Introduction Result and perspective Coalescence Fragmentation Noise sensitivity

Scaling limit of dynamical percolation on critical Erdös-Rényi random graphs

Raphaël Rossignol (Univ. Grenoble Alpes)

CIRM, Marseille 2017-10-25

Erdös-Rényi random graphs

- n vertices
- \triangleright E_n : set of edges of the complete graph
- ▶ For $p \in [0,1]$, state of edge e in $\mathcal{G}(n,p)$: present with prob. p
- edges of G(n, p) are independent

The birth of a giant connected component (giant = of size $\Theta(n)$):

- $ightharpoonup p = c/n, c < 1 \Longrightarrow$ no giant component
- ▶ p = c/n, $c > 1 \Longrightarrow \exists$ a unique giant component
- ▶ Critical window: $p = p(n, \lambda) = \frac{1}{n} + \frac{\lambda}{n^{4/3}}, \lambda \in \mathbb{R}$

Erdös-Rényi random graphs

- n vertices
- \triangleright E_n : set of edges of the complete graph
- ▶ For $p \in [0,1]$, state of edge e in $\mathcal{G}(n,p)$: present with prob. p
- ightharpoonup edges of G(n,p) are independent

The birth of a giant connected component (giant = of size $\Theta(n)$):

- $ightharpoonup p = c/n, c < 1 \Longrightarrow$ no giant component
- ▶ p = c/n, $c > 1 \Longrightarrow \exists$ a unique giant component
- ▶ Critical window: $p = p(n, \lambda) = \frac{1}{n} + \frac{\lambda}{n^{4/3}}, \lambda \in \mathbb{R}$

Background: convergence of rescaled components, λ fixed

```
\mathcal{G}^{n,\lambda}:=(\mathcal{C}_1,\mathcal{C}_2,\dots)= sequence of rescaled connected components listed in decreasing order of size, viewed as measured metric spaces: measure = counting measure on vertices \times n^{-2/3} distance = graph distance \times n^{-1/3}
```

Theorem (Aldous'97 + Addario-Berry, Broutin & Goldschmidt'10)

 $(\mathcal{G}^{n,\lambda})$ converges in distribution $(n \to \infty)$ to a random sequence of measured metric spaces (which are \mathbb{R} -graphs) \mathcal{G}_{λ} .

Topology: product of Gromov-Hausdorff-Prokhorov

$$d_{GHP}((X, \mu, d), (X', \mu', d')) := \inf_{\delta \in M(X, Y')} \{\delta_H(X, X') \vee \delta_P(\mu, \mu')\}$$

Background: convergence of rescaled components, λ fixed

```
\mathcal{G}^{n,\lambda}:=(\mathcal{C}_1,\mathcal{C}_2,\dots)= sequence of rescaled connected components listed in decreasing order of size, viewed as measured metric spaces: measure = counting measure on vertices \times n^{-2/3} distance = graph distance \times n^{-1/3}
```

Theorem (Aldous'97 + Addario-Berry, Broutin & Goldschmidt'10)

 $(\mathcal{G}^{n,\lambda})$ converges in distribution $(n \to \infty)$ to a random sequence of measured metric spaces (which are \mathbb{R} -graphs) \mathcal{G}_{λ} .

Topology: product of Gromov-Hausdorff-Prokhorov

$$d_{\textit{GHP}}((X,\mu,d),(X',\mu',d')) := \inf_{\delta \text{ on } X \cup X'} \{\delta_{\textit{H}}(X,X') \vee \delta_{\textit{P}}(\mu,\mu')\}$$

Dynamical percolation, coalescence and fragmentation on $\mathcal{G}(n,p)$

Fix some intensity γ_n

- ▶ Coalescence: create the edge at rate $\gamma_n p$
- Fragmentation: kill the edge at rate $\gamma_n(1-p)$
- Dynamical Percolation: perform coalescence and fragmentation independently

Background: multiplicative coalescent

 $x^{n,\lambda}$:= sequence of masses in $\mathcal{G}^{n,\lambda}$

Under coalescence, connected components i and j, of masses $x_i n^{2/3}$ and $x_j n^{2/3}$ merge at rate

$$\gamma_n p \cdot x_i n^{2/3} \cdot x_j n^{2/3}$$

Choose intensity $\gamma_n = n^{-1/3}$:

i and j merge at rate $\simeq x_i x_j$

→ multiplicative coalescent

Theorem (Aldous '97)

Multiplicative coalescent has the Feller property on $\ell^2(\mathbb{N})$, and $(x^{n,\lambda})_{\lambda\in\mathbb{R}}$ converges as $(n\to +\infty)$ to some version of the multiplicative coalescent (in the sense of fidi).

