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What is the Maxwell Boltzmann Equation ? I

In Ω ⊂ Rd
x × Rd

v Assumption: Interactions between Electrons and
Ions only due to electro magnetic forces with external given Magnetic
Field B .

∂t f+ + v · ∇x f+ + (E + v × B)∇v f+ = η+C+(f+) ,

St−∂t f− + v · ∇x f− − (E + v × B)∇v f− = η−C−(f−) .

f±(t, x , v) = f±(t, x , v − 2(v · ~n)~n(x)) Specular reflection if ∂Ω 6= ∅

− λ2∆φ =

∫
Rv

f+(x , v , t)dv −
∫

Rv

f−(x , v , t)dv , ∂~nφ = 0 , on ∂Ω .

The two kernels C± satisfies the standard hypothesis: Conservation
of mass momentum and energy and H theorem: Boltzmann, BGK,
Fokker Planck ...Other collision operator.???
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What is the Maxwell Boltzmann Equation ? II

With a Korn type hypothesis on Ω:

f−(x , v , t) ' (
β(t)

2π
)
d
2 eβ(t)( |v|

2

2 −φ(x ,t))

⇒ 〈f−〉 = eβ(t)φ(x ,t) ,

∫
Ω

|v |2

2
f−(x , v , t)〉dx =

d

β(t)

∫
Ω
〈f−〉dx =

m0d

β(t)

− λ2∆φ+ eβ(t)φ(x ,t) = 〈f+〉 ∂~nφ = 0 on ∂Ω ,

∂t f+ + v · ∇x f+ −∇xφ · ∇v f+ = η+C+(f+) .

β(t) is the inverse of the temperature. What beta?
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Want I can do, what I want to do

• Try to justify the scaling. From a mathematical poin tof view..Because
they work!

• Prove a convergence theorem under an extra regularity assumption

• Give a complete treatement of the so called reduced ions problem.

As final remarks
• Give a Arnold type stability result for the asymptotic solutions.
• Combine with the quasineutral limit.
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Convergence to the Ions problem

Consider in a domain Ω which satisfies the Korn hypothesis, the
problem

∂t f
ε

+ + v · ∇x f
ε

+ −∇xφε · ∇v f
ε

+ = 0
Stε−∂t f

ε
− + v · ∇x f

ε
− +∇xφε · ∇v f

ε
− = η−(ε)C−(f ε−) ,

− λ2∆φε = 〈f ε+〉 − 〈f ε−〉

With if ∂Ω 6= ∅ the following boundary conditions

f ε±(t, x , v) = f ε±(t, x , v − 2(v · ~n))~n(x) Specular reflection

− λ2∆φε = 〈f ε+〉 − 〈f ε−〉 ∂nφ
ε = 0 Neumann boundary condition
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Theorem

Assume that for ε→ 0 one has lim inf(Stε−)−1ηε =∞, and
lim sup limε→0 ηε < +∞ while for t ∈ (0,T ) the distributions
f ε±(x , v , t) remains uniformly bounded in a convenient class
(specified below) then:

(f ε−, f
ε

+)⇒ ((
β(t)

2π
)
d
2 e−β(t)( |v|

2

2 −φ(x ,t)), f+(x , v , t))

− λ2∆φ+ eβ(t)φ(x ,t) = 〈f+(t)〉 ∂~nφ = 0 on ∂Ω ,

∂t f+ + v · ∇x f+ −∇xφ · ∇v f+ = η+C+(f+) .

and β(t) is uniquely determined by the conservation of energy:∫
Ω

|v |2

2
〈f+(t)〉dx +

m0d

β(t)
+

1
2

∫
Ω
|∇xφ(x , t)|2dx = E0 .
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Proof of the “soft theorem" Conservation of Mass

Assume that two kernels C± satisfies the standard hypothesis: Con-
servation of mass momentum and energy and H theorem then for
smooth solutions one has with well prepared initial data:

〈C±(f±)〉 = 0⇒ d

dt

∫
Ω
〈f±〉(x , t)dx = 0

⇒
∫

Ω
〈f−〉(x , t)dx =

∫
Ω
〈f+〉(x , t)dx = M0

And the elliptic problem (with Neumann or periodic boundary data)

−∆φ = 〈f+〉 − 〈f−〉 ∂~nφ|∂Ω = 0 ,
∫

Ω
φ(x)dx = 0

is well posed.

