Limits of large loops in the O(n) model on random maps

Loïc Richier

École polytechnique

Conference Dynamics on Random Graphs and Random Maps 26 October, 2017

Outline

Motivation: study the large-scale geometry of

- faces of Boltzmann planar maps.
- loops in the rigid O(n) model on quadrangulations.

Outline

Motivation: study the large-scale geometry of

- faces of Boltzmann planar maps.
- loops in the rigid O(n) model on quadrangulations.

- 1. Boltzmann maps: definitions and scaling limits
- 2. Geometry of large faces in Boltzmann maps
- 3. Applications to the rigid O(n) loop model on quadrangulations

Bipartite planar map

Definition

A planar map is **bipartite** if all its faces have even degree.

Figure : A **bipartite** planar map.

Bipartite planar map

Definition

A planar map is **bipartite** if all its faces have even degree.

Figure : A rooted bipartite planar map.

Bipartite planar map

Definition

A planar map is **bipartite** if all its faces have even degree.

Figure : A **pointed** rooted bipartite planar map.

• Map with a boundary: the face on the right of the root is external.

Figure : A map with a boundary.

- Map with a boundary: the face on the right of the root is external.
- Perimeter = degree of the external face.

Figure : A map with a boundary of perimeter 8.

- Map with a boundary: the face on the right of the root is external.
- Perimeter = degree of the external face.
- *Simple* boundary = cycle without self-intersection.

Figure : A map with a boundary of perimeter 8.

- Map with a boundary: the face on the right of the root is external.
- Perimeter = degree of the external face.
- *Simple* boundary = cycle without self-intersection.

Figure : A map with a simple boundary of perimeter 8.

• $\mathcal{M} = \{ \text{bipartite maps} \}.$

- $\mathcal{M} = \{ \text{bipartite maps} \}.$
- $q = (q_k : k \ge 1)$ weight sequence.

- $\mathcal{M} = \{ \text{bipartite maps} \}.$
- $q = (q_k : k \ge 1)$ weight sequence.
- Weight of a bipartite map **m**:

$$w_{\mathsf{q}}(\mathsf{m}) := \prod_{f \in \mathrm{F}(\mathsf{m})} q_{\mathsf{deg}(f)/2}.$$

Figure : A bipartite map **m** with weight $w_q(\mathbf{m}) = q_1 q_2^2 q_3 q_4^2$.

- $\mathcal{M} = \{ \text{bipartite maps} \}.$
- $q = (q_k : k \ge 1)$ weight sequence.
- Weight of a bipartite map **m**:

$$w_{\mathsf{q}}(\mathsf{m}) := \prod_{f \in \mathrm{F}(\mathsf{m})} q_{\mathsf{deg}(f)/2}.$$

 $\begin{array}{l} \textbf{Definition} \\ \textbf{q} \text{ admissible} \iff Z_{\textbf{q}} := \sum_{\textbf{m} \in \mathcal{M}} w_{\textbf{q}}(\textbf{m}) < \infty. \end{array}$

- $\mathcal{M} = \{ \text{bipartite maps} \}.$
- $q = (q_k : k \ge 1)$ weight sequence.
- Weight of a bipartite map **m**:

$$w_{\mathsf{q}}(\mathsf{m}) := \prod_{f \in \mathrm{F}(\mathsf{m})} q_{\mathsf{deg}(f)/2}.$$

$\begin{array}{l} \textbf{Definition} \\ \textbf{q} \text{ admissible} \iff Z_{\textbf{q}} := \sum_{\textbf{m} \in \mathcal{M}} w_{\textbf{q}}(\textbf{m}) < \infty. \end{array}$

Boltzmann measure with weight q:

$$\mathbb{P}_{\mathsf{q}}(\mathsf{m}) := rac{w_{\mathsf{q}}(\mathsf{m})}{Z_{\mathsf{q}}}, \quad \mathsf{m} \in \mathcal{M}.$$

