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Viruses
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Viruses

The spread of the Zika virus
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Online viruses

Wannacry ransomware attack, May 2017

from Kasperski lab daily
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Memes
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Memes
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Viral videos

Search intensity of Gangnam style

from knowyourmeme.com
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Models

We need models!
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The scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm

For some τ > 2, the degree of a uniformly chosen vertex satisfies

P(deg(v) = x) � C

xτ

logP(deg(v) = x) � logC − τ log x

log(proportion of degree x vertices) vs log x is a straight line.
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Power laws

Degree distribution of the router level internet network
from Faloutsos, Faloutsos, Faloutsos. 1999
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Power laws

Degree distribution of ecological networks
from Montoya, Pimm, Polé. Nature 2006
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Power laws

Note: τ ∈ (2, 3) often!

When τ ∈ (2, 3) then Varn[deg(v)]→∞ and En[deg(v)] <∞.
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Model 1.

Configuration model
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The configuration model

Matches the degree sequence of the network you would like to model.

[Configuration model simulator by Robert Fitzner]

[Configuration model with power law degrees by Robert Fitzner]
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http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/CM/CmCreation.html
http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/CM/PowerLaw_DegreeDist.html


Weighted Configuration model

Modeling information diffusion

Add i.i.d. weights from distribution σ to edges.

Spreading time = weighted distance

Edge weight = time/cost of transmission through the edge
The spreading time between two vertices u, v
= the weighted distance:

dσ(u, v)

How does dσ(u, v) behave in terms of the degrees and the distribution σ?
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Local weak convergence

Local neighborhoods look like random trees with size biased degrees.
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Preliminaries

Initial stage of the spreading in the graph looks like a random tree with

power law degrees, tail exponent α := τ − 2 ∈ (0, 1)

each edge has an i.i.d ‘length’ or ‘weight’

called age-dependent branching process
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Age-dependent branching process

In an age-dependent branching process BP(X , σ)

root is born at time 0,

the number of children of each individual is i.i.d. ∼ X ,

birth-times of children are i.i.d. ∼ σ.
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Explosion?

Definition

D(t) = population born by time t.

A branching process is explosive if for some t > 0,

P(|D(t)| =∞) > 0.

Otherwise conservative.

Explosive vs conservative

When is a branching process BP(X , σ) explosive?
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Explosion of BPs

Theorem (Amini, Devroye, Griffith, Olver & K)

Assume for x large enough and some ε > 0

1

xε
> P(X > x) >

1

x1−ε . (PL)

The branching process BP(X , σ) is explosive if and only if for some K > 0∫ ∞
K

F (−1)
σ

(
e−e

z
)
dz <∞ (I)

where F
(−1)
σ is the inverse of the distribution function Fσ(x) = P(σ ≤ x).

Corollary

If a distribution σ explodes for one X satisfying (PL) then it explodes for
all X satisfying (PL) (including all power laws τ ∈ (2, 3)).
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Explosive σ-s

Examples

Flatness of distribution function Fσ at the origin matters.

Exponential, Gamma, Uniform, etc.

Fσ(t) = exp{−1/tβ}, β > 0

Boundary case: Fσ(t) = exp{− exp{ 1
tβ
}}. Explosive for β < 1,

conservative for β ≥ 1.

Komjáthy Júlia (TU/e) 22 / 36



Explosive σ-s

Examples

Flatness of distribution function Fσ at the origin matters.

Exponential, Gamma, Uniform, etc.

Fσ(t) = exp{−1/tβ}, β > 0

Boundary case: Fσ(t) = exp{− exp{ 1
tβ
}}. Explosive for β < 1,

conservative for β ≥ 1.
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Back to the configuration model
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Explosive weights on the configuration model

Theorem (Baroni, van der Hofstad, K)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

i.i.d. edge-weights from distribution σ.

If the branching process BP(D?, σ) is explosive,

dσ(u, v)
d−→ V (1) + V (2).

V (1),V (2) explosion times of two copies of BP(D?, σ),
D?=size biased degree
Otherwise dσ(u, v)→∞.

This was first shown for σ ∼ Exp(1) by Bhamidi, Hofstad, Hooghiemstra.
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Komjáthy Júlia (TU/e) 24 / 36



Explosive weights on the configuration model

Theorem (Baroni, van der Hofstad, K)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

i.i.d. edge-weights from distribution σ.

If the branching process BP(D?, σ) is explosive,

dσ(u, v)
d−→ V (1) + V (2).

V (1),V (2) explosion times of two copies of BP(D?, σ),
D?=size biased degree
Otherwise dσ(u, v)→∞.

This was first shown for σ ∼ Exp(1) by Bhamidi, Hofstad, Hooghiemstra.
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Conservative weights on the configuration model

Theorem (Adriaans, K)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

i.i.d. edge-weights from distribution σ.