Claude Bardos About Maxwell Boltzmann Relation.



Proof of the “soft theorem" Conservation of Energy

Use 〈C±(f±) |v |
2

2 〉 = 0 and obtain formally

d

dt
(

∫
Ω

(〈 |v |
2

2
(f− + f+)〉+

1
2
|∇xφ(x , t)|2)dx = 0∫

Ω
(〈 |v |

2

2
(f− + f+)〉+

1
2
|∇xφ(x , t)|2)dx = E0

For the Ions problem with the Boltzmann Maxwell Relation

f−(x , v , t) ' (
β(t)

2π
)
d
2 e−β(t)( |v|

2

2 −φ(x ,t))

m0d

β(t)
+

1
2

∫
Ω
|∇xφ(x , t)|2dx = E0 −

∫
Ω

|v |2

2
〈f+〉dx .
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Proof of the “soft theorem" Stationnary solution

Theorem
Under a Korn Hypothesis any local Maxwellian

f−(x , v) = ρ(x)(
β(x)

2π
)
d
2 e−β(x)( |v−u(x)|2

2

solution of the equation:

{E , f−} = v · ∇x f− +∇xφ · ∇v f− = 0

is of the following form:

f−(x , v) = (
β

2π
)
d
2 e−β( |v|

2

2 −φ(x))
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For any smooth vector u : Ω 7→ Rd with u · n = 0 one has

‖∇u +∇ut

2
‖L2(Ω) ≥ K (Ω)‖∇u‖2L2(Ω) (1)

is generally valid.
It holds for the flat torus Td and in dimension 2 and 3 if Ω has no
axis of symmetry.

Cf. Proposition 13. of Desvillettes and Villani. Invent. Math. 159
(2005) and Desvillettes and Villani ESAIM: Control, Optimisation
and Calculus of Variations June 2002, Vol. 8.
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Proof II

f− is a Maxwellian

f−(x , v) = ρ(x)(
β(x)

2π
)
d
2 e−β(x)( |v−u(x)|2

2 )

∇x f− = f−

(
(
∇xρ(x)

ρ(x)
− d

2
∇xβ

β
) + β(x)∇xu · (v − u(x))

− |v − u(x)|2

2
∇xβ

β

)
.

∇v f−(x , v , t) = −β(v − u))f−

⇒ (B × v)∇v f− = −βB × v · (v − u)f− = −β(B × u)(v − u)f−
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Proof III Identification of the Terms of Order
3, 2, 1, 0 in (v − u).

Order 3 (v − u)|v − u|2 ⇒ ∇xβ = 0 ,
Order 2 (v−u)∇xu·(v−u) ⇒ ∇xu+∇xut

2 = 0 With Korn inequality
⇒ ∇u = 0 ,
Order 1 (v − u)⇒ ⇒ (∇xρ(x ,)

ρ(x) − β(∇φ+ B ∧ u)) = 0
Order 0 u · ∇x log ρ(x) = 0 .
With ∇β = 0 and u = 0 (u constant and tangent to the boundary)
only remain the equations:

∇ log(ρ(x)) = β(φ(x)⇒ f−(x , v) = (
β

2π
)
d
2 e−β( |v|

2

2 −φ(x))

with φ changed into φ+ (log constante)/β
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Determination of β through energy conservation

Theorem

Let Ω ⊂ Rd
x be a bounded domain and E > 0. Fix a nonnegative

ion density I (x) ∈ L2(Ω) with finite mass m0. Then, there exists a
unique solution (β, φ) to the following elliptic problem:

−∆φ+ eβφ = I (x),
∂φ

∂n |∂Ω

= 0 (2)

together with the mass and energy constraints

m0d

β
+

1
2

∫
Ω
|∇xφ(x , t)|2dx = E

Below Sentis direct proof. Idea The energy is an increasing function
of the temperature.
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For each fixed β > 0, the elliptic problem has a unique solution
φβ ∈ H2(Ω) with total mass m0 and “energy"

E(β) =
m0d

β
+

1
2

∫
Ω
|∇xφ

β(x , t)|2dx

and derivative solution of

−e−βφβ∆∂βφ
β + β∂βφ

β = −φβ ,
∂∂βφ

β

∂n |∂Ω

= 0

Hence

∂βE(β) = −m0d

β2 +

∫
Ω
∇xφ

β∇x∂βφ
βdx = −m0d

β2 −
∫

Ω
φβ∆x∂βφ

βdx

= −m0d

β2 −
∫

Ω
e−βφ

β
(∆x∂βφ

β)2dx + β

∫
Ω
∂βφ

β∆x∂βφ
βdx

= −(
m0d

β2 +

∫
Ω
e−βφ

β
(∆x∂βφ

β)2dx + β|∇x∂βφ
β|2dx) ≤ 0
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End of determination of β

For the existence
1 One has E(β) > (m0d)β−2 ⇒ limβ→0 E(β) =∞
2 From the elliptic equation for φβ ,∫

Ω
|∇φβ|2dx =

∫
Ω

(
I (x)φβ(x)− eβφ

β
φβ
)
dx

≤
∫
{φβ≥0}

(I (x)φβ(x)− eβφ
β
φβ)dx − 1

β

∫
{φβ≤0}

eβφ
β
βφβdx .

x ≥ 0⇒ ex ≥ x ⇒∫
{φβ≥0}

(I (x)φβ(x)− eβφ
β
φβ)dx ≤ ‖I‖L2‖φβ‖L2 − β‖φβ‖2L2 ≤

1
2β
‖I‖2L2

x ≤ 0⇒ xex ≤ e−1 ⇒
1
β

∫
{φβ≤0}

eβφ
β
βφβdx ≤ |Ω|e

−1

β
.

Therefore limβ→∞ E(β) = 0 and existence of β follows.
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Uniform regularity assumptions: URA

In the ions equation there is no non linear relaxation term the solution
remain f ε+ remain bounded in any Lp(Ω×Rd

x ) . The energy remains
bounded. Therefore the only hypothesis needed is the convergence
of this energy

For almost every t ∈ (0,T ) lim
ε→0

∫
Ω
〈 |v |

2

2
f ε+(t)〉dx →

∫
Ω
〈 |v |

2

2
f
ε
+(t)〉dx

For the electrons because the role of the collision operator is essential
the situation is more subtle and one has to assume the convergence
of f ε− almost everywhere, and the uniform integrability ( a strong
assumption?):

f ε− ≤ Ce−δ|v |
m

Claude Bardos About Maxwell Boltzmann Relation.



End of proof of the soft theorem

With η−(ε) > 0 and bounded, lim(Stε−)−1ηε− →∞ start from

∂t f
ε

+ + v · ∇x f
ε

+ −∇xφε · ∇v f
ε

+ = 0 (3a)
Stε−∂t f

ε
− + v · ∇x f

ε
− +∇xφε · ∇v f

ε
− = ηε−C−(f ε−) (3b)

− λ2∆φε = 〈f ε+(t)〉 − 〈f ε−〉 (3c)

the corresponding standard estimates and the Uniform regularity as-
sumption.∫

Ω
〈f ε+(t)〉dx =

∫
Ω
〈f ε−(t)〉dx = m0 ; (4a)

0 ≤ f ε+(x , v , t) = sup
x ,v

f ε+(x , v , 0) (4b)∫
Ω
〈 |v |

2

2
f ε+(t)〉+ 〈 |v |

2

2
f ε−(t)〉+

1
2

∫
Ω
|∇xφ

ε|2dx = E0 (4c)

which imply in particular the uniform bound:

‖φε(t)‖
W 2, d+2

2
, ‖∂tφε(t)‖

W 1, d+2
2
≤ C0
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Then one deduces that (f ε−, f
ε

+, φ
ε) converge (in a weak sense ) to

(f
ε
−, f

ε
+, φ

ε
) and that (f

ε
+, φ

ε
) are solution of the system:

∂t f
ε
+ + v∇x f

ε
+ −∇v (∇xφ

ε
f
ε
+) = 0 (5)

− λ2∆φε = 〈f ε+〉 − 〈f
ε
−〉 (6)

Multiply (3b ) by log f ε− and integrate over Ω×Rd
v ×(0,T ) to obtain:

0 ≤ −
∫ T

0

∫
Ω
〈C−(f ε−) log f ε−〉dxdt

≤
Stε−
ηε−

(

∫
Ω
〈f ε− log f ε−〉(x , 0)dx −

∫
Ω
〈f ε− log f ε−〉(x ,T )dx)→ 0

(7)

Then with the uniform regularity hypothesis and the H theorem f
ε
−

is a local Maxwellian Mρ,u,θ .
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Letting ε→ 0 in the equation

Stε−∂t f
ε
− + v · ∇x f

ε
− +∇xφ

ε
ε · ∇v f

ε
− = ηε−C−(f ε−) (8)

one obtains:

v · ∇xMρ,u,θ +∇xφε · ∇vMρ,u,θ

= lim
ε→0

v · ∇x f
ε
− +∇xφε · ∇v f

ε
−

= lim
ε→0

(ηε−C−(f ε−)− Stε−∂t f
ε
−) = 0 .

(9)

Under the uniform regularity hypothesis the last term of (9) con-
verges to 0 (at least in a weak sense) and this implies that

Mρ,u,θ = (
β(t)

2π
)
d
2 e−β(t)( |v|

2

2 −φ(x ,t)), (10)

Claude Bardos About Maxwell Boltzmann Relation.



Eventually taking the limit in the energy conservation equation:∫
Ω
〈 |v |

2

2
f ε+(t)〉+ 〈 |v |

2

2
f ε−(t)〉+

1
2

∫
Ω
|∇xφ

ε|2dx = E0 (11)

one reaches the reduced Ions system:

m0d

β(t)
+

1
2

∫
Ω
|∇xφ

ε
(x , t)|2dx = E0 −

∫
Ω

|v |2

2
〈f ε+〉dx

− λ2∆φ
ε

+ eβ(t)φ
ε

= 〈f ε+〉
St+∂t f

ε
+ + v · ∇x f

ε
+ −∇xφ

ε · ∇v f
ε
+ = 0 .

(12)
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About Unconditionnal Statements I

• The biggest issue is the “stability " of the solution of the electron
equation:

Stε−∂t f
ε
− + v · ∇x f

ε
− +∇xφε · ∇v f

ε
− = η−(ε)C−(f ε−) (13)

The simultaneous presence of a Boltzmann type collision term that
will relax to equilibrium and of large time asymptotic with the relation

lim Stε−
−1η−(ε) =∞

seems compulsory and in agreement with the physical scalings.
Even for the genuine Boltzmann equation (no φ ) there is no general
results and perturbations near an absolute maxwellian, because they
involve the large time behaviour would handle only the trivial case
φ = 0.
Moreover in the above derivation the conservation of energy is a
crucial factor.
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About Unconditionnal Statements II

At the present stage two type of results are available.
• The existence and uniqueness result for the reduced ions system.
At variance with the oldest simple construction of weak solution of
Vlasov equation here the compulsory conservation of energy requires
a construction preserving some regularity.