- $\mathcal{M} = \{ \text{bipartite maps} \}.$
- $q = (q_k : k \ge 1)$ weight sequence.
- Weight of a bipartite map **m**:

$$w_{\mathsf{q}}(\mathsf{m}) := \prod_{f \in \mathrm{F}(\mathsf{m})} q_{\mathsf{deg}(f)/2}.$$

Definition q admissible $\iff Z_q := \sum_{m \in \mathcal{M}} w_q(m) < \infty.$

Boltzmann measure with weight q:

$$\mathbb{P}_{\mathsf{q}}(\mathsf{m}) := rac{w_{\mathsf{q}}(\mathsf{m})}{Z_{\mathsf{q}}}, \quad \mathsf{m} \in \mathcal{M}.$$

(Pointed maps version: \mathbb{P}_q^{\bullet} .)

- ■ E[•]_q(#V(M)) = average number of vertices under P[•]_q.
- $(\mu(k):k\geq 1)=$ law of (half) the degree of a typical face under $\mathbb{P}_{q}^{\bullet}.$

- ■ E[•]_q(#V(M)) = average number of vertices under P[•]_q.
- $(\mu(k):k\geq 1)=$ law of (half) the degree of a typical face under $\mathbb{P}_{q}^{ullet}.$

Definition

Let q be an admissible weight sequence.

q subcritical $\iff \mathbb{E}^{\bullet}_{q}(\#V(M)) < \infty.$

q critical $\iff \mathbb{E}^{\bullet}_{q}(\#V(M)) = \infty.$

- ■ E[•]_q(#V(M)) = average number of vertices under P[•]_q.
- $(\mu(k):k\geq 1)=$ law of (half) the degree of a typical face under $\mathbb{P}_{q}^{ullet}.$

Definition

Let q be an admissible weight sequence.

q subcritical $\iff \mathbb{E}^{\bullet}_{q}(\#V(M)) < \infty.$

q critical $\iff \mathbb{E}^{\bullet}_{\mathsf{q}}(\#\mathrm{V}(M)) = \infty.$

q generic critical \iff q critical and $Var(\mu) < \infty$.

- ■ 𝔅[•]_q(#V(M)) = average number of vertices under 𝔅[•]_q.
- $(\mu(k):k\geq 1)=$ law of (half) the degree of a typical face under $\mathbb{P}_{q}^{ullet}.$

Definition

Let q be an admissible weight sequence.

q subcritical $\iff \mathbb{E}^{\bullet}_{\mathsf{q}}(\#\mathrm{V}(M)) < \infty.$

q critical $\iff \mathbb{E}^{\bullet}_{q}(\#V(M)) = \infty.$

q generic critical \iff q critical and $Var(\mu) < \infty$.

q non-generic critical of parameter $\alpha \in (1,2)$ \iff q critical and $\mu([k,\infty)) \sim C \cdot k^{-\alpha}$.

Enumeration

M_k = {bipartite maps with a boundary of perimeter 2k}

Figure : An element $\mathbf{m} \in \mathcal{M}_{19}$

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (α). Then,

$$F_k := \sum_{\mathbf{m} \in \mathcal{M}_k} w_{\mathsf{q}}(\mathbf{m})$$

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (α). Then,

$$F_k := \sum_{\mathbf{m} \in \mathcal{M}_k} w_{\mathbf{q}}(\mathbf{m}) \underset{k \to \infty}{\sim} \frac{C_{\mathbf{q}}(r_{\mathbf{q}})^{-k}}{k^a}.$$

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (α). Then,

$$F_k := \sum_{\mathbf{m} \in \mathcal{M}_k} w_{\mathbf{q}}(\mathbf{m}) \underset{k \to \infty}{\sim} \frac{C_{\mathbf{q}}(r_{\mathbf{q}})^{-k}}{k^a}.$$

q subcritical $\implies a = 3/2$

q non-generic critical (α) \implies $a = \alpha + 1/2$

q generic critical $\implies a = 5/2$

7

Proposition (Bouttier, Di Francesco & Guitter '04)

