1}{N} \sum_{i=1}^N \frac{(1 + \ln \hat{f}_i)}{\hat{f}_i} \Gamma[\hat{f}_i] \\ \hat{S}(t + \Delta t) &= \hat{S}(t) + a \cdot \frac{\hat{dS}}{dt}(t) \Delta t \qquad \boxed{a = \ln \Lambda} \\ \text{Agama: Smooth } \phi(r) \ g(E) \ f(E) \ \frac{df}{dE} \ \frac{d^2 f}{dE^2} \ \langle \Delta E \rangle \ \langle (\Delta E)^2 \rangle \\ \text{Vasiliev 2017} \end{split}$$



Collisional relaxation explains long-term evolution