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Vlasov matter in general relativity

Suppose a fixed spacetime with metric gαβ is given. Let m be the
mass of the particles to be described, and denote by P the mass
shell, which is the subset of the tangent bundle of spacetime given
by the equation gαβp

αpβ = −m2.

The unknown in the Vlasov equation is the phase space density of
particles f which is a non-negative function on P. The geodesic
flow of gαβ defines a vector field on the tangent bundle which is
tangent to P and so can be restricted to it. Denote the restricted
vector field by X . The Vlasov equation then reads Xf = 0.

As we will see below, the density f gives rise to an
energy-momentum tensor and the Vlasov equation can then be
coupled to the Einstein equations and the Einstein-Vlasov (EV)
system results.
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Dust from Vlasov

The Vlasov equation is linear in f and distributional solutions make
sense. One class of distributional solutions is given by

f (xγ , pa) = −u0|g |−1/2ρ(xγ)δ(pa − ua),

where ρ ≥ 0 and ua(xγ) is a mapping from spacetime into the
mass shell and u0 is given by ua from the mass shell relation.

Solutions of the EV system where the phase space density f has
this form are in one-to-one correspondence with dust solutions of
the Einstein equations with density ρ and four-velocity uα.

Dust may thus be considered as a singular case of matter
described by the Vlasov equation.
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Criticism raised by Alan Rendall ’92

Shapiro and Teukolsky first made simulations for the
Vlasov-Poisson (VP) system. They then generalized this code
to the relativistic case.

In their VP code they took data close to dust (since the dust
solution is known) and found that the kinetic energy and the
potential energy diverge as the singularity was approached.

Shapiro and Teukolsky considered this as support for the
reliability of their numerical code. Dust and Vlasov matter,
however, behave very differently in some situations.

Pfaffelmoser and Lions/Perthame showed in the early ’90s
that global existence holds for the Vlasov-Poisson system. In
particular, the kinetic energy and the potential energy do not
blow up.
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Remark

Chul-Moon Yoo et al. recently published a new simulation
with no conclusive result.

In a collaboration project with Ellery Ames and Oliver Rinne
we have developed an axisymmetric code and one aim is to
make an independent study of the simulation by Shapiro and
Teukolsky.
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Motivation 2.0 (main motivation for this project)

As we will discuss in some detail soon the Einstein-Dust system
can be solved in a semi-explicit way. The data can be divided into
type (a) and type (b) where:

data (a) form trapped surfaces, and thus black holes

data (b) form naked singularities

Our main aim is to study the EV system with data close to either
type (a) or type (b).

For data of type (a) the aim is to show that also solutions of the
EV system develop trapped surfaces and for data close to type (b)
the aim is also to show that trapped surfaces form to rule out
naked singularities.
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Dust collapse in general relativity

The Oppenheimer-Snyder collapse from 1939 has had an immense
impact in general relativity.

A huge literature on dust collapse has since then been produced.
In these works so called co-moving coordinates are used.

In kinetic theory the movement of the particles is complex and one
cannot speak about co-moving coordinates literally. However, in
order to compare solutions for dust and for the EV system it is
very convenient to use the same type of coordinates.

Hence, in my present project with Gerhard Rein we have used
these coordinates also for the EV system.
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Metric

The metric reads:

ds2 = − dt2 + e2λ(t,r)dr2 + R2(t, r)
(
dθ2 + sin2 θ dϕ2

)
.

Asymptotic flatness means that the metric quantities λ and R
satisfy the boundary conditions

lim
r→∞

λ(t, r) = 0, lim
r→∞

R(t, r)

r
= 1.