Let q be subcritical, generic critical, or non-generic critical (α). Then,

$$F_k := \sum_{\mathbf{m} \in \mathcal{M}_k} w_{\mathbf{q}}(\mathbf{m}) \underset{k \to \infty}{\sim} \frac{C_{\mathbf{q}}(r_{\mathbf{q}})^{-k}}{k^a}.$$

 $\mbox{q subcritical} \implies a = 3/2 \qquad \longleftarrow "type" \ \alpha = 1.$

 $\mathsf{q} \ \textbf{non-generic critical} \ (\alpha) \implies \ \mathbf{a} = \alpha + 1/2 \quad \longleftarrow \ "type" \ \alpha \in (1,2).$

q generic critical \implies a = 5/2 \leftarrow "type" $\alpha = 2$.

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

Then, $M_n^{q} =$ **uniform** quadrangulation with *n* faces.

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

Then, M_n^{q} = uniform quadrangulation with *n* faces.

Theorem (Le Gall '13, Miermont '13) In the Gromov-Hausdorff sense,

$$\frac{(9/8)^{1/4}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

Then, M_n^{q} = uniform quadrangulation with *n* faces.

Theorem (Le Gall '13, Miermont '13) In the Gromov-Hausdorff sense,

$$\frac{(9/8)^{1/4}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

 $(\mathbb{M}, D) =$ brownian map.

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

Then, M_n^q = uniform quadrangulation with *n* faces.

Theorem (Le Gall '13, Miermont '13) In the Gromov-Hausdorff sense,

$$\frac{(9/8)^{1/4}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

 $(\mathbb{M}, D) =$ brownian map.

• Homeomorphic to the 2-sphere [Le Gall & Paulin '08, Miermont '08].

• M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

$$q_k = \left\{ egin{array}{c} c > 0 & ext{if k=2} \\ 0 & ext{otherwise} \end{array}
ight.$$

Then, M_n^q = uniform quadrangulation with *n* faces.

Theorem (Le Gall '13, Miermont '13) In the Gromov-Hausdorff sense.

$$\frac{(9/8)^{1/4}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

 $(\mathbb{M}, D) =$ brownian map.

- Homeomorphic to the 2-sphere [Le Gall & Paulin '08, Miermont '08].
- Hausdorff dimension 4 [Le Gall '07].

The brownian map

Figure : A uniform quadrangulation with 50000 faces, by Jérémie Bettinelli.

• $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall '13)

Let q be a critical weight sequence such that μ has finite exponential moments.
- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall '13)

Let q be a critical weight sequence such that μ has finite exponential moments. In the Gromov-Hausdorff sense,

$$\frac{c_{\mathsf{q}}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

 $(\mathbb{M}, D) =$ brownian map.

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- $M_n^q = map$ with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Marzouk '17)

Let q be a generic critical weight sequence (type $\alpha = 2$).

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Marzouk '17)

Let q be a generic critical weight sequence (type $\alpha = 2$). In the Gromov-Hausdorff sense,

$$\frac{c_{\mathsf{q}}}{n^{1/4}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}, D).$$

 $(\mathbb{M}, D) =$ brownian map.

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall & Miermont '11) Let q be a non-generic critical weight sequence $\alpha \in (1, 2)$.

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall & Miermont '11) Let q be a non-generic critical weight sequence $\alpha \in (1, 2)$. Along a subsequence, in the Gromov-Hausdorff sense,

$$\frac{c_{\mathsf{q}}}{n^{1/2\alpha}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}_{\alpha}, D_{\alpha}).$$

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall & Miermont '11) Let q be a non-generic critical weight sequence $\alpha \in (1, 2)$. Along a subsequence, in the Gromov-Hausdorff sense,

$$\frac{c_{\mathsf{q}}}{n^{1/2\alpha}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}_{\alpha}, D_{\alpha}).$$

 $(\mathbb{M}_{\alpha}, D_{\alpha}) =$ stable map with parameter α .

