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Vlasov equation

Vlasov equation for f (t, x , v), phase space density:

∂t f + v∇x f −∇xφ∇v f = 0

φ(x) =

∫
f (t, y , v)V (x − y)dy dv .

V (x) = interaction potential.

Goal: a qualitative study (stationary state, stability, instabilities,
bifurcations, asymptotic behavior...)



Neighborhood of a stationary state

I Vlasov equations have many stationary states
→ a selection principle?

I Linear and non linear stability analysis, dynamics in the
vicinity of a stable stationary state (Landau damping): old,
rich and lively subject...

I Question in this talk: what happens close to a weakly
unstable stationary state?
”weakly” = one (or several) eigenvalues with a small positive
real part
→ hope for a perturbative approach; a bifurcation theory
question.



Example 1: homogeneous background

• Example 1: 1D, interaction potential V (x) = 1− cos x ,
Ω =]− π, π], periodic boundary conditions.
Fβ(v) ∝ e−βv

2/2, stable for β ≤ 2, unstable for β > 2.

Movie: homogeneous background

→ complex dynamics leading to saturation (cat’s eye pattern)



Examples 2 and 3: non homogeneous background

• Example 2: 1D, V (x) = 1− cos x , non homogeneous case

Fµ(x , v) ∝ 1

1 + eβ(v2/2−Mµ cos x−µ)
, Mµ =

∫∫
cos xFµ(x , v)dx dv .

The family Fµ undergoes a bifurcation for a certain µc .
Movie 1: Perturbation +ε Movie 2: Perturbation −ε

→Very different non linear dynamics from Ex.1.

• Example 3: Ω = R3, V (x) = − C
|x | . Radial Orbit Instability.

→Similarities with Ex. 2.

Common features Ex. 2 and 3: appearance of a new stationary
state close to the reference one; dependence on initial condition.
Explanation?



Perturbation potential vs Time for example 2

δM ' norm of the perturbation (− cos x interaction).
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Bifurcation from a homogeneous stationary state

Old problem in plasma physics, with an interesting history (O’Neil,
Crawford, Del-Castillo-Negrete, Balmforth et al.. . . ...).
Main feature / difficulty = resonance:

x

v

x

v

Left: homogeneous stationary state
Right: perturbed homogeneous stationary state → resonance
Messages: strong non linear effects, naive computations diverge;
universal dynamics close to threshold (”Single Wave Model”).



NON homogeneous stationary state

Question: what about the resonances?
Simple example: inhomogeneous stationary state = pendulum
dynamics:

∂t f + v∂x f −M sin(x − ϕ)∂v f = 0 , Me iϕ =

∫∫
e ix f (x , v)dx dv .

x

v
Frequency

action

Real eigenvalue (zero frequency), few particles with zero velocity
→ weak resonance.



Linear analysis
continuous spectrum

eigenvalues

Before bifurcation After bifurcation

Structure of the linearized operator at the bifurcation, restricted to
E = Vect(ψ0, ψ1, ψ2):

L =

 0 1 0
0 0 1
0 0 0


Goal: build a local invariant manifold + a reduced dynamics on it.



Non linear analysis, order 2

f (x , v , t) = Fµc (x , v) + g(x , v , t)

Representing the perturbation:

g = A0(t)ψ0 + A1(t)ψ1 + A2(t)ψ2 + H[A0,A1,A2]

Reduced dynamics for the Ai , quadratic order (no divergence
here!):

Ȧ0 = A1 + λ2bA1 + α01A0A1

Ȧ1 = (1 + λ2c)A2 + λ2aA0 + β00A
2
0 + β02A0A2

Ȧ2 = γ01A0A1,

All coefficients have explicit (but complicated) expressions.



Analysis of the reduced dynamics

Conserved quantity:

G = A2 −
γ01

α01
A0 +

γ01(1 + λ2b)

α2
01

ln

(
1 +

α01

1 + λ2b
A0

)
.

Typical initial conditions: close to (0, 0, 0) → G ' 0.

A

A

0

1

New fixed point: at distance O(λ2) from (0, 0, 0).



Conclusion: main messages

I Bifurcation from a non homogeneous stationary solutions:
may be very different from the homogeneous case. In
particular, much weaker resonances.

I There seems to be some universality for this new type of
bifurcation (linearized structure, new fixed point ”close” to
the reference stationary state, dependence on the initial
condition...)

I A 3D reduced dynamics has been obtained, which
reproduces qualitatively very well the observations.

I I have no theorem, but worse than that: it is not quite clear
what could a theorem be → many questions! Might be easier
than in the homogeneous case...



Comparison Vlasov/reduced dynamics
• Purple = potential perturbation, Vlasov Simulations; initial
conditions = slightly unstable
• Green = potential perturbation, reduced model.
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