A regular center requires that

lim
r→0

reλ(t,r)

R(t, r)
= 1.
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The Einstein equations

For a metric of this form the non-trivial components of the
Einstein equations

Gαβ = 8πTαβ

are found to be

2RRtλt + 2Re−2λRrλr + R2
t − 2Re−2λRrr − e−2λR2

r + 1 = 8πR2T00, (1)

Rrλt − Rrt = 4πRT01, (2)

−2Re2λRtt − e2λR2
t + R2

r − e2λ = 8πR2T11, (3)

−Rλ2
t − Rtλt − Rλtt − Rtt − e−2λRrλr + e−2λRrr =

8π

R
T22; (4)

the also non-trivial 33 component is a multiple of the 22
component.
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The Vlasov equation

The Vlasov equation reads

∂t f + e−λ
w

p0
∂r f +

(
−wλt +

e−λRrL

R3p0

)
∂w f = 0,

where

p0 =

√
1 + w2 +

L

R2
, w := e−λp1, L := (p2)2 +

1

sin2 θ
(p3)2.

In order to close the system we have to define the energy
momentum tensor in terms of f and the metric. In general,

Tαβ = |g |−1/2

∫
pαpβf

dp1dp2dp3

p0
,

where |g | denotes the modulus of the determinant of the metric.

Håkan Andréasson



Energy momentum tensor

In the above coordinates and using the restriction to the mass shell,

T00(t, r) =
π

R2

∫ ∞
−∞

∫ ∞
0

p0f (t, r ,w , L) dL dw =: ρ(t, r),

T01(t, r) = − π

R2
eλ
∫ ∞
−∞

∫ ∞
0

wf (t, r ,w , L) dL dw =: −eλj ,

T11(t, r) =
π

R2
e2λ

∫ ∞
−∞

∫ ∞
0

w2

p0
f (t, r ,w , L) dL dw =: e2λp,

T22(t, r) =
π

2R2

∫ ∞
−∞

∫ ∞
0

L

p0
f (t, r ,w , L) dL dw =: q.

Rmk: For dust j = p = q = 0.
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The dust case

The Einstein-dust system consists of the Euler equations

uα∇αuβ := uα
(
∂αuβ − Γγαβuγ

)
= 0, (5)

uα∇αρ+ ρ∇αuα = 0 (6)

coupled to the Einstein equations with energy momentum tensor

Tαβ = ρuαuβ. (7)

Here ρ is the energy density and uα is the four velocity.
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We use comoving coordinates and require that the four velocity
field initially is given by

uα|t=0 = (1, 0, 0, 0), uα|t=0 = (−1, 0, 0, 0).

Since Γ0
0β = 0 for a metric of the form (1),

uα = (1, 0, 0, 0), uα = (−1, 0, 0, 0)

solves (5). The energy momentum tensor takes the form

T00 = ρ, Tαβ = 0 for (α, β) 6= (0, 0),

and the continuity equation (6) becomes

∂tρ+

(
∂tλ+ 2

∂tR

R

)
ρ = 0.
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Solution of the Einstein-dust system

As initial condition we prescribe ρ(0, r) = ρ̊(r), R(0, r) = R̊(r) and
∂tR(0, r) = v̊(r). Given these we define

F (r) := 8π

∫ r

0
R̊2(s)R̊ ′(s)ρ̊(s) ds =: 2m̊(r),

and

W−2(r) := (v̊(r))2 + 1− F (r)

R̊(r)
.

Let R = R(t, r) solve the master equation

∂tR(t, r) = −

√
F (r)

R(t, r)
+ W−2(r)− 1,

then λ and ρ are given by

eλ(t,r) = W (r) ∂rR(t, r),

ρ(t, r) =
R̊2(r)R̊ ′(r)

R2(t, r)∂rR(t, r)
ρ̊(r).
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Solving the master equation

The master equation reads

∂tR(t, r) = −

√
F (r)

R(t, r)
+ f (r), (8)

where f (r) = (W (r))−2 − 1.

Using separation of variables the following function turns up:

G (y) :=


arcsin

√
y

y3/2 −
√

1−y
y , 0 < y ≤ 1,

2
3 , y = 0,

−arcsinh
√
−y

(−y)3/2 −
√

1−y
y , −∞ < y < 0.
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If we define

t0(r) :=
R̊(r)3/2G

(
− R̊(r)f (r)

F (r)

)
√
F (r)

then for 0 ≤ t ≤ t0(r), r > 0 the implicit relation

t0(r)− t =
R3/2G

(
−Rf (r)

F (r)

)
√
F (r)

defines the desired solution to (8).