- $\mu =$ law of (half) the degree of a typical face under \mathbb{P}_{q}^{\bullet} .
- M_n^q = map with law \mathbb{P}_q conditioned to have *n* faces.

Theorem (Le Gall & Miermont '11) Let q be a non-generic critical weight sequence $\alpha \in (1, 2)$. Along a subsequence, in the Gromov-Hausdorff sense,

$$\frac{c_{\mathsf{q}}}{n^{1/2\alpha}} \cdot M_n^{\mathsf{q}} \xrightarrow[n \to \infty]{(d)} (\mathbb{M}_{\alpha}, D_{\alpha}).$$

 $(\mathbb{M}_{\alpha}, D_{\alpha}) =$ stable map with parameter α .

• Hausdorff dimension 2α [Le Gall & Miermont '11].

The stable map

Dense phase $\alpha \in (1, 3/2)$

Dilute phase $\alpha \in (3/2, 2)$

Figure : The stable map.

Geometry of large faces in Boltzmann maps

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Theorem 1

Let q be non-generic critical of type $\alpha \in (1, 3/2)$ (dense phase).

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Theorem 1

Let q be non-generic critical of type $\alpha \in (1, 3/2)$ (dense phase). In the Gromov-Hausdorff sense,

$$\frac{\mathcal{C}}{k^{\alpha-1/2}} \cdot \partial M_k^{\mathsf{q}} \xrightarrow[k \to \infty]{(d)} \mathscr{L}_{\beta}, \quad \textit{where} \quad \beta := \frac{1}{\alpha - \frac{1}{2}} \in (1, 2).$$

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Theorem 1

Let q be non-generic critical of type $\alpha \in (1, 3/2)$ (dense phase). In the Gromov-Hausdorff sense,

$$\frac{\mathcal{C}}{k^{\alpha-1/2}} \cdot \partial M_k^{\mathsf{q}} \xrightarrow[k \to \infty]{(d)} \mathscr{L}_{\beta}, \quad \textit{where} \quad \beta := \frac{1}{\alpha - \frac{1}{2}} \in (1, 2).$$

 $\mathscr{L}_{\beta} =$ random stable looptree of parameter β .

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Theorem 1

Let q be non-generic critical of type $\alpha \in (1, 3/2)$ (dense phase). In the Gromov-Hausdorff sense,

$$\frac{\mathcal{C}}{k^{\alpha-1/2}} \cdot \partial M_k^{\mathsf{q}} \xrightarrow[k \to \infty]{(d)} \mathscr{L}_{\beta}, \quad \textit{where} \quad \beta := \frac{1}{\alpha - \frac{1}{2}} \in (1, 2).$$

 $\mathscr{L}_{\beta} =$ random stable looptree of parameter β .

• Hausdorff dimension β [Curien & Kortchemski '14]

Random stable looptree

Figure : A random stable looptree ($\beta = 1.07$), by Igor Kortchemski.

Random stable looptree

Figure : A stable tree ($\beta = 1.07$) and the associated stable looptree, by Igor Kortchemski.

M^q_k = map with law P_q conditioned to have perimeter 2*k*.
Theorem (Curien '16)

Let q be an admissible weight sequence. In the local sense,

$$M_k^{\mathsf{q}} \xrightarrow[k \to \infty]{(d)} \mathbf{M}_\infty^{\mathsf{q}}.$$

 $\mathbf{M}_{\infty}^{q} =$ Infinite Boltzmann Half-Planar Map (q - IBHPM).

M^q_k = map with law P_q conditioned to have perimeter 2*k*.
Theorem (Curien '16)

Let q be an admissible weight sequence. In the local sense,

$$M_k^{\mathsf{q}} \xrightarrow[k \to \infty]{(d)} \mathbf{M}_\infty^{\mathsf{q}}.$$

 $\mathbf{M}_{\infty}^{\mathbf{q}} =$ Infinite Boltzmann Half-Planar Map (q - IBHPM).