If BP(D?, σ) is conservative, then for all ε > 0,

dσ(u, v)

2
log log n/| log(τ−2)|∑

k=1

F
(−1)
σ

(
exp

(
− ( 1

τ−2 )k
))

P−→ 1.

Gives back the main term for σ ≡ 1.
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When τ > 3

τ ∈ (2, 3)

Dichotomy: bounded average distance for explosive weight distributions,
non-bounded average distance for conservative weight distributions

Theorem (Bhamidi, Hofstad, Hooghiemstra)

Universally, for all σ that have a density,

dσ(u, v) =
1

λ
log n + tight,

where λ is the Malthusian parameter (exponential growth rate) of
BP(D?, σ).
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A model with geometry

Scale-free percolation (SFP)

Vertex set is Zd , collection of vertex-weights (Wz)z∈Zd .

nearest neighbor edges are present

Conditionally on (Wz)z∈Zd , edges are present independently. With
α > d , λ > 0,

P((x , y) open) = 1− exp
(
− λWxWy/‖x − y‖α

)
add i.i.d. edge-weights σ to all open edges.

Theorem (Deijfen, Hofstad)

Consider SFP with α > d , and γ := α(τ − 1)/d > 1. Then the degree
distribution satisfies

P(D0 > x) = `(x)/xγ

for some slowly varying function `(x).
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Scale free percolation

Figure: Scale free percolation with α = 3.9, τ = 1.95, λ = 0.1. Simulation by B.
Lodewijks
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Weighted distances for SFP

Theorem (Hofstad, K)

Consider SFP with α > d , γ = α(τ − 1)/d ∈ (1, 2) and conservative
edge-weights σ. Fix an arbitrary unit vector e. Then, as m→∞,

dσ(0, bmec)

2
blog log m/| log(γ−1)|c∑

k=1

F
(−1)
σ

(
exp(− 1

(γ−1)k
)
) P−→ 1.
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Picture-proof of explosion for CM
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Proof for conservative edge-weights

Step 1: Coupling

Couple the initial stages of the spreading by two independent BPs, one
started at u, one at v , until generation Mn for some small Mn = o(log n).

Step 2: Degree-dependent percolation

Percolate the whole graph: independently, for each edge e,

11e is kept = 11σe ≤ tr(d1,d2)

e connects vertices with degrees d1, d2,
tr(d1, d2) some well-chosen threshold function.

Step 3: High-deg vertices ũ, ṽ

Find two vertices ũ, ṽ with high enough percolated degree
degp(ũ), degp(ṽ) > Kn = Kn(Mn) in the two BPs
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Degree-dependent percolation

11e is kept = 11σe ≤ tr(d1,d2)

Janson’s argument

When P(e is kept) = p(d1)p(d2), for some p(·), percolated graph can be
looked at as a (new) configuration model

Let c > 0, η < 1, define

p(d) := exp(−c(log d)η)

Threshold function

Keep each edge independently with probability p(d1)p(d2), i.e.,

tr(d1, d2) := F (−1)
σ

(
exp

(
− c(log d1)η − c(log d2)η

))
Power law preserving η < 1

For η < 1, the new degree distribution has the same power-law exponent τ .
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Proof continued

Step 4: Layers

In the percolated subgraph, whp there is a nested layering starting with
degree Kn with the property that a vertex in layer i is connected to at least

one vertex in layer i + 1, and the degrees deg v in layer i is ≈ K
1/(τ−2)i

n .

Step 5: Combine

ũ, ṽ falls into layer 1. Thus whp

dL(u, v) ≤ dL(u, ũ) + dL(v , ṽ) + 2

# layers∑
i=1

tr(K
1/(τ−2)i

n ,K
1/(τ−2)i+1

n ).
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Proof continued

dL(u, v) ≤ dL(u, ũ) + dL(v , ṽ) + 2

# layers∑
i=1

tr(K
1/(τ−2)i

n ,K
1/(τ−2)i+1

n ).

use
tr(d1, d2) := F (−1)

σ

(
exp

(
− c(log d1)η − c(log d2)η

))

Step 6: Last term is

2

η

η log log n/| log(τ−2)|∑
i=1

F−1
σ

(
exp{−(τ − 2)−i}

)
.

η < 1, so summation boundary is fine, choose 1/η < 1 + ε/3.
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Proof continued

dL(u, v) ≤ dL(u, ũ) + dL(v , ṽ)

+ 2(1 + ε/3)

log log n/| log(τ−2)|∑
i=1

F−1
σ

(
exp{−(τ − 2)−i}

)
First two terms: If we choose ũ independently of the edge weights σe ,

dL(u, ũ)
d
≤

Mn∑
i=1

σi

Choose Mn →∞ so that

lim
n→∞

P

 Mn∑
i=1

σi ≥ ε/3

log log n/| log(τ−2)|∑
i=1

F−1
σ

(
exp{−(τ − 2)−i}

) = 1

This is always possible, Mn (also) depends on the tail of σ.
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Thank you for the attention!
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