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A planar map is bipartite if all its faces have even degree.

Figure : A bipartite planar map.
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Bipartite planar map

Definition
A planar map is bipartite if all its faces have even degree.

Figure : A pointed rooted bipartite planar map.
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Figure : A map with a boundary.
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Map with a boundary

e Map with a boundary: the face on the right of the root is external.
o Perimeter = degree of the external face.

e Simple boundary = cycle without self-intersection.

Figure : A map with a simple boundary of perimeter 8.
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Boltzmann maps

o M = {bipartite maps}.
* qg=(gk : k > 1) weight sequence.
o Weight of a bipartite map m:

wg(m) := H Qdeg(f)/2-
feF(m)

Figure : A bipartite map m with weight wq(m) = q143q343.
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Boltzmann maps

o M = {bipartite maps}.
* qg=(gk : k > 1) weight sequence.
o Weight of a bipartite map m:

wg(m) := H Qdeg(f)/2-
feF(m)

Definition
g admissible <= Z; := >\ wq(m) < oo.
Boltzmann measure with weight q:

wg(m)

Pg(m) := —5 me M.
q

(Pointed maps version: Pg.)
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Classification of weight sequences

o E§(#V(M)) = average number of vertices under Pg.
© (p(k) : k > 1) = law of (half) the degree of a typical face under PPg.

Definition
Let q be an admissible weight sequence.

q subcritical <= E3(#V(M)) < oo.
q critical < Eg(#V(M)) = cc.
q generic critical <= q critical and Var(u) < occ.

g non-generic critical
of parameter o € (1,2)

e s —

q critical and p([k,00)) ~ C - k=



Enumeration

¢ My = {bipartite maps with a boundary of perimeter 2k}

Figure : An element m € Mg




Enumeration

¢ My = {bipartite maps with a boundary of perimeter 2k}

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (o). Then,

Fi == Z Wq(m)

meM
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Enumeration

¢ My = {bipartite maps with a boundary of perimeter 2k}

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (o). Then,

q subcritical =  a=3/2
q non-generic critical (o) — a=a+1/2

q generic critical = a=5/2
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Enumeration

¢ My = {bipartite maps with a boundary of perimeter 2k}

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (o). Then,

q subcritical = a=3/2 — “type” a=1.
q non-generic critical (o) — a=a+1/2 <«— “type” a € (1,2).

q generic critical = a=5/2 +— “type” a = 2.

B
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Scaling limits of critical Boltzmann maps

o M{ = map with law P, conditioned to have n faces.

[ c>0  ifk=2
Ik = 0 otherwise

Then, My = uniform quadrangulation with n faces.

Theorem (Le Gall 13, Miermont ’13)

In the Gromov-Hausdorff sense,

/8" pa (@),

nl/4 n—c0

— (M, D).

(M, D) = brownian map.
¢ Homeomorphic to the 2-sphere [Le Gall & Paulin '08, Miermont '08].
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Scaling limits of critical Boltzmann maps

o M{ = map with law P, conditioned to have n faces.

[ c>0  ifk=2
Ik = 0 otherwise

Then, My = uniform quadrangulation with n faces.

Theorem (Le Gall 13, Miermont ’13)

In the Gromov-Hausdorff sense,

/8" pa (@),

nl/4 n—c0

— (M, D).

(M, D) = brownian map.
* Homeomorphic to the 2-sphere [Le Gall & Paulin '08, Miermont '08].
* Hausdorff dimension 4 [Le Gall '07].
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The brownian map

Figure : A uniform quadrangulation with 50000 faces, by Jérémie Bettinelli.
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Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Le Gall "13)

Let q be a critical weight sequence such that . has finite
exponential moments. In the Gromov-Hausdorff sense,

(d)
nl —55 M3 =5 (M.D).

(M, D) = brownian map.




Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Marzouk '17)
Let q be a generic critical weight sequence (type o = 2).
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Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Marzouk '17)

Let q be a generic critical weight sequence (type o = 2).
In the Gromov-Hausdorff sense,

(d)
- / 7 M3 =5 (M, D).