Background: multiplicative coalescent

 $x^{n,\lambda}$:= sequence of masses in $\mathcal{G}^{n,\lambda}$

Under coalescence, connected components i and j, of masses $x_i n^{2/3}$ and $x_j n^{2/3}$ merge at rate

$$\gamma_n p \cdot x_i n^{2/3} \cdot x_j n^{2/3}$$

Choose intensity $\gamma_n = n^{-1/3}$:

i and *j* merge at rate $\simeq x_i x_j$

→ multiplicative coalescent

Theorem (Aldous '97)

Multiplicative coalescent has the Feller property on $\ell^2(\mathbb{N})$, and $(x^{n,\lambda})_{\lambda\in\mathbb{R}}$ converges as $(n\to +\infty)$ to some version of the multiplicative coalescent (in the sense of fidi).

Dynamical percolation, coalescence and fragmentation on measured \mathbb{R} -graphs

- ▶ Coalescence on a collection of measured metric spaces (X, μ, d) : in Coal (X, \mathcal{P}_t^+) , identify points of \mathcal{P}_t^+ where \mathcal{P}^+ is a Poisson process of intensity $\frac{1}{2}\mu^{\otimes 2} \times \operatorname{leb}_{\mathbb{R}^+}$ on $X^2 \times \mathbb{R}_+$.
- Fragmentation on a collection of \mathbb{R} -graphs (X, d): in $\operatorname{Frag}(X, \mathcal{P}_t^-)$, cut points of \mathcal{P}_t^- where \mathcal{P}^- is a Poisson random set of intensity $\ell_X \times \operatorname{leb}_{\mathbb{R}_+}$ on $X \times \mathbb{R}_+$.
- ▶ Dynamical percolation on a collection of measured \mathbb{R} -graphs (X, μ, d) : perform coalescence and fragmentation, simultaneously and independently (if possible !).

Main result

Choose intensity $\gamma_n = n^{-1/3}$

Theorem (R. 2017+)

The dynamical percolation (resp. coalescence, resp. fragmentation) process on $\mathcal{G}(n, n^{-1} + \lambda n^{-4/3})$ converges in distribution $(n \to \infty)$ to the dynamical percolation (resp. coalescence, resp. fragmentation) process on the limit \mathcal{G}_{λ}

Perspectives (with N. Frilet)

- Scaling limit of dynamical percolation on other random graphs in the basin of attraction of \mathcal{G}_{λ} :
 - configuration model
 - IRG
- ▶ Show that dynamical percolation on \mathcal{G}_{λ} is mixing
 - ⇒ Noise-sensitivity of large components

Structure for the multiplicative coalescent

For every $\varepsilon>0$, there exists $\varepsilon_2\leq \varepsilon_1\leq \varepsilon$ such that with probability larger than $1-\varepsilon$, every component $\mathcal C$ of Coal(x,t) of size at least ε has the following structure

Crown:= $\mathcal{C} \setminus Heart$, $mass(Crown) < \varepsilon_1$

Almost-Feller property for coalescence

Suppose:

- $d_{GHP}(X^{(n)}, X^{(\infty)}) + \|sizes(X^{(n)}) sizes(X^{(\infty)})\|_2 \xrightarrow[n \infty]{} 0$
- (extra-condition) $\forall \varepsilon > 0$,

$$\limsup_{n\infty} \mathbb{P}(\operatorname{diam}(\operatorname{Coal}(X_{<\varepsilon_1}^{(n)},t))>\varepsilon) \xrightarrow[\varepsilon_1 \to 0]{} 0$$

Then $(Coal(X^{(n)},t))_{t\geq 0}$ converges to $(Coal(X^{(\infty)},t))_{t\geq 0}$ in distribution.

