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Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) :=

max
x∈X

‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) :=

max
x∈X

‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) :=

max
x∈X

‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) := max
x∈X
‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) := max
x∈X
‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) := max
x∈X
‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Mixing time of Markov chains (Aldous-Diaconis, 80’s)

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its invariant law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium: d(t) := max
x∈X
‖Pt(x , ·)− π‖tv

d(t)
1
t −−−→

t→∞
λ? = max{|λ| : λ 6= 1 eigenv. of P}

B Relaxation time: trel := 1
1−λ?

B Mixing time: tmix(ε) := min{t ≥ 0: d(t) ≤ ε} (0 < ε < 1)



Lazy random walk on the cycle
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Lazy random walk on the cycle

Xt = ξ1 + · · ·+ ξt mod n, with (ξt)t≥1 i.i.d.

ξt =


+1 w .p. 0.25

0 w .p. 0.5
−1 w .p. 0.25

I CLT:
Xbλn2c

n
d−−−→

n→∞
N
(

0,
λ

2

)
mod 1

I LLT: nP
(
Xbλn2c = bnuc

)
−−−→
n→∞

fλ(u)

I Corollary: dn(bλn2c) −−−→
n→∞

1

2

∫ 1

0
|1− fλ(u)| du
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Lazy random walk on the cycle

B Convergence to stationarity occurs gradually on timescale Θ(n2)
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Lazy random walk on the hypercube

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1101

1100

1010

1110

1011

1111



Lazy random walk on the hypercube

I Start with the vector of n ones: X0 = (1, 1, . . . , 1).

I At each step, pick one of the n coordinates uniformly at
random, and replace it with a fresh Bernoulli (12).

I The number Nt of distinct coordinates that have been
refreshed by time t is a coupon collector process

and

P(Xt = x |Nt) = 2−Nt

( ‖x‖
n−Nt

)( n
n−Nt

)

I If t = 1
2n ln n + λn + o(n), then Nt = n − e−λ

√
n + o(

√
n)

I Corollary: dn

(⌊
n ln n

2
+ λn

⌋)
−−−→
n→∞

1

2π

∫ + e−λ
2

− e−λ
2

e−
u2

2 du
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Lazy random walk on the hypercube

B Convergence to stationarity occurs abruptly at t ≈ n log n
2
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The cutoff phenomenon (Aldous-Diaconis ‘86)

A sequence of Markov chains (indexed by n) exhibits cutoff if

∀ε ∈ (0, 1),
t
(n)
mix(1− ε)

t
(n)
mix(ε)

−−−→
n→∞

1.

d(t)

t(ε)t(1-ε)
ε

1-ε
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A few quotes from the Masters (Aldous-Diaconis 86-96)

I The careful work required to prove cutoff often leads to a
more or less complete understanding of the chain such that
essentially any natural question can be answered.

I At present writing, proof of a cutoff is a difficult, delicate
affair, requiring detailed knowledge of the chain, such as all
eigenvalues and eigenvectors. Most of the examples where
this can be pushed through arise from random walk on
groups, with the walk having a fair amount of symmetry.

I It occurs in all the examples we can explicitly calculate, but
we know no general result which says that the phenomenon
must happen for all ”reasonable” shuffling methods.
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Cutoff occurs in various contexts, including

• Card shuffling (Aldous, Diaconis, Shahshahani...)

• Birth-and-death chains (Diaconis, Saloff-Coste...)

• Random walks on finite groups (Chen, Saloff-Coste...)

• Interacting particle systems (Lacoin, Lubetzky, Sly...)

