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Percolation

Definition
Fix a graph G = (V,E) and p ∈ [0, 1]. Remove each edge e ∈ E independently
with probability p: a product measure on {0, 1}E .

Focus of this talk
Percolation on (sequences of) finite graphs.

Example
The Erdős-Rényi random graph: Take G = Kn. Write G(n, p) for the
percolated graph. Study G(n, p) as n→∞ (with p = p(n)→ 0).
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The ERRG phase transition (1)

The double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

Erdős & Rényi (1960) showed: for fixed j ≥ 1,
• if p < 1/n then ∣Cj∣ = Θ(logn) whp [subcricital]
• if p = 1/n then n−2/3∣Cj∣ is a tight random variable [critical]
• if p > 1/n then ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]
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The ERRG phase transition (2)

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality [Bollobás ‘84, Łuczak ‘90,
Janson, Knuth, Łuczak & Pittel ‘93, …]

• if εnn1/3 → −∞ then ∣Cj∣ = 2ε−2n log(ε3
nn)(1 ± o(1)) whp [slightly subcritical]

• if εnn1/3 → θ ∈ R then Aldous’ scaling limit [the critical window]
• if εnn1/3 → +∞ then ∣C1∣ = 2εnn(1 + o(1)) whp, ∣Cj∣ = 2ε−2n log(ε3

nn)(1 ± o(1))
for j ≥ 2 whp [slightly supercritical]

6 / 25



The ERRG phase transition (2)

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality [Bollobás ‘84, Łuczak ‘90,
Janson, Knuth, Łuczak & Pittel ‘93, …]

• if εnn1/3 → −∞ then ∣Cj∣ = 2ε−2n log(ε3
nn)(1 ± o(1)) whp [slightly subcritical]

• if εnn1/3 → θ ∈ R then Aldous’ scaling limit [the critical window]
• if εnn1/3 → +∞ then ∣C1∣ = 2εnn(1 + o(1)) whp, ∣Cj∣ = 2ε−2n log(ε3

nn)(1 ± o(1))
for j ≥ 2 whp [slightly supercritical]

6 / 25



The ERRG phase transition (2)

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality [Bollobás ‘84, Łuczak ‘90,
Janson, Knuth, Łuczak & Pittel ‘93, …]

• if εnn1/3 → −∞ then ∣Cj∣ = 2ε−2n log(ε3
nn)(1 ± o(1)) whp [slightly subcritical]

• if εnn1/3 → θ ∈ R then Aldous’ scaling limit [the critical window]

• if εnn1/3 → +∞ then ∣C1∣ = 2εnn(1 + o(1)) whp, ∣Cj∣ = 2ε−2n log(ε3
nn)(1 ± o(1))

for j ≥ 2 whp [slightly supercritical]

6 / 25



The ERRG phase transition (2)

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality [Bollobás ‘84, Łuczak ‘90,
Janson, Knuth, Łuczak & Pittel ‘93, …]

• if εnn1/3 → −∞ then ∣Cj∣ = 2ε−2n log(ε3
nn)(1 ± o(1)) whp [slightly subcritical]

• if εnn1/3 → θ ∈ R then Aldous’ scaling limit [the critical window]
• if εnn1/3 → +∞ then ∣C1∣ = 2εnn(1 + o(1)) whp, ∣Cj∣ = 2ε−2n log(ε3

nn)(1 ± o(1))
for j ≥ 2 whp [slightly supercritical]

6 / 25



Cluster sizes of the critical ERRG

Theorem [Aldous ‘97]
Fix θ ∈ R.

Let B(t) be a Brownian motion and

Bθ(t) ∶= B(t) + θt − t2

2
(BM w/ parabolic drift)

Rθ(t) ∶= Bθ(t) − inf
0≤u≤t

Bθ(t) (Bθ reflected at 0)

and

(γi(θ))i≥1 = the excursions of Rθ ordered s.t. γ1(θ) > γ2(θ) > . . .

Consider G(n, 1+εn
n ) with εnn1/3 → θ. Then,

( ∣Ci∣
n2/3 )

i≥1

dÐ→ (γi(θ))i≥1
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About the proof

A graph exploration algorithm
(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to explored
(4) • If ∃ an active vertex: move token to an active vertex. Call it v. Go to (2)

• If ∄ an active vertex: Go to (1) [explored a component]
• If ∄ a neutral vertex: Stop [explored the graph]

The exploration process
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= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1

8 0 0



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1

8 0 0

9 0 −1



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1

8 0 0

9 0 −1

10 2 0



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1

8 0 0

9 0 −1

10 2 0

11 0 −1



1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

Si

i

i Xi Si

0 0 0

= neutral

= active

= explored

Si = Si−1 − 1 +Xi, S0 = 0

Xi = # new active vertices in step i

1 3 2

2 1 2

3 1 2

4 2 3

5 0 2

6 0 1

7 1 1

8 0 0

9 0 −1

10 2 0

11 0 −1

12 0 −2



The exploration process and cluster sizes

0
−1
−2

Si

size of first cluster size of second cluster

min{j ∶ Sj = −1} = size of first explored cluster and min{j ∶ Sj = −k} = total
size of first k explored clusters.