Since limt→t0(r) R(t, r) = 0, t0(r) is the coordinate time at which
the solution blows up at r which is the time by which the dust
particle which started out initially at r has reached the center.
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Trapped surfaces

The general condition for a trapped surface in the given
coordinates is that along all radial null geodesics

d

dτ
R(t, r) =

dt

dτ

(
∂tR + ∂rR

dr

dt

)
< 0,

which for dust results in the condition R(t, r) < F (r) = 2m̊(r).

If we take initial data with no trapped surface, there is a unique
time tH(r) ∈ (0, t0(r)) such that R(tH(r), r) = F (r), given by the
relation

t0(r)− tH(r) = F (r)G (−f (r)).

tH(r) characterizes the time when an apparent horizon forms at r .

Hence we have derived expressions for both the blow up time t0(r)
and the time when a trapped surface forms tH(r).
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The Oppenheimer-Snyder solution

A special case is the Oppenheimer-Snyder solution for which
W (r) ≡ 1 and

ρ̊ = c 1[0,1].

Then

F (r) = 2m̊(r) =
8π

3
cr3,

and

R(t, r) =
(

1−
√

6πc t
)2/3

r ,

which is the expected Friedmann form;

t0(r) =
1√
6πc

, tH(r) =
1√
6πc
− 16πc

9
r3.
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Remark on stability and instability

A general feature of the dust solutions is that they form trapped
surfaces and blow up in finite time. In particular, for the
Oppenheimer-Snyder solution both t0(r) and tH(r) are explicitly
given.

Moreover, note that the amplitude c of the constant density can
be taken arbitrary small. Still a trapped surface and blow up occur
in finite, but longer, time. Hence, the Einstein-Dust system might
be said to be unstable.

How does this relate to the stability results for the EV system?
Recall the results:

Rein and Rendall ’92 in spherical symmetry.

Lindblad and Taylor ’17 in the general case

Fajman, Joudioux and Smulevici ’17 in the general case

Håkan Andréasson



Roughly, to approximate dust we choose

f̊ (x , v) = hε(v)ρ̊(x),

where hε is approximating a Dirac delta function, and
ρ̊(x) = c1[0,1].

Hence we have two parameters, ε and c . If we fix c and let ε→ 0
then f̊ →∞, whereas if we fix ε and let c → 0 then f̊ → 0.

In the former case the above stability results do not apply whereas
in the latter they do.

This simple observation shows a fundamental difference between
dust and Vlasov matter!
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Remark on naked singularities

In the Oppenheimer-Snyder collapse the density is homogeneous
within the matter; ρ(t, r) = ρ(t). It is well-known that
inhomogeneous data can be prescribed which lead to naked
singularities for dust.

Numerically this was first studied by Eardley and Smarr in 1979
and then a rigorous proof was given by Christodoulou 1984:

Time functions in numerical relativity: Marginally bound dust
collapse, Phys. Rev. D 19, 2239 (1979).

Violation of Cosmic Censorship in the Gravitational Collapse
of a Dust Cloud, Commun. Math. Phys. 93, 171-195 (1984).

Recall that one of the aims of the present project is to show that
the naked singularities will not be present if dust is replaced by
Vlasov matter. (This is still an open issue.)
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Main result

A loose formulation of our main result reads as follows.

Theorem

Let an Oppenheimer-Snyder solution be given with blow-up time
t0. Then for any T < t0 there is initial data for the Einstein-Vlasov
system such that the corresponding solution exists on [0,T ] and
the solution is arbitrary close to the Oppenheimer-Snyder solution.
In particular a trapped surface forms in the evolution and a black
hole spacetime results.
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Thank You!
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