• An Arnold stability both for the reduced ions problem and for the
full system result because it is robust under weak limit (like the
standard weak strong stability of compressible or incompressible Euler
equation).
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Well posedness of the reduced ions problem

Theorem (Existence of weak solutions)

Assume that initial data f0,+ ∈ L1 ∩ L∞, compactly supported in v .
There exists a time T > 0 so that weak solutions (f+, φ, β) to the
ion problem so that f+ remains compactly supported in v and
satisfies the estimates:

f+ ∈ C (0,T ; L1 ∩ L∞(Ω× Rd)), ρ+ ∈ C (0,T ; L1 ∩ L∞(Ω)),

the electric field E = −∇φ ∈ C (0,T ; L∞(Ω)), and β ∈ L∞([0,T ]).
The solution can be extended globally in time for d = 1, 2, 3.

The non trivial part is the fact that the solutions remains of compact
support in v . A priori estimates are given then the rest of the proof
involves a classical iteration
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1 Boundedness of β(t)

d

dt

∫∫
Ω

|v |2

2
f+(x , v , t) dvdx =

∫
Ω
φ∇ · 〈vf+〉dx = −

∫
Ω
φ∂t〈f+〉

1
2
d

dt

∫
Ω
|∇φ|2 dx = −

∫
Ω
φ∆φt =

∫
Ω
φ∂tρ+ −

∫
Ω
φ∂te

βφ ⇒

1
2
d

dt

∫
Ω

(〈 |v |
2

2
f+(x , v , t)〉+ |∇φ|2 dx) = −

∫
Ω
φ∂te

βφ = − 1
β

∫
Ω
βφ∂te

βφ Êmass conservation!

= − 1
β
∂t

∫
Ω

(βφ− 1)eβφ dx = − 1
β
∂t

∫
Ω
βφeβφ dx

− m0d

β2 ∂tβ(t) +
1
2
d

dt

∫
Ω

(〈 |v |
2

2
f+(x , v , t)〉+ |∇φ|2 dx) = 0

∂t(mod log β(t) +

∫
Ω
βφeβφ dx) = 0 !!!
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II More Estimates on the elliptic problem 1

The Vlasov dynamic preserves the L∞ norm of f+(x , v , t) and with

m0d

β(t)
+

∫
Ω

|v |2

2
〈f+〉dx +

1
2

∫
Ω
|∇xφ(x , t)|2dx = E0

one has sup
t≥0
‖ρ+(·, t)‖

L
d+2
d (Ω)

≤ C and β(t) ≥ m0d

E0

Multiplying by e(p−1)β(t)φ (−∆φ+ eβ(t)φ = 〈f+(t)〉) one obtains:

(p−1)β(t)

∫
Ω
e(p−1)β(t)φ|∇φ|2 dx+

∫
Ω
epβ(t)φ dx

≤ ‖〈f+(·, t)〉‖Lp‖epβ(t)φ‖
p−1
p

L1

⇒ 1 ≤ p ≤ ∞ ‖epβ(t)φ‖Lp ≤ ‖〈f+(·, t)〉‖Lp

+ellipticicity‖E = ∇φ‖L∞ ≤ C‖〈f+(·, t)〉‖
1
d

L1‖〈f+(·, t)〉‖
d−1
d

L∞
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III The Liouville Dynamic for Ions. A standard a-priori
estimate for Vlasov equation.

The solution f+(x , v , t) of the ions equation is the pushforward of
f+(x , v , 0) by the flow given by the equations

Ẋ (s) = V (s) V̇ (s) = −∇xφ(X (s))

and the specular reflexion when ever X (s) meets ∂Ω. Hence one has

||V (t)| − |V (0)|| ≤
∫ t

0
sup
x∈Ω
|∇φ(x , s)|ds

≤ C

∫ t

0
‖〈f+(·, s)〉‖

1
d

L1‖〈f+(·, s)〉‖
d−1
d

L∞ ds

(14)

Then with |v | ≥ K0 ⇒ f+(x , v , 0) = 0 one has

f+(x , v , 0) = 0 for |v | ≥ K0 ⇒ f+(x , v , t) = 0⇒

‖〈f+(·, t)〉‖L∞ ≤ C0(K0 +

∫ t

0
‖∇φ(·, s)‖L∞ ds)d
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Gronwall type a priori estimate:

Hence for X (t) = (‖〈f+(·, t)〉‖L∞)
1
d (for d = 2) a linear and for

(d > 2) a non linear Gronwall estimate:

‖〈f+(·, t)〉‖
1
d
L∞ ≤

≤ C0(K0 +

∫ t

0
(‖〈f+(·, s)〉‖

1
d
L∞)d−1 ds

⇒ X ≤ C0 + C0

∫ t

0
X d−1(s)ds

(15)

Moreover for d = 3 the estimate can be made global following the
proof of Schaeffer for the classical Vlasov equation or of Pallard in
a periodic box. Pallard, Christophe A refined existence criterion for
the relativistic Vlasov-Maxwell system. Commun. Math. Sci. 13
(2015), no. 2, 347−354.
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A Priori Estimate from Averaging Lemma

∂t f+ + v · ∇x f+ = −∇v (Ef+).

E ∈ L∞ and f ∈ L1 ∩ L∞.

‖f+‖2L2(0,T ;L2(Ω×R3)) ≤ ‖f+‖L∞‖f+‖L1(0,T ;L1(Ω×R3)) ≤ ‖f+‖L∞‖ρ+‖L1(0,T )×Ω

and

‖Ef+‖L2(0,T ;L2(Ω×R3)) ≤ ‖E‖L∞‖f+‖L2(0,T ;L2(Ω×R3)).

⇒
∫
R3

f+(t, x , v)ϕ(v) dv ∈ H1/4((0,T )× Ω)

together with the uniform bound∥∥∥∫
R3

f+(·, ·, v)ϕ(v) dv
∥∥∥
H1/4((0,T )×Ω)

≤ Cϕ‖E‖L∞‖f+‖L2(0,T ;L2(Ω×R3))

for any test function ϕ(v) in C∞c (R3).
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Construction of a solution by iteration I

Start from (βn, φn) solution of the elliptic problem

−∆φn + eβnφn = 〈fn(x , v , t)〉 = ρn(t)∫
Ω
eβnφn dx = m0

m0d

βn
+

1
2

∫
Ω
|∇φn|2 dx = E0 −

∫
Ω
〈 |v |

2

2
fn(x , v , t)〉dx = En(t)

Then construct fn+1 by solving the linearized Vlasov equation

∂t fn+1 + v · ∇x fn+1 −∇xφn · ∇v fn+1 = 0

with the same initial data fn+1(x , v , 0) = f0,+(x , v) and now
with density and energy (ρn+1(t), En+1(t)) .
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Construction of a solution by iteration I

Modulo extraction of a subsequence (fn(x , v , t), ρn(x , t), E(t), β(t)
and φn(x , t) weakly converge and satisfy all the above a priori esti-
mates!!!
With the averaging lemma and the fact that support of fn(x , v , t)
remains bounded in velocity space the functions ρn(x , t) and En(t)
converge almost every where .
With the uniqueness of the solution of the elliptic problem

(ρ(x , t), E(t)) 7→ (β(t), φ(x , t))

same is true for the sequence (βn(t), φn(x , t))!!

Claude Bardos About Maxwell Boltzmann Relation.



Uniqueness of the solution for the reduced ions problem

We same type of estimates one has the following

Theorem (Uniqueness)

Let T > 0. There exists at most one weak solution (f+, φ, β) to the
ion problem with v -compactly supported initial data f0,+ so that

sup
t∈[0,T ]

sup
x∈Ω
‖∇v f1‖L2(Rd ) +

∫ T

0
‖∇φ(s, ·)‖L∞(Ω) ds <∞. (16)

Remark

The estimate
∫ T
0 ‖∇φ(s, ·)‖L∞(Ω) ds <∞. has been established

above under the only hypothesis that initial data be of compact
support in v space.
The hypothesis supt∈[0,T ] supx∈Ω ‖∇v f1‖L2(Rd ) <∞ would be
trivial in the absence of boundary effect but up to now not so clear
in the presence of specular reflection!
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Arnold type stability results

• With the a-priory estimates one can get global in time non lin-
ear stability results. Such results seem useful because the estimate
persist are remain valid for weak limits of solutions.

