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Talk plan

I First half: Overview of the project.

I Second half: Riemann surface and dimer.



The dimer model

Definition

G = bipartite finite graph, planar
Dimer configuration = perfect matching on G :
each vertex incident to one edge
Dimer model: uniformly chosen configuration

On square lattice, equivalent to domino tiling.



Dimer model = random surface

I Describes a surface in R3.

I Boundary describes a curve in R3.



We pick a dimer configuration uniformly at random and ask
questions about it’s geometry.

I What is a typical surface? (Law of large numbers)

I What is the fluctuation around the typical surface?

Parameters..

We can play with the model...

I Change the underlying graph.

I Change boundary conditions.

I Change the underlying surface (e.g. Embed the graph in
torus, annulus, 2-torus etc...)

In this talk:

Our project

We concentrate on fluctuations and prove its universal behaviour
in various scenarios..
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Exact solvability
Let ei = (wi , bi ).

Kasteleyn matrix K : Adjacency matrix of graph with special signs
on the entries.

Partition function = | det(K )|

P(e1, e2, . . . , ek present ) =
k∏

i=1

K (wi , bi ) det((K−1(wi , bj))1≤i ,j≤k)

Our approach

We will NOT use Kasteleyn matrices in our analysis (contrary to
the traditional approach.)



Height function

u

I Reference flow:

ω0 : oriented edges 7→ R, ω0(uv) = −ω0(vu);
∑
v∼u

ω(uv) = 1.

I Dimer flow:

ωdim(uv) = 1{dimer in uv , u is white}; ω0(uv) = −ω0(vu)

I ω − ω0 is divergence free:∑
v∼u

(ω − ω0)(uv) = 0

This defines a function (modulo Z) on the faces. This is the
height function.



Example: square lattice

3 2 3 2 -1 -2

4 1 0 1 0 1

3 2 -1 2 -1 2

0 1 0 1 0 1

-1 2 -1 2 -1 -2

0 1 0 1 0 -3

P

lotting the height function gives a random surface.





Boundary effect

Some regions can be frozen, other liquid (temperate)
Depends on boundary conditions in sensitive way
Interface between frozen / liquid = arctic circle



Boundary effect

Aztec diamond:

Jockusch, Propp and Shor 1996

Cardioid:

Kenyon–Okounkov–Sheffield
2006



Phases

I Frozen face: Fluctuations are a.s. bounded

I Liquid phase: Logarithmic correlations.

I Gaseous phase: Exponentially decaying correlation.

Philosophy for universality

In the liquid phase, fluctuations behave like the Gaussian free
field.

∫
hf ∼ N (0,

∫
∇f · ∇f ), Cov(

∫
hf ,

∫
hg) =

∫
∇f · ∇g
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Law of large number

(Cohn, Kenyon, Larsen, Propp.)

The mean surface can be computed as a solution of a variational
problem given the boundary conditions.



Goal: Formulate and prove universality of fluctuations under most
natural conditions of

I The graph.

I The surface on which it is embedded.

I Boundary conditions.



Effect of graph can be extreme....

The square octagon lattice is in gaseous phase!

Dimers and amoeba

Kenyon, Okounkov and Sheffield proved a beautiful theorem using
algebraic geometry to understand the phase diagram of the dimer
model.



Effect of the surface
Height function h is no longer a function but a one form:

Hodge decomposition

We can decompose
h = ∇f + h

where f is a function (called scalar part) and h is a harmonic one
form called the instanton component.

Past work

Except for nice graphs (like domino tiling, lozenge tiling, isoradial
graphs) on the torus (works of Kenyon, Dubedat et al.), this is
fairly uncharted territory.

Formulas known

For graphs embedded on genus g , there are some formulas for
dimer correlations (due to Cimasoni), but its not clear how to use
them.



Our approach

G: Planar bipartitle embedded graph.