Theorem 2 Let q be a weight sequence of type $\alpha \in [1, 2]$.

- $\alpha \in [1, 3/2] \Longrightarrow$ all the internal faces of $\partial \mathbf{M}^{\mathsf{q}}_{\infty}$ are finite.
- $\alpha \in (3/2, 2] \Longrightarrow \partial \mathbf{M}^{\mathsf{q}}_{\infty}$ has a unique infinite internal face.

Figure : The boundary ∂M^q_{∞} of the infinite map M^q_{∞} .

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Proposition 3 $Tree(M_k^q) = tree \text{ of law } GW_{\nu_o,\nu_{\bullet}} \text{ conditioned to have } 2k + 1 \text{ vertices.}$

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Two-type Galton-Watson tree

• ν_{\circ} , ν_{\bullet} probability measures on $\mathbb{Z}_{\geq 0}$.

0

Proposition 3 Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Two-type Galton-Watson tree

• ν_{\circ} , ν_{\bullet} probability measures on $\mathbb{Z}_{\geq 0}$.

Proposition 3 Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Two-type Galton-Watson tree

• ν_{\circ} , ν_{\bullet} probability measures on $\mathbb{Z}_{\geq 0}$.

Proposition 3 $Tree(M_k^q) = tree \text{ of law } GW_{\nu_o,\nu_\bullet} \text{ conditioned to have } 2k + 1 \text{ vertices.}$

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Two-type Galton-Watson tree • ν_{\circ} , ν_{\bullet} probability measures on $\mathbb{Z}_{\geq 0}$. \downarrow \downarrow $GW_{\nu_{\circ},\nu_{\bullet}}$

Proposition 3 $Tree(M_k^q) = tree \text{ of law } GW_{\nu_o,\nu_\bullet} \text{ conditioned to have } 2k + 1 \text{ vertices.}$

• M_k^q = map with law \mathbb{P}_q conditioned to have perimeter 2k.

Two-type Galton-Watson tree • ν_{\circ} , ν_{\bullet} probability measures on $\mathbb{Z}_{\geq 0}$.

critical tree $\iff m_{\nu_{\circ}} m_{\nu_{\bullet}} = 1.$

Proposition 3

Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law GW_{ν_o,ν_\bullet} conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law GW_{ν_o,ν_\bullet} conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law GW_{ν_o,ν_\bullet} conditioned to have 2k + 1 vertices.

Proposition 3

 $\mathbf{Tree}(M_k^q) = tree \text{ of law } \mathrm{GW}_{\nu_\circ,\nu_ullet} \text{ conditioned to have } 2k+1 \text{ vertices.}$

Proposition 3

Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law GW_{ν_o,ν_\bullet} conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law GW_{ν_o,ν_\bullet} conditioned to have 2k + 1 vertices.

Proposition 3

Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ conditioned to have 2k + 1 vertices.

Proposition 3

 $\mathbf{Tree}(M_k^{\mathsf{q}}) = tree \ of \ law \ \mathsf{GW}_{\nu_\circ,\nu_ullet} \ conditioned \ to \ have \ 2k+1 \ vertices.$

$$u_{\circ}(j) = rac{1}{F(r_{\mathsf{q}})} \left(1 - rac{1}{F(r_{\mathsf{q}})}\right)^{j}, \quad j \in \mathbb{Z}_{\geq 0}.$$

Proposition 3

 $\mathbf{Tree}(M^{\mathsf{q}}_k) = tree \ of \ law \ \mathsf{GW}_{
u_{\circ},
u_{ullet}} \ conditioned \ to \ have \ 2k+1 \ vertices.$

$$\nu_{\circ}(j) = \frac{1}{F(r_{\mathsf{q}})} \left(1 - \frac{1}{F(r_{\mathsf{q}})}\right)^{j}, \quad j \in \mathbb{Z}_{\geq 0}.$$
$$\nu_{\bullet}(2j+1) = \frac{1}{F(r_{\mathsf{q}}) - 1} \left(r_{\mathsf{q}}F^{2}(r_{\mathsf{q}})\right)^{j+1} \widehat{F}_{j+1}, \quad j \in \mathbb{Z}_{\geq 0}.$$