(M, D) = brownian map.




Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Le Gall & Miermont '11)
Let q be a non-generic critical weight sequence a € (1,2).




Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Le Gall & Miermont '11)

Let q be a non-generic critical weight sequence a € (1,2).
Along a subsequence, in the Gromov-Hausdorff sense,

Mg =S (Ma, Dy).

1/2a




Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Le Gall & Miermont '11)

Let q be a non-generic critical weight sequence a € (1,2).
Along a subsequence, in the Gromov-Hausdorff sense,
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Scaling limits of critical Boltzmann maps

¢ p = law of (half) the degree of a typical face under PPg.

* My = map with law Py conditioned to have n faces.

Theorem (Le Gall & Miermont '11)

Let q be a non-generic critical weight sequence a € (1,2).
Along a subsequence, in the Gromov-Hausdorff sense,

M 2 (e, D),

(Mg, D,) = stable map with parameter .

* Hausdorff dimension 2« [Le Gall & Miermont '11].
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The stable map

Dense phase Dilute phase
a € (1,3/2) a € (3/2,2)

Figure : The stable map.




Geometry of large faces in
Boltzmann maps
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Theorem 1
Let q be non-generic critical of type a € (1,3/2) (dense phase)

In the Gromov-Hausdorff sense,

1
a1 € (1,2).

kafl/2 an () ZB, where f3:=

£ = random stable looptree of parameter f3.




Branching structure in the dense phase

e M} = map with law P4 conditioned to have perimeter 2k

Theorem 1
Let q be non-generic critical of type a € (1,3/2) (dense phase)

In the Gromov-Hausdorff sense,

1
P € (1,2).

FCIQ-ﬁMq () ZB, where f3:=

£ = random stable looptree of parameter f3.

* Hausdorff dimension 8 [Curien & Kortchemski '14]




Random stable looptree

Figure : A random stable looptree (8 = 1.07), by Igor Kortchemski.




Random stable looptree

Figure : A stable tree ( = 1.07) and the associated stable looptree, by Igor
Kortchemski.
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Phase transition
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° M;j = map with law P conditioned to have perimeter 2k.

Theorem (Curien '16)

Let q be an admissible weight sequence. In the local sense,
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M2, = Infinite Boltzmann Half-Planar Map (q — IBHPM).




Phase transition

° M;j = map with law P conditioned to have perimeter 2k.

Theorem (Curien '16)

Let q be an admissible weight sequence. In the local sense,

(d)
M =2 M

M2, = Infinite Boltzmann Half-Planar Map (q — IBHPM).

Theorem 2
Let q be a weight sequence of type a € [1,2].

* «a € [1,3/2] = all the internal faces of OMZ, are finite.
° a € (3/2,2] = OMX, has a unique infinite internal face.
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Phase transition

Figure : The boundary MY, of the infinite map Md_.
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Tree(M})

Proposition 3
Tree(M]!) = tree of law GW,, ,, conditioned to have 2k + 1 vertices.
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Two-type Galton-Watson tree
Tree(M})

® Vs, Ve probability measures on Zxg.
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° ME = map with law P4 conditioned to have perimeter 2k.

Two-type Galton-Watson tree
Tree(M})

® Vs, Ve probability measures on Zxg.

GW,, ..

Proposition 3
Tree(M]!) = tree of law GW,, ,, conditioned to have 2k + 1 vertices.
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L M it -c§
Sketch of proof

° ME = map with law P4 conditioned to have perimeter 2k.

Two-type Galton-Watson tree
Tree(M})

® Vs, Ve probability measures on Zxg.

GW,, ..

critical tree <= m, ,m,, = 1.
Proposition 3

Tree(M]!) = tree of law GW,, ,, conditioned to have 2k + 1 vertices.
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Sketch of proof

Proposition 3
Tree(M]!) = tree of law GW,, ,, conditioned to have 2k + 1 vertices.

