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Information diffusion
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Viruses
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The spread of the Zika virus
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Online viruses

Wannacry ransomware attack, May 2017
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Memes
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Viral videos

Search Interest
Erdeklédés id§ szerint

@ gangnamstyle @ PSY

Vilagszerte. 2004 - most.

Search intensity of Gangnam style
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Models

We need models!

Komjathy Jalia (TU/e) 9 /36



The scale-free property

Many real-life networks have power-law degrees.
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The scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm
For some 7 > 2, the degree of a uniformly chosen vertex satisfies

P(deg(v) = x) < <

XT

log P(deg(v) = x) < log C — 7 log x

log(proportion of degree x vertices) vs log x is a straight line.
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Power laws
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Power laws
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Power laws

Note: 7 € (2, 3) often!

When 7 € (2,3) then Var,[deg(v)] — oo and E,[deg(v)] < oco.
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Model 1.

Configuration model
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The configuration model

Matches the degree sequence of the network you would like to model.
[Configuration model simulator by Robert Fitzner]

[Configuration model with power law degrees by Robert Fitzner]
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http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/CM/CmCreation.html
http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/CM/PowerLaw_DegreeDist.html

Weighted Configuration model

Modeling information diffusion
Add i.i.d. weights from distribution ¢ to edges. }
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Weighted Configuration model

Modeling information diffusion
Add i.i.d. weights from distribution o to edges.

Spreading time = weighted distance

Edge weight = time/cost of transmission through the edge
The spreading time between two vertices u, v
= the weighted distance:

dy(u,v)
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Weighted Configuration model

Modeling information diffusion
Add i.i.d. weights from distribution o to edges.

Spreading time = weighted distance

Edge weight = time/cost of transmission through the edge
The spreading time between two vertices u, v
= the weighted distance:

dy(u,v)

v

How does d,(u, v) behave in terms of the degrees and the distribution o? )
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Local weak convergence

Local neighborhoods look like random trees with size biased degrees.
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Preliminaries

Initial stage of the spreading in the graph looks like a random tree with
@ power law degrees, tail exponent av:=7 —2 € (0,1)
@ each edge has an i.i.d ‘length’ or ‘weight’

o called age-dependent branching process
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Age-dependent branching process

In an age-dependent branching process BP(X, o)
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Age-dependent branching process

In an age-dependent branching process BP(X, o)
@ root is born at time 0,
@ the number of children of each individual is i.i.d. ~ X,
@ birth-times of children are i.i.d. ~ o.
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Age-dependent branching process

In an age-dependent branching process BP(X, o)
@ root is born at time 0,
@ the number of children of each individual is i.i.d. ~ X,
@ birth-times of children are i.i.d. ~ o.
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Explosion?

Definition
D(t) = population born by time t.
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Explosion?

Definition
D(t) = population born by time t.
A branching process is explosive if for some t > 0,

P(|D(t)| = o0) > 0.

Otherwise conservative.

Explosive vs conservative

When is a branching process BP(X, o) explosive?
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Explosion of BPs

Theorem (Amini, Devroye, Griffith, Olver & K)
Assume for x large enough and some € > 0
1
ke P(X > x) > 1= (PL)
Komjathy Jalia (TU/e) 21 /36



Explosion of BPs

Theorem (Amini, Devroye, Griffith, Olver & K)
Assume for x large enough and some € > 0

1 1
ke P(X > x) > 1= (PL)

The branching process BP(X, o) is explosive if and only if for some K > 0

/KOO F-D) (e_oz)dz < 0

where FS ) is the inverse of the distribution function Fo(x) = P(o < x).

v
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Explosion of BPs

Theorem (Amini, Devroye, Griffith, Olver & K)

Assume for x large enough and some € > 0

1
v >P(X > x) > 1=

(PL)

The branching process BP(X, o) is explosive if and only if for some K > 0

/KOO F-D) (e_oz)dz < 0
(-1)

where F5 *’ is the inverse of the distribution function F,(x) = P(o < x).