Proposition 3

 $\mathbf{Tree}(M_k^{q}) = tree \ of \ law \ \mathsf{GW}_{
u_{\circ},
u_{ullet}} \ conditioned \ to \ have \ 2k+1 \ vertices.$

$$\begin{split} \nu_{\circ}(j) &= \frac{1}{F(r_{\mathsf{q}})} \left(1 - \frac{1}{F(r_{\mathsf{q}})} \right)^{j}, \quad j \in \mathbb{Z}_{\geq 0}.\\ \nu_{\bullet}(2j+1) &= \frac{1}{F(r_{\mathsf{q}}) - 1} \left(r_{\mathsf{q}} F^{2}(r_{\mathsf{q}}) \right)^{j+1} \widehat{F}_{j+1}, \quad j \in \mathbb{Z}_{\geq 0}. \end{split}$$

Notation:

\$\holdsymbol{\mathcal{M}}_j = {\mathcal{bipartite} maps with a simple boundary of perimeter 2j}

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

Reminder:

• $M_k = \{$ bipartite maps with a boundary of perimeter 2k $\}$

$$F_k := \sum_{\mathbf{m}\in\mathcal{M}_k} w_{\mathsf{q}}(\mathbf{m}) \underset{k\to\infty}{\sim} \frac{C_{\mathsf{q}}(r_{\mathsf{q}})^{-k}}{k^a}.$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{\mathcal{F}}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

Notation:

$$egin{aligned} F(x) &:= \sum_{k \geq 0} F_k x^k & (ext{general boundary}) \ \widehat{F}(x) &:= \sum_{j \geq 0} \widehat{F}_j x^j & (ext{simple boundary}) \end{aligned}$$

• $\widehat{\mathcal{M}}_j = \{$ bipartite maps with a **simple** boundary of perimeter 2j $\}$

$$\widehat{F}_j := \sum_{\widehat{\mathbf{m}} \in \widehat{\mathcal{M}}_j} w_{\mathsf{q}}(\widehat{\mathbf{m}}).$$

Notation:

$$egin{aligned} F(x) &:= \sum_{k \geq 0} F_k x^k & (ext{general boundary}) \ \widehat{F}(x) &:= \sum_{j \geq 0} \widehat{F}_j x^j & (ext{simple boundary}) \end{aligned}$$

Lemma (Brézin, Itzykson, Parisi & Zuber '78)

$$F(x) = \widehat{F}(xF^2(x)).$$

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

Lemma 4

 $\alpha \in (1, 3/2) \Longrightarrow m_{\nu_{\circ}} m_{\nu_{\bullet}} = 1 \text{ and } \nu_{\bullet}([k, \infty)) \sim C \cdot k^{-\beta}.$

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

Lemma 4

 $\alpha \in (1, 3/2) \Longrightarrow m_{\nu_{\circ}}m_{\nu_{\bullet}} = 1 \text{ and } \nu_{\bullet}([k, \infty)) \sim C \cdot k^{-\beta}.$

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

Lemma 4 $\alpha \in (1, 3/2) \Longrightarrow m_{\nu_{\circ}} m_{\nu_{\bullet}} = 1 \text{ and } \nu_{\bullet}([k, \infty)) \sim C \cdot k^{-\beta}.$

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

Lemma 4

 $\alpha \in (1, 3/2) \Longrightarrow m_{\nu_{\circ}}m_{\nu_{\bullet}} = 1 \text{ and } \nu_{\bullet}([k, \infty)) \sim C \cdot k^{-\beta}.$

Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.