• In many cases the Boltzmann Maxwell relation is used with a pre-
scribed time independent ?. Hence it is convenient to validate this
choice.
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Arnold Stability for the Electrons.

For the stability of the electrons with a given constant ion density
and specular reflexion boundary condition

∂t f + v · ∇x f +∇xφ · ∇v f = C−(f )

−∆φ+ 〈f (t)〉 = I (x)
(17)

near a stationary Boltzmann-Maxwell solution , with the relative en-
tropy

H(f |f ) :=

∫∫
Ω×R3

[
f log

( f
f

)
− f + f

]
(x , v) dxdv ,

one has:
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Theorem

Let (f , φ) be any stationary solution :

f (x , v) = (
β

2π
)d/2e−β( |v|

2

2 −φ(x)) , −∆φ+ eβφ = 〈f 〉 (18)

and (f , φ) be any weak solution of the system (17) then:

d

dt
(H(f |f ) +

β

2

∫
Ω
|∇φ−∇φ|2 dx) = D(f )

with D(f ) := −
∫

Ω
〈C+(f ) log f 〉dx

(19)
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Proof.
d

dt
H(f |f ) + D(f ) = −

∫
Ω
〈(1 + log f )∂t f (x , v , t)〉 dx

=

∫
Ω
〈(1 +

d

2
log(

β

2π
)− β(

|v |2

2
− φ))∂t f (x , v , t)〉 dx

= −β
∫

Ω
∂t〈
|v |2

2
f (x , v , t)〉 − φ∂t〈f (x , v , t)〉dx

= β

∫
Ω3

(∇xφ−∇xφ) · 〈vf 〉 dx

= β

∫
Ω

(φ− φ)∂t〈f 〉 dx = −β
2
d

dt

∫
Ω
|∇φ−∇φ|2 dx

⇒ d

dt
(H(f |f ) +

∫
Ω
|∇φ−∇φ|2 dx) + D(f ) ≤ 0
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Starting from

(f ε−, f
ε

+)⇒ ((
β(t)

2π
)
d
2 e−β(t)( |v|

2

2 −φ(x ,t)), f+(x , v , t))

− λ2(ε)∆φ+ eβ(t)φ(x ,t) = 〈f+(t)〉 ∂~nφ = 0 on ∂Ω ,

∂t f+ + v · ∇x f+ −∇xφ · ∇v f+ = 0 .∫
Ω

|v |2

2
〈f+(t)〉dx +

m0d

β(t)
+

1
2

∫
Ω
|∇xφ(x , t)|2dx = E0 .

One may consider the formal quasi neutral limit λ2(ε) → 0 . That
would give:
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eβ(t)φ(x ,t) = 〈f+(t)〉 ,

∂t f+ + v · ∇x f+ −∇x

(
1

β(t)
log〈f+〉

)
· ∇v f+ = 0 .∫

Ω

|v |2

2
〈f+(t)〉dx +

m0d

β(t)
+

1
2β2(t)

∫
Ω
|∇x log〈f+〉|2dx = E0 .

For this limit the problem may be ill posed. Well posed with a simple
bump, in 1d a Penrose criteria and uniformly with respect to ε by a
generalization of this Penrose criteria.!!!!
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Basic reference:
Han-Kwan, Daniel; Rousset, Frédéric Quasineutral limit for Vlasov-
Poisson with Penrose stable data. Ann. Sci. Ec. Norm. Supr. (4)
49 (2016), no. 6, 1445D/21495.
Less sophisticated
Bardos, Claude; Besse, Nicolas Hamiltonian structure, fluid represen-
tation and stability for the Vlasov-Dirac-Benney equation. Hamilto-
nian partial differential equations and applications, 1−30, Fields Inst.
Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015.
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