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Percolation on a Z2

Bernoulli percolation on sites : each vertex is independently in
Red with proba p and in Blue with proba 1− p.
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Cluster : connected components. Finite or not ?



Percolation on a Z2

I Phase transition :

1. p 6 1
2 : all Red clusters are finite

2. p > 1
2 : there is a unique infinite Red cluster

I At the critical point p = pc = 1
2 . Only finite Red and Blue

clusters.

I Geometry of a finite cluster : C the cluster of 0. |C| its number
of vertices.
If p 6= pc , given that C is finite,

P(|C| > n) ≈ e−cn

At p = pc ,
P(|C| > n) ≈ n−γ .



Percolation in random planar geometry



Construction of a random geometry
Uniform Infinite Planar Triangulation (UIPT) : (Schramm Angel
2001)
We begin with a finite triangulation.
Tn : the set of finite planar rooted triangulations with n vertices (up
to homeomorphism). Example with n = 8 vertices:

Tn is finite and can be enumerated (work of Tutte in the 60’s).
Number of planar triangulation with n vertices and a border of size
m :

2n+1(2m + 1)!(2m + 3n)!

(m!)2n!(2m + 2n + 2)!
.
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Construction of the UIPT: n goes to ∞

Local topology.

I If (G , ρ) is a rooted graph with root ρ, we define BG (R) the
ball centered in ρ of radius R (for the graph distance) : the
sub-graph of vertices at distance 6 R of ρ.

I For R > 0 fixed, if tn is a planar triangulation chosen uniformly
in Tn then when n goes to infinity the law of Btn(R) has a limit
in law and these laws are compatible for different values of R.

I Angel Schramm 01 : There exists t∞ an inifinite planar rooted
triangulation which is the ”local” limit of the tn :

tn
n→+∞−→ t∞

(i.e. for all R > 0, Btn(R)
L−→Bt∞(R).)
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UIPT : Uniform Infinite Planar Triangulation

A ”natural” model of random planar geometry.





Percolation on the UIPT

Bernoulli percolation on sites : each vertex is independently in
Red with proba p and in Blue with proba 1− p.
Cluster : connected components. Finite or not ?
Theorem (Angel 03) Similar to the euclidian case : Phase transition
:

1. p 6 1
2 : all Red clusters are finite

2. p > 1
2 : there is a unique infinite Red cluster

At the critical point p = pc = 1
2 . Only finite Red and Blue clusters.

C the cluster of 0. What is the geometry of C ?



A Hull H with |H| = 19 and |∂H| = 44
Volume = |H| = number of vertices
Perimeter = |∂H| = length of the green interface



Results
Theorem (Angel Curien 2015) : In the UIHPT (closely related model
in the half-plane instead of the plane), at the critical parameter:

P(|H| > n) =
1

n1/4+o(1)
and P(|∂H|) � 1

n1/3
.

(un � vn means that for two constants 0 < c ,C <∞
cun 6 vn 6 Cun for sufficiently large n)

Theorem (Gorny M.-S. Singh 2017) : In the UIPT at the critical
parameter:

P(|H| > n) � 1

n1/8
and P(|∂H|) � 1

n1/6
.

Why is there a factor 2 ?
Conjecture : The number of Red vertices connected to the origin

(|C| 6 |H|) has a tail distribution in n−
1
7 .
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Exploration of the UIPT : ”peeling” (Watabiki 95 Angel
03)

We forget about the percolation part for a while. Discovery step by
step of the triangulation.
Sn = size of the border of the discovered region after n steps. The
border is in green with a distinguished red edge.
One step : discover the triangle on the other side of the red edge
(here Sn = 6) :



Evolution of the border

I Sn is a Markov chain ! What we discover only depend on the
size of the border, not on the particular geometry of what is
inside.

I The law of Sn does not depend on the strategy chosen to
discover new triangles (the choice of the red edge)

I 2 possibilities when Sn = m
I Sn+1 = m + 1 if we discover a new vertex. This happens with

probability p1h(m + 1)/h(m).
I Sn+1 = m − k with k > 1 when the new triangle is attached to

the border at distance k by its third vertex. This happens with
proba p−kh(m − k)/h(m).

with explicit p = (pk)k61 (p−k ∼ ck−5/2) and h is a
p-harmonic null on ]−∞; 1]. (Everything is explicit and can be
computed by taking limits in the combinatorial formulas of
Tutte).