• Tree (M_k^q) = tree of law $\mathrm{GW}_{\nu_\circ,\nu_\bullet}$ having 2k + 1 vertices. Lemma 5 $\alpha \in [1, 3/2] \Longrightarrow m_{\nu_\circ} m_{\nu_\bullet} = 1$ and $\alpha \in (3/2, 2] \Longrightarrow m_{\nu_\circ} m_{\nu_\bullet} < 1$.

• Tree (M_k^q) = tree of law $\mathrm{GW}_{\nu_\circ,\nu_\bullet}$ having 2k + 1 vertices. Lemma 5 $\alpha \in [1, 3/2] \Longrightarrow m_{\nu_\circ} m_{\nu_\bullet} = 1$ and $\alpha \in (3/2, 2] \Longrightarrow m_{\nu_\circ} m_{\nu_\bullet} < 1$.

• Tree (M_k^q) = tree of law $\mathrm{GW}_{\nu_o,\nu_{\bullet}}$ having 2k + 1 vertices. Lemma 5 $\alpha \in [1, 3/2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} = 1$ and $\alpha \in (3/2, 2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} < 1$.

• Tree (M_k^q) = tree of law $\mathrm{GW}_{\nu_o,\nu_{\bullet}}$ having 2k + 1 vertices. Lemma 5 $\alpha \in [1, 3/2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} = 1$ and $\alpha \in (3/2, 2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} < 1$.

 Tree(M^q_k) = tree of law GW_{ν₀,ν₀} having 2k + 1 vertices.
 Lemma 5
 α ∈ [1, 3/2] ⇒ m_{ν₀}m_{ν₀} = 1 and α ∈ (3/2, 2] ⇒ m_{ν₀}m_{ν₀} < 1.

• Tree (M_k^q) = tree of law $GW_{\nu_o,\nu_{\bullet}}$ having 2k + 1 vertices. Lemma 5 $\alpha \in [1, 3/2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} = 1$ and $\alpha \in (3/2, 2] \Longrightarrow m_{\nu_o} m_{\nu_{\bullet}} < 1$.

Applications to the rigid O(n) **loop model on quadrangulations**

• $\mathbf{q} = quadrangulation$ with a boundary.

- **q** = quadrangulation with a boundary.
- ℓ = rigid loop configuration on **q**.

- **q** = quadrangulation with a boundary.
- ℓ = rigid loop configuration on **q**.

- **q** = quadrangulation with a boundary.
- $\ell = rigid$ loop configuration on q.

Rigid O(n) loop model on quadrangulations

• $(\mathbf{q}, \ell) \in \mathcal{O}_k$ = loop-decorated quadrangulation with perimeter 2k.

Rigid O(n) loop model on quadrangulations

- $(\mathbf{q}, \ell) \in \mathcal{O}_k =$ loop-decorated quadrangulation with perimeter 2k.
- Weight of (\mathbf{q}, ℓ) : $W_{(n;g,h)}(\mathbf{q}, \ell) = g^{\# \square} h^{\# \square} n^{\# \cancel{2}}$. $(n \in (0,2))$

Rigid O(n) loop model on quadrangulations

- $(\mathbf{q}, \ell) \in \mathcal{O}_k$ = loop-decorated quadrangulation with perimeter 2k.
- Weight of (\mathbf{q}, ℓ) : $W_{(n;g,h)}(\mathbf{q}, \ell) = g^{\# \square} h^{\# \square} n^{\# \textcircled{2}}$. $(n \in (0,2))$ Definition

(n; g, h) admissible $\iff G_k := \sum_{(q,\ell) \in \mathcal{O}_k} W_{(n;g,h)}(q,\ell) < \infty.$

Rigid O(n) loop model on quadrangulations

- $(\mathbf{q}, \ell) \in \mathcal{O}_k$ = loop-decorated quadrangulation with perimeter 2k.
- Weight of $(\mathbf{q}, \boldsymbol{\ell})$: $W_{(n;g,h)}(\mathbf{q}, \boldsymbol{\ell}) = g^{\# \square} h^{\# \square} n^{\# \bigodot}$. $(n \in (0,2))$ Definition

 $(n; g, h) \text{ admissible} \iff G_k := \sum_{(\mathbf{q}, \ell) \in \mathcal{O}_k} W_{(n; g, h)}(\mathbf{q}, \ell) < \infty.$ $O(n) \text{ measure on the set } \mathcal{O}_k : \mathbf{P}_{(n; g, h)}^{(k)}(\mathbf{q}, \ell) := \frac{W_{(n; g, h)}(\mathbf{q}, \ell)}{G_k}.$

• $(Q, \mathbf{L}) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(1)}$.