Corollary

If a distribution o explodes for one X satisfying (PL) then it explodes for
all X satisfying (PL) (including all power laws T € (2,3)).
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Explosive o-s

Examples
Flatness of distribution function F, at the origin matters.
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Explosive o-s

Examples
Flatness of distribution function F, at the origin matters.
@ Exponential, Gamma, Uniform, etc.
o F,(t) =exp{-1/t%},3>0
e Boundary case: F,(t) = exp{—exp{t%}}. Explosive for § < 1,
conservative for g > 1.
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Back to the configuration model
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e i.i.d. edge-weights from distribution o.
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Explosive weights on the configuration model

Theorem (Baroni, van der Hofstad, K)

Consider the configuration model with
e power-law degree distribution with exponent T € (2,3)
e i.i.d. edge-weights from distribution o.

If the branching process BP(D*, o) is explosive,

dy(u,v) v 4 v,

v, V() explosion times of two copies of BP(D*, ),
D*=size biased degree
Otherwise d,(u,v) — oo.

v

This was first shown for o ~ Exp(1) by Bhamidi, Hofstad, Hooghiemstra.

Komjathy Jalia (TU/e) 24 / 36



Conservative weights on the configuration model

Theorem (Adriaans, K)

Consider the configuration model with

Komjathy Jalia (TU/e) 25/ 36



Conservative weights on the configuration model

Theorem (Adriaans, K)
Consider the configuration model with

e power-law degree distribution with exponent T € (2,3)

Komjathy Jalia (TU/e) 25/ 36



Conservative weights on the configuration model

Theorem (Adriaans, K)
Consider the configuration model with
e power-law degree distribution with exponent T € (2,3)

@ i.id. edge-weights from distribution o.

Komjathy Jalia (TU/e) 25/ 36



Conservative weights on the configuration model

Theorem (Adriaans, K)

Consider the configuration model with

e power-law degree distribution with exponent T € (2,3)

@ i.id. edge-weights from distribution o.

If BP(D*, o) is conservative, then for all € > 0,

dy(u,v)

Komjathy Jalia (TU/e)

25 / 36




Conservative weights on the configuration model

Theorem (Adriaans, K)
Consider the configuration model with
e power-law degree distribution with exponent T € (2,3)
@ i.id. edge-weights from distribution o.
If BP(D*, o) is conservative, then for all € > 0,
dy(u,v)

log log n/| log(7—2)| —h

2 )Y
k=1

Gives back the main term for o = 1.
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Conservative weights on the configuration model

Theorem (Adriaans, K)

Consider the configuration model with
e power-law degree distribution with exponent T € (2,3)
@ i.id. edge-weights from distribution o.

If BP(D*, o) is conservative, then for all € > 0,

dy(u,v) P
log log n/| log(7—2)| =L

2 FEY (exp (= (25)9))

Gives back the main term for o = 1.
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When 7 > 3

T €(2,3)
Dichotomy: bounded average distance for explosive weight distributions,
non-bounded average distance for conservative weight distributions

Theorem (Bhamidi, Hofstad, Hooghiemstra)
Universally, for all o that have a density,
1 .
dy(u,v) = " log n + tight,

where X\ is the Malthusian parameter (exponential growth rate) of
BP(D*,0).
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A model with geometry

Scale-free percolation (SFP)

o Vertex set is Z9, collection of vertex-weights (W,),cza-

@ nearest neighbor edges are present

o Conditionally on (W;),cz4, edges are present independently. With
a>d, A>0,

P((x,y) open) =1 — exp ( - MWW, /||x — yHO‘)

@ add i.i.d. edge-weights o to all open edges.

Theorem (Deijfen, Hofstad)

Consider SFP with o > d, and v := a(7 —1)/d > 1. Then the degree
distribution satisfies

P(Dg > x) = £(x)/x"

for some slowly varying function ¢(x).
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Scale free percolation

Figure: Scale free percolation with @ = 3.9, 7 = 1.95, A = 0.1. Simulation by B.
Lodewijks
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Weighted distances for SFP

Theorem (Hofstad, K)