• Random walks on sparse graphs

I Random regular graphs (Lubetzky, Sly ‘10)

I Ramanujan graphs (Lubetzky, Peres ‘15)

I Trees (Basu, Hermon, Peres ‘15)

I Random graphs with given degrees (Ben-Hamou, Berestycki,
Lubetzky, Peres, S., Sly ‘15)

I Random directed graphs (Bordenave, Caputo, S. ‘16)

This phenomenon should be generic rather than exceptional:

“Almost every reasonable chain should exhibit cutoff”
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• Random walks on sparse graphs

I Random regular graphs (Lubetzky, Sly ‘10)

I Ramanujan graphs (Lubetzky, Peres ‘15)

I Trees (Basu, Hermon, Peres ‘15)

I Random graphs with given degrees (Ben-Hamou, Berestycki,
Lubetzky, Peres, S., Sly ‘15)

I Random directed graphs (Bordenave, Caputo, S. ‘16)

This phenomenon should be generic rather than exceptional:

“Almost every reasonable chain should exhibit cutoff”



What about a uniform random n × n stochastic matrix ?

I The rows of Pn are i.i.d. Dirichlet (1, . . . , 1).

P2
n(i , j) =

n∑
k=1

Pn(i , k)Pn(k, j) ≈ 1

n

I Consequently, πn ≈ uniform distribution

and

dn(1) ≈ max
i∈[n]

1

2

n∑
j=1

∣∣∣∣Pn(i , j)− 1

n

∣∣∣∣
 P−−−→

n→∞

1

e

dn(2) ≈ max
i∈[n]

1

2

n∑
j=1

∣∣∣∣P2
n(i , j)− 1

n

∣∣∣∣
 P−−−→

n→∞
0

I Corollary: complete mixing in two steps only, no cutoff !
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A “reasonable” random n × n stochastic matrix Pn

1. Sparse: the mass is concentrated on few entries:

1

n

n∑
i ,j=1

Pn(i , j) log
1

Pn(i , j)
= OP(1)

max
1≤i≤n


n∑

j=1

Pn(i , j)

(
log

1

Pn(i , j)

)2
 = oP(log n).

2. Non-degenerate: most weights are bounded away from 1:

lim sup
n→∞

E

1

n

n∑
i ,j=1

1Pn(i ,j)>1−ε

 −−−→
ε→0

0

3. Exchangeable: swaps within a row preserve the law of Pn.
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Generic cutoff at the “entropic time”

tent(P) :=
log n

H
with H :=

1

n

n∑
i ,j=1

P(i , j) log
1

P(i , j)
.

Theorem. If (Pn) are exchangeable, sparse, non-degenerate, then

1. Pn has a unique invariant law πn w.h.p. as n→∞.

2. For t ∼ λtent(Pn) with λ < 1,

min
i∈[n]

∥∥Pt
n(i , ·)− πn

∥∥
tv

P−−−→
n→∞

1.

3. For t ∼ λtent(Pn) with λ > 1,

max
i∈[n]

∥∥Pt
n(i , ·)− πn

∥∥
tv

P−−−→
n→∞

0.
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Example 1: random walk on random directed graphs

Random d−out model (Adarrio-Berry, Balle, Perarnau ’16):

Each vertex i ∈ [n] picks d out-neighbours uniformly at random.

Pn(i , j) :=

{
1
d if j is an out-neighbour of i

0 else.

Corollary: for any fixed d ≥ 2, w.h.p. Pn exhibits cutoff at time

tn =
log n

log d
.

More generally: may allow for arbitrary degrees (dn,i ), provided

1

n

n∑
i=1

log dn,i = O(1) and 2 ≤ dn,i �
√

log n.
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Example 2: heavy-tailed weights

Random weight model (Bordenave, Caputo, Chafai, Piras ’16):

Take (Xij)1≤i ,j<∞ i.i.d. non-negative and set for all n ≥ 1

Pn(i , j) :=
Xij

Xi1 + · · ·+ Xin
.

Assume regularly varying tail with index α ∈ (0, 1), i.e.

P (X11 > λt)

P (X11 > t)
−−−→
t→∞

λ−α.

Corollary: with high probability, Pn exhibits cutoff at time

tn :=
log n

ψ(1)− ψ(1− α)
where ψ =

Γ′

Γ
.
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Eigenvalues of Pn



Thank you for your attention !