If G(n, 1+θn−1/3

n ) has (n−1/3Stn2/3)t≥0
dÐ→ (Bθ(t))t≥0, then Aldous’ Theorem

follows
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Universality

The ERRG universality class
It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ‘14] +much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that Kn is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n − k, p). This is obviously not true for percolation
on any other graph.
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The Hamming graph

H(d,n) is defined as the (d − 1)-fold Cartesian product of Kn,

H(d,n) ≃ Kn × Kn × ⋅ ⋅ ⋅ × Kn

H(d,n) has degree m ∶= d(n − 1) and V ∶= nd vertices.

12 / 25



The critical window

Theorem [FHHH ‘17]
For percolation on H(d,n) with degree m = d(n − 1) and d = 2, 3, . . . , 6,

pH(d,n)c = 1
m
+ 2d2 − 1

2(d − 1)2
1
m2

is a point inside the critical window.

Remark: The width of the critical window is O(m−1V−1/3) = O(n−d/3−1)
[Borgs et al. ‘05], so 1/m is not in the critical window when d ≥ 4.
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Critical percolation on the Hamming graph

Theorem [FHHH ‘17+]
For percolation on H(d,n) with d = 2, 3, 4, fix θ ∈ R and
p = pH(d,n)c (1 + θV−1/3). Then,

( ∣Ci∣
V2/3 )

i≥1

dÐ→ (γi(θ))i≥1

[Exactly the same as the ERRG]
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About the proof (1)
Geometry⇒ problems

The proof uses an exploration process, just like Aldous. But non-trivial
geometry gives rise to two problems:

• Problem 1: consecutive steps in the exploration are highly dependent
• Problem 2: current cluster is dependent on all explored clusters
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About the proof (2)
Percolation and branching random walks

We describe percolation configurations as a projection of randomly
embedded Bin(m, p)-Galton-Watson trees into H(d,n), where particles are
killed when

• they collide, or
• they visit a previously visited site, or
• the tree grows too big

We call them killed branching random walks.
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About the proof (2)
Percolation and branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d,n), where particles are killed when
they collide, or visit a previously visited site, or grow too big. We call them
killed branching random walks.

Advantages:
• The path between two particles in a (not killed) BRW is a simple

random walk

• Intersections and self-intersections of BRWs are easy to estimate
• Explore the GW-trees instead of clusters

Disadvantage:
• The measure of killed BRW’s on H(d,n) is more complicated than the

percolation product measure
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About the proof (3)
Reducing dependence between exploration steps

A two-scale exploration
Standard exploration processes activate the direct neighbors. On the
Hamming graph, this gives too much dependence between consecutive steps.

Instead, we explore a large chunk of the cluster at once, corresponding to the
first rn ≫ log2 n generations in the GW-tree. We only activate the boundary.

. .
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• Random walk on H(d,n)mixes fast, so the rn-th generation of the BRW
is very well mixed⇒ no dependence between large-scale exploration
steps

Disadvantage:
• The number of explored vertices is now random. But for rn small

enough the number concentrates.
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About the proof (4)
Reducing dependence between current cluster and explored clusters

A sticky coupling
When exploring the ERRG the geometry of the already explored clusters does
not matter (removing a cluster of size k from G(n, p) gives G(n − k, p)). On
the Hamming graph it does matter.

But the geometry of the explored clusters
does not matter for the probability that a BRW started from a randomly
chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
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About the proof
Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n− k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the expected size of the
intersection with a BRW started from a randomly chosen vertex.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
Advantage:

• The sticky coupling for BRW on the Hamming graph is very quick: whp
only O(1) vertices do not stick together

Disadvantage:
• Many different processes and couplings going on at the same time
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Miscellaneous

What about the surplus?

We prove the joint convergence

(
∣Cj∣
V2/3 ,

Surplus(Cj)
V2/3−1/d )

j≥1

dÐ→ (γj(θ),
γj(θ)

2(d − 1)2
)
j≥1

[Very different from the ERRG scaling limit]

What about d > 4, or other graphs?

Improving our result to d ≤ 9 is feasible but hard work. Improving beyond
that, or to other graphs (e.g. hypercubes) requires some new ideas. The main
problem is that our method requires explicit knowledge of pc.
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Thank you
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