N A U VA
0=y (1 ) - 5%

~

1 j+1 .
= Fy-1 (raF?(r))™ Fjp1, J € Zo.




L M it -c§
Sketch of proof

Proposition 3
Tree(M]!) = tree of law GW,, ,, conditioned to have 2k + 1 vertices.

. 1 1\ .
I/o(j): (1— ), jEZZO.

F(rq) F(rq)
. 1 i+l ~ .
W2/ +1)= —— (r,F? ITLE T
ve(2j +1) Flrq) — 1 (fq (fq)) 1, J € £>0
Notation:

J M\j = {bipartite maps with a simple boundary of perimeter 2j}

= Z Wy (m).

meM;

M
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Sketch of proof

o ./T/l\J = {bipartite maps with a simple boundary of perimeter 2j}

=) wg(m).

meM;

)

Reminder:

* My = {bipartite maps with a boundary of perimeter 2k}

—k
Fy := Z We(m) ~ M,
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o M\j = {bipartite maps with a simple boundary of perimeter 2j}

.Ej:: Z Wy (m).

meM;
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° ./T/l\J = {bipartite maps with a simple boundary of perimeter 2j}

=) wg(m).
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)

Notation:

F(x) = Z Fix*  (general boundary)
k>0

F(x) := Z l/-_\jxj (simple boundary)
j=0




L M it -c§
Sketch of proof

° ./\//TJ = {bipartite maps with a simple boundary of perimeter 2j}

=) wg(m).

I?IE.A//TJ'

)

Notation:

F(x) = Z Fix*  (general boundary)
k>0

F(x) := Z l/-_\jxj (simple boundary)
j=0
Lemma (Brézin, Itzykson, Parisi & Zuber '78)
F(x) = F(xF?(x)).

19



Sketch of proof - branching structure

* Tree(M}) = tree of law GW,, ,, having 2k + 1 vertices.

Tree(M))




Sketch of proof - branching structure

* Tree(M}) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 4
ac (1,3/2) = m,,m,, =1 and ve([k,0)) ~ C - k=58,

Tree(M))




Sketch of proof - branching structure

* Tree(M}) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 4
ac (1,3/2) = m,,m,, =1 and ve([k,0)) ~ C - k=58,

Tree(M))

scaling - k~(1=1/6) R
k — o0




Sketch of proof - branching structure

* Tree(M}) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 4
ac (1,3/2) = m,,m,, =1 and ve([k,0)) ~ C - k=58,

k — o0




Sketch of proof - branching structure

* Tree(M}) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 4
ac (1,3/2) = m,,m,, =1 and ve([k,0)) ~ C - k=58,

aM¢

scaling - k=1/8
k — o0




Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Tree(M})




Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 5
a€ll,3/2] = m,,m,, =1 and a € (3/2,2] = m,,m,, < 1.

Tree(M))




Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 5
a€ll,3/2] = m,,m,, =1 and a € (3/2,2] = m,,m,, < 1.
/"GW&?Z.
j;*}ﬂ
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Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 5

a€ll,3/2] = m,,m,, =1 and a € (3/2,2] = m,,m,, < 1.
 a€[L3/2]
L~ GW ()

Vo,Ve
o
—e—0

_}% GW(),




Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 5
a€(l,3/2] = my,my,, =1and a € (3/2,2] = m, ,m,, <1.
Frgaroo
, ;\‘ 4(\? Vo,Ve

Gw)

Vo,Ve
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Sketch of proof - phase transition

* Tree(M]) = tree of law GW,, ,, having 2k + 1 vertices.

Lemma 5
a€[l,3/2] = my,my, =1and a € (3/2,2] = m,, m,, <1.




Applications to the rigid
O(n) loop model on
quadrangulations




Loop-decorated quadrangulations

° q = quadrangulation with a boundary.
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quadrangulation with a boundary.

0q=
4

rigid loop configuration on q.

3 = (1) )7
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4

rigid loop configuration on q.
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quadrangulation with a boundary.
rigid loop configuration on q.