Consider SFP with o > d,y = a1t —1)/d € (1,2) and conservative
edge-weights o. Fix an arbitrary unit vector e. Then, as m — oo,

do (0, [me]) Py
llog log m/| log(v—1)|] (1)
A (expl(— )

k=1
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Picture-proof of explosion for CM
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Picture-proof of explosion for CM
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Picture-proof of explosion for CM
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Picture-proof of explosion for CM
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Proof for conservative edge-weights

Step 1: Coupling

Couple the initial stages of the spreading by two independent BPs, one
started at u, one at v, until generation M,, for some small M, = o(log n).
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Step 2: Degree-dependent percolation
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Couple the initial stages of the spreading by two independent BPs, one
started at u, one at v, until generation M,, for some small M, = o(log n).

v

Step 2: Degree-dependent percolation
Percolate the whole graph: independently, for each edge e,

I.is kept = ]]-ae <tr(di,d2)

e connects vertices with degrees di, do,
tr(dy, d2) some well-chosen threshold function.

Step 3: High-deg vertices u, v

Find two vertices u, v with high enough percolated degree
deg,(u), deg,(v) > K, = Kn(M,) in the two BPs
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Degree-dependent percolation

]le is kept — ]]-rre <tr(di,d2)
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Degree-dependent percolation
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Degree-dependent percolation

I.is kept — I]-rre <tr(di,d2)
Janson’s argument

When P(e is kept) = p(d1)p(dz), for some p(-), percolated graph can be
looked at as a (new) configuration model

Let ¢ > 0, n < 1, define
p(d) := exp(—c(log d)")

Threshold function
Keep each edge independently with probability p(di)p(d2), i.e.,

tr(dr, do) := FY (exp (— c(log di)" — c(log d2)"))
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Degree-dependent percolation

I.is kept — I]-rre <tr(di,d2)

Janson’s argument

When P(e is kept) = p(d1)p(dz), for some p(-), percolated graph can be

looked at as a (new) configuration model

Let ¢ > 0, n < 1, define
p(d) := exp(—c(log d)")

Threshold function
Keep each edge independently with probability p(di)p(d2), i.e.,

tr(dr, do) := FY (exp (— c(log di)" — c(log d2)"))

Power law preserving n < 1

For n < 1, the new degree distribution has the same power-law exponent 7.
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Proof continued

Step 4: Layers

In the percolated subgraph, whp there is a nested layering starting with
degree K, with the property that a vertex in layer i is connected to at least
one vertex in layer i + 1, and the degrees deg v in layer j is ~ Kg/(sz)l.
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Proof continued

Step 4: Layers

In the percolated subgraph, whp there is a nested layering starting with
degree K, with the property that a vertex in layer i is connected to at least
one vertex in layer i + 1, and the degrees deg v in layer j is ~ K,}/(sz)l.

v

Step 5: Combine
u, v falls into layer 1. Thus whp
# layers

di(u,v) < dp(u, @) +di(v,v)+2 > (KT M2y
i=1

Komjathy Jalia (TU/e) 33/36



Proof continued

# layers ) o
di(u,v) < dy(u. @)+ di(v,7)+2 3 (k! K/ AT,
i=1

use
tr(dy, dp) = F{Y (exp (— c(log d1)" — c(log d»)"))
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Proof continued

# layers ) .
di(u,v) < dp(u,0) + di(v, ) +2 Y (kT kTR,

i=1

use
tr(dy, dp) := FLY (exp (— c(log d1)" — c(log d»)"))
Step 6: Last term is

nloglog n/|log(T—2)| .
> Fit(exp{—(T—2)"}).
i=1

2
Ui

n < 1, so summation boundary is fine, choose 1/ < 1+ ¢/3.
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Proof continued

di(u,v) < di(u,u) + di(v,v)
log log n/| log(T—2)| )
+2(1+¢/3) Fot (exp{=(r=2)7"})
i=1

First two terms: If we choose u independently of the edge weights o,

d M
di(u,u) < Zai
i=1

Choose M,, — oo so that

log log n/| log(7—2)|

Mhn
lim PP Za,- >¢e/3 Z F! (exp{—(7 — 2)*"}) =1
i=1

n—oo £
i=1

This is always possible, M, (also) depends on the tail of o.
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Thank you for the attention!
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