Consequences

I

P(Sn+1 = m + k |Sn = m) = p−k
h(m + k)

h(m)
,

This is a Doob h-transform.

I Corollary : S = (Sn)n>1 has the same law than a random walk
on Z with steps of law given by p = (pk)k61 conditioned to
stay > 2.

I Consequences : p−k ∼ ck−5/2 is in the domain of attraction of

a 3/2-stable law and thus Sn = O(n
2
3 )



Peeling : now with percolation
We want to explore the Red cluster of the origin at p = pc = 1

2 . It
is possible to choose a strategy in such a way that on the border the
Red vertices are on one side and the Blue on the other.

Now we follow the evolution by looking at the two processes. Rn is
the number of Red vertices on the border and Bn the number of
Blue ones.



Peeling : now with percolation

I

(rn+1, bn+1) = (rn, bn) + (Sn+1 − Sn)

(
ηn

1− ηn

)
with ηn = 1 if we discover a new Red vertex or if the new
triangle attach itself in the Red direction. (ηn = 1 otherwise).

I rn + bn = Sn and luckily, since p = pc = 1
2 , ηn is a sequence of

i.i.d. Bernoulli 1/2 independent of S .

I But rn, bn defined this way is not the number of Red,Blue
vertices on the border. Still, while we are still in the cluster of
the origin :

Rn = rn + inf
k6n

bk

Bn = bn − inf
k6n

bk

The exploration of the cluster stops if Rn 6 0 i.e. at Θ the first
time n such that rn + infk6n bk 6 0.
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Encoding of the peeling bytwo processes

Above : evolution of the real number of Red/Blue sites Rn,Bn.

Below : the processes r et −b.



Proof I

I On one hand (Rn,Bn) the number of Red/Blue vertices on the
boudary of the peeling process. A two-dimensional Markov
process.

I On the other hand (r , b) a couple a random walks condioned
to satisfy r + b > 2 (i.e. at all time rn + bn > 2). Should be
simpler to study.

(rn+1, bn+1) = (rn, bn) + Xn+1

(
ηn

1− ηn

)
Under the law P(.|r + b > 2)

I The condition r + b > 2 is the only thing which correlates r
and b. But while we are still in the exploration of the Red
cluster of the origin, one should expect to see more Red
vertices than Blue ones and thus r > 0 should imply r + b > 2.
We can study the law of (r , b) under the probability measure
P(.|r > 0) instead of P(.|r + b > 2). We lose some
multiplicative constants in this approximation



Proof I

I X and Y i.i.d. with law p which is 3/2-stable:

rn+1 = rn + Xn+1

bn+1 = bn + Yn+1

Under the law P(.|r > 0). What is the order of the time spend
in C ? Key quantity:

Θ = inf{n|rn 6 sup
k6n
−bk}

I If r visits x after −b visits x then we are after Θ.

Ti = i-th new maximum of − b

Ui = last time r visits − bTi

While Ui < Ti we are still in C.



Symmetry



Proof II
I (r , b) independent random walks with the same law under the

condition r > 0

Ti = i-th new maximum of − b

Ui = last time r visits − bTi

I U and T are two random walks (in the domain of 1/3 stable
laws) and miracle of Tanaka (which transform first passage
time of a walk in last passage time of the same walk
conditioned to saty positive) : they have the same law

I (Ui − Ti )i>0 is a symmetric random walk. While is is positive
we are still exploring the cluster. Universal estimate : the
probability that a symmetric random walk stays positive k
steps is of order k−1/2

I If Tn1/3 + Un1/3 > 2n (which happens with reasonnable
probability) and Tj − Uj has stayed positive (proba

(n1/3)−
1
2 = n−1/6) then Θ > n. Vysotsky : these two events

are independent.



Proof, the end

I

P(Θ > n) � n−
1
6

I Curien Le Gall 16 If Vn is the number of vertices in the peeled
region up to time n then typically Vn is of order n4/3.

I Thus, heuritically,

P(|H| > n) � P(VΘ > n) � P(Θ4/3 > n) � (n−
1
6 )3/4 = n−1/8