• (Q, L) = loop-decorated quadrangulation with law $P^{(1)}_{(n;g,h)}$.

- $(Q, \mathbf{L}) =$ loop-decorated quadrangulation with law $\mathbf{P}_{(n;g,h)}^{(1)}$.
- $L_k = \text{loop of } (Q, \mathbf{L}) \text{ conditioned to have perimeter } 2k$.

- $(Q, \mathbf{L}) =$ loop-decorated quadrangulation with law $\mathbf{P}_{(n;g,h)}^{(1)}$.
- $L_k = \text{loop of } (Q, \mathbf{L}) \text{ conditioned to have perimeter } 2k$.

Then,
$$L_k \stackrel{(d)}{=} \partial Q_k \left(\text{where } (Q_k, \mathbf{L}_k) \text{ has law } \mathbf{P}_{(n;g,h)}^{(k)} \right)$$
.

Phase diagram

• $(Q_k, \mathbf{L}_k) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(k)}$.

• $(Q_k, \mathbf{L}_k) =$ loop-decorated quadrangulation with law $\mathbf{P}_{(n;g,h)}^{(k)}$.

Theorem (Borot, Bouttier & Guitter '12, Budd & Chen) Gasket(Q_k , L_k) is a Boltzmann map with law \mathbb{P}_q conditioned to have perimeter 2k.

Phase diagram

• $(Q_k, \mathbf{L}_k) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(k)}$.

Theorem (Borot, Bouttier & Guitter '12, Budd & Chen) Gasket(Q_k , L_k) is a Boltzmann map with law \mathbb{P}_q conditioned to have perimeter 2k.

Scaling limits of large loops

• $(Q_k, \mathbf{L}_k) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(k)}$.

Scaling limits of large loops

• $(Q_k, \mathbf{L}_k) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(k)}$.

Theorem 6 Let $n \in (0,2)$ and (g, h) in the dense phase.

Scaling limits of large loops

• $(Q_k, \mathbf{L}_k) = \text{loop-decorated quadrangulation with law } \mathbf{P}_{(n;g,h)}^{(k)}$.

Theorem 6

Let $n \in (0,2)$ and (g,h) in the dense phase. In the Gromov-Hausdorff sense,

$$\frac{\mathcal{C}}{k^{1/\beta}} \cdot \partial \mathcal{Q}_k \xrightarrow[k \to \infty]{(d)} \mathscr{L}_{\beta}, \quad \textit{where} \quad \beta := \left(1 - \frac{1}{\pi} \arccos\left(\frac{n}{2}\right)\right)^{-1}$$

Thank you!

Connection with other models

C_k = critical site percolation cluster of perimeter 2k in the UIPT.
Theorem (Curien & Kortchemski '14)
In the Gromov-Hausdorff sense,

$$\frac{\mathcal{C}}{k^{2/3}} \cdot \partial \mathcal{C}_k \xrightarrow[k \to \infty]{(d)} \mathscr{L}_{3/2}.$$

[Borot, Bouttier & Guitter '12]: O(n) loop model on triangulations

For n = 1, site Ising model on Boltzmann triangulations.

- $g = h \leftrightarrow$ critical site percolation on Boltzmann triangulations. \hookrightarrow dense phase: $\alpha = 7/6$ and $\beta = 3/2$.
- $(g^*, h^*) \longleftrightarrow$ phase transition of the Ising model. \hookrightarrow dilute phase: $\alpha = 11/6$.