Main steps of AdBrGo'10, λ fixed

- ▶ BM with parabolic drift $B_t^{\lambda} := B_t + \lambda t \frac{t^2}{2}$,
- ▶ Reflect it above past minima: $h_t^{\infty,\lambda} := 2(B_t^{\lambda} \min_{0 \le s \le t} B_s^{\lambda})$,
- ▶ The rescaled height $h^{n,\lambda}$ of the exploration process converges in distribution to $h^{\infty,\lambda}$ (Marckert & Mokkadem '03 + AdBrGo'10).
- Additional edges \simeq Poisson point process of intensity 1/2 below $h^{\infty,\lambda}$

Control of the diameter of the crown for $\mathcal{G}(n,p)$

- In depth-first order, a component of the crown is explored in at most two intervals
- $w_n :=$ the modulus of continuity of $4h^{n,\lambda+t}$. Then, w.h.p

diameter of the crown $\leq w_n(\varepsilon_1)$

which goes to zero when ε_1 goes to zero, uniformly in n

Scaling limit for discrete fragmentation on \mathbb{R} -graphs

- ► New distance, with surplus
- ► Feller property
- ► Close to Addario-Berry, Broutin, Goldschmidt and Miermont 2017. Uses Evans, Pitman, Winter to couple Poisson processes
- ⇒ limit of discrete fragmentation and discrete dynamical percolation

Fragmentation vs coalescence

On \mathcal{G}_{λ} , fragmentation is the time-reversal of coalescence.

$$(\mathcal{G}_{\lambda},\mathsf{Coal}(\mathcal{G}_{\lambda},t))\stackrel{(d)}{=}(\mathsf{Frag}(\mathcal{G}_{\lambda+t},t),\mathcal{G}_{\lambda+t})$$

Proof: true for finite n +convergence

Noise sensitivity

 $N_{\varepsilon}(G^{n,\lambda})$: refresh each edge with probability ε . A graph property A_n is ε_n -noise sensitive if

$$\operatorname{Cor}(\mathbb{1}_{A_n}(G^{n,\lambda}),\mathbb{1}_{A_n}(N_{\varepsilon}(G^{n,\lambda}))) \xrightarrow[n\infty]{} 0$$

and ε_n -noise stable if

$$\mathsf{Cor}(\mathbbm{1}_{A_n}(G^{n,\lambda}), \mathbbm{1}_{A_n}(N_{arepsilon}(G^{n,\lambda}))) \xrightarrow[n\infty]{} 1$$

Suppose A_n is a sequence of properties which can be "seen" in the scaling limit

- ▶ Main result $\Rightarrow \varepsilon_n$ -noise stability of A_n when $\varepsilon_n \ll n^{-1/3}$
- ▶ Mixing of dyn. perc. (to be proved) $\Rightarrow \varepsilon_n$ -noise sensitivity of A_n when $\varepsilon_n \gg n^{-1/3}$

Example: having a complex component, being planar

Noise sensitivity

 $N_{\varepsilon}(G^{n,\lambda})$: refresh each edge with probability ε . A graph property A_n is ε_n -noise sensitive if

$$\operatorname{Cor}(\mathbb{1}_{A_n}(G^{n,\lambda}),\mathbb{1}_{A_n}(N_{\varepsilon}(G^{n,\lambda}))) \xrightarrow[n \infty]{} 0$$

and ε_n -noise stable if

$$\mathsf{Cor}(\mathbbm{1}_{A_n}(G^{n,\lambda}), \mathbbm{1}_{A_n}(N_\varepsilon(G^{n,\lambda}))) \xrightarrow[n\infty]{} 1$$

Suppose A_n is a sequence of properties which can be "seen" in the scaling limit

- ▶ Main result $\Rightarrow \varepsilon_n$ -noise stability of A_n when $\varepsilon_n \ll n^{-1/3}$
- ▶ Mixing of dyn. perc. (to be proved) $\Rightarrow \varepsilon_n$ -noise sensitivity of A_n when $\varepsilon_n \gg n^{-1/3}$

Example: having a complex component, being planar

Introduction
Result and perspective
Coalescence
Fragmentation
Noise sensitivity

The End

Thanks !!!