Loop-decorated quadrangulations
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Rigid O(n) loop model on quadrangulations

* (q,£) € Ok = loop-decorated quadrangulation with perimeter 2k.
* Weight of (q,£): Wingn(a.£) = g#l1 i#E n#Z (n € (0,2)

Definition
(n; g, h) admissible <— G := Z(q,z)eok Wnig,1(d,£) < oo.




Rigid O(n) loop model on quadrangulations
* (q,£) € Ok = loop-decorated quadrangulation with perimeter 2k.
* Weight of (q,£): Wingn(a.£) = g#l1 i#E n#Z (n € (0,2)

Definition
(n; g, h) admissible <— G := Z(q,z)eok Wnig,1(d,£) < oo.

_ VV(n;g,h)(qa K)

p(k)

O(n) measure on the set Oy: (mg h)(q,E) = C
& k




The gasket decomposition

° (q,£)

(rigid) loop-decorated quadrangulation.
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The gasket decomposition
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loop-decorated quadrangulation with law PE,lr)g hy




The gasket decomposition

* (Q,L)

: . 1)
ted quadrangulation with law P(n;g,h).

loop-decora




The gasket decomposition

* (QL)
o [y

loop-decorated quadrangulation with law PE,lr)g hy°

loop of (Q, L) conditioned to have perimeter 2k.




The gasket decomposition

(1)
P(n:g,h)'
e Ly = loop of (Q, L) conditioned to have perimeter 2k.

* (Q,L) = loop-decorated quadrangulation with law

Then, Ly ) 0Qx (where (Qk, Lk) has law P%:;)g h)) )




Phase diagram
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¢ (Qk,Lk) = loop-decorated quadrangulation with law




Phase diagram

¢ (Qk,Lk) = loop-decorated quadrangulation with law PES,)g -

Theorem (Borot, Bouttier & Guitter '12, Budd & Chen)
Gasket(Qx, L) is a Boltzmann map with law Pq conditioned to have
perimeter 2k.




Phase diagram

¢ (Qk,Lk) = loop-decorated quadrangulation with law PE:')g -

Theorem (Borot, Bouttier & Guitter '12, Budd & Chen)
Gasket(Qx, L) is a Boltzmann map with law Pq conditioned to have

perimeter 2k.

hA non-admissible

a =3 + L arccos(n/2) (dilute)

subcritical

generic
critical




Scaling limits of large loops

(k)
P(n:g,h)'

* (Qk,Lk) = loop-decorated quadrangulation with law




Scaling limits of large loops

(k)

* (Qk,Lk) = loop-decorated quadrangulation with law P(n;g,h).

hll non-admissible

1

T arCcos(n/z

non- -
ON-generjc crit]

) (dense)

a= % + % arccos(n/2) (dilute)
cal

subcritical

generic
critical

Theorem 6
Let n € (0,2) and (g, h) in the dense phase.




Scaling limits of large loops

. . k
* (Qk,Lk) = loop-decorated quadrangulation with law PEn;)g,h)'
hll non-admissible
@=3- 1L,
x dlccos(n/o
Non-generic Crificil(dense) a =3+ Larccos(n/2) (dilute)

subcritical

generic
critical

Theorem 6
Let n € (0,2) and (g, h) in the dense phase.
In the Gromov-Hausdorff sense,

C (d) o 1 n
P 8Qk ,2”5, where [ := (1 — ;arccos <§)>

-1
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Thank youl!




Connection with other models

e Cj = critical site percolation cluster of perimeter 2k in the UIPT.

Theorem (Curien & Kortchemski '14)
In the Gromov-Hausdorff sense,

¢ (d
k2/3 8Ck

[Borot, Bouttier & Guitter '12]: g h n
O(n) loop model on triangulations

For n =1, site Ising model on Boltzmann triangulations.

) »2”3/2

e g = h <— critical site percolation on Boltzmann triangulations.
— dense phase: a« =7/6 and § = 3/2.

* (g%, h*) <— phase transition of the Ising model.
— dilute phase: o = 11/6.
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