Main tool

There is a mapping Φ (depends on boundary condition) such that

height function in G = winding of uniform spanning tree in Φ(G )

Theorem (Berestycki, Laslier, R. ;16)

If random walk converges to Brownian motion on Φ(G ) (plus some
mild assumptions) then fluctuation of winding of the branches of
spanning tree converges to Gaussian free field.

Therefore height function → Φ−1(GFF ).



What can we prove?

I GFF fluctuations for Temperleyan graphs satisfying
CLT(https://arxiv.org/abs/1603.09740). Previously known for
isoradial graphs (Kenyon, Li, Dubedat.)

I GFF fluctuation for hexagonal lattice with planar boundary
condition of any slope (https://arxiv.org/abs/1603.09740)

I Convergence of height forms for Temperleyan graphs on
Riemann surfaces satisfying CLT (this talk!)

I GFF fluctuation for non-flat boundary condition on the
hexagonal lattice (ongoing work.)

I ......



Temperleyan graph (Temperley; Kenyon, Propp, Wilson)

I A graph G .

I Its dual.

I Add white vertices

I Remove outer face and a
vertex

I Dimers
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3 2 3 2 -1 -2

4 1 0 1 0 1

3 2 -1 2 -1 2

0 1 0 1 0 1

-1 2 -1 2 -1 -2

0 1 0 1 0 -3

Temperleyan bijection, generalization due Kenyon, Propp,
Wilson

Dimer on Temperleyan graph = spanning tree, dual tree pair.





Theorem (Lawler,Schramm, Werner; Yadin Yehudayoff)

Uniform spanning trees converge if Random walk → Brownian
motion.

Warning!

Winding is not a continuous function of a curve with Hausdorff
topology.



Winding of UST → GFF

0

11−11 0



Temperleyan graphs

V − E + F = 2− 2g − b

g : genus ; b: boundary components

In superimposed graph, dimer configuration exists only if
V − E + F = 0
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Temperleyan graphs on Riemann surface

If not simply connected,

V − E + F = 2− 2g − b ≤ 0

Therefore we need to remove 2g + b − 2 white vertices from
superimposed graph. We call it a Temperleyan graph.

Note
2− 2g − b = 0 for torus and annulus.
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Temperleyan graph on a surface

p1
p2

Lemma

Dimer configuration exists on a Temperleyan graph.

Proof.

Using pair of pants decomposition, enough to prove for annulus
and pair of pants. For pair of pants, we decompose into annuli as
above. For annulus, its easy.



Theorem (Berestycki, Laslier, R. ’17)

Let M be a Riemann surface with finitely many holes and handles.
Let G δ be a Temperleyan graph embedded on M so that CLT
holds as δ → 0 and (*) holds. If M is torus or annulus, then
both scalar field and instanton component converges, is universal
and conformally invariant.

If (****) holds, same is true in general.

Using the result of Dubedat for square lattice on flat torus,

Corollary

If M = flat torus, height 1-form converges to a compactified GFF
(GFF on torus + Gaussian type instanton component).

Answers a question of Dubedát and Gheissari.



Extending Temperleyan bijection

Observation

Can only find such an orientation iff every component has at most
a single cycle.



Oriented cycle rooted spanning forest

Definition: CRSF
Oriented (wired) Cycle Rooted Spanning Forest

Oriented subgraph T of G :
– ∀v /∈ ∂G , unique outgoing edge (no outgoing edge for v ∈ ∂G ).
– Every cycle is non-contractible.

A given (nonboundary) component has unique cycle; branches
flowing toward it.







Theorem (Berestycki, Laslier, R.’17)

On any Riemann surface, if CLT holds on the primal graph, then
the scaling limit of oriented CRSF exists in Schramm space, is
universal and conformally invariant.

**** condition

On general surfaces, Temperleyan CRSF’s are singular with respect
to CRSF’s near the special points (where a white vertex is
removed). (****) condition is to prove convergence near these
special points.

Related to the work of Kassel-Kenyon.

Work in progress

Convergence of special branches.
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Thanks for listening!


