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Percolation

Definition
Fix a graph G = (V,€) and p € [0, 1]. Remove each edge e € £ independently
with probability p: a product measure on {0, 1}¢.

Focus of this talk
Percolation on (sequences of) finite graphs.

Example

The Erdds-Rényi random graph: Take G = K,,. Write G(n, p) for the
percolated graph. Study G(n,p) as n — oo (with p = p(n) - 0).
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The ERRG phase transition (1)

The double jump transition
Write C; fo the j-th largest cluster of G(n, p).
Erdds & Rényi (1960) showed: for fixed j > 1,
« if p < 1/n then |Cj| = ©(log n) whp [subcricital]
« if p = 1/n then n=2/°|C}| is a tight random variable [critical]

« if p > 1/nthen |Ci| = ©(n) and |Cj| = ©(logn) for j > 2 whp
[supercritical]
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The ERRG phase transition (2)

The critical window

We can zoom in on the phase transition by choosing p = with e, - 0.
This shows a much richer structure around criticality [Bollobas ‘84, Luczak ‘90,
Janson, Knuth, Luczak & Pittel 93, ...]
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This shows a much richer structure around criticality [Bollobés ‘84, Luczak ‘90,
Janson, Knuth, Luczak & Pittel 93, ...]

o ife,n'/* - —oo then |G| = 26,2 log(e3n) (1 + o(1)) whp [slightly subcritical]

1+e,

o ife,n'? > 0 € R then Aldous’ scaling limit [the critical window]

o ife,n'? > +o0 then |C1] = 26,n(1 + o(1)) whp, |C;| = 2¢;,? log(e3n) (1 + o(1))
for j > 2 whp [slightly supercritical]
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Cluster sizes of the critical ERRG

Theorem [Aldous ‘97]
Fix 0 € R.
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Cluster sizes of the critical ERRG

Theorem [Aldous ‘97]
Fix # € R. Let B(t) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - OignugtBe(t) (B? reflected at 0)
and
(7i(0))is1 = the excursions of RY ordered s.t. v1(0) > 7,(0) > ...
Consider G(n, 22 ) with e,n'/> > 6. Then,

d

(;LS/L )izl — (1(0))iz
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About the proof

A graph exploration algorithm

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto explored

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
« If A an active vertex: Go to (1) [explored a component]
« If A a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

So = 0, Si=8i.1 - 1 + X

new active vertices
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The exploration process and cluster sizes

| e
. ~

(€ A
Y T

size of first cluster size of second cluster

min{j : §; = =1} = size of first explored cluster and min{j : §; = —k} = total
size of first k explored clusters.
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The exploration process and cluster sizes

Si
A
0 ASNEIN /\l .
-1 ~/ N7 T >
3 ~N
“ A J
Y T
size of first cluster size of second cluster

min{j : S; = —1} = size of first explored cluster and min{j : §; = —k} = total
size of first k explored clusters.

If G(n, %) has (n7138,,/: ) < (B%(t))1s0, then Aldous’ Theorem

follows

>0
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Universality

The ERRG universality class
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sparse, high-dimensional random graph models.
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Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.0.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ‘14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that K, is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n — k, p). This is obviously not true for percolation
on any other graph.

11/25



The Hamming graph

H(d, n) is defined as the (d — 1)-fold Cartesian product of K,,,
H(d,n) ~K, x K, x---x K,

H(d, n) has degree m := d(n — 1) and V := n vertices.

\
\
)

N
B =

N
il
‘1

A

:
e
R

‘&‘
\’\‘
Y

)
WA
s
V__\

U

12/25



The critical window

Theorem [FHHH 17]
For percolation on H(d, n) with degree m =d(n—1) andd =2,3,...,6,

@y _ L 281 1
‘ m  2(d-1)>m?

is a point inside the critical window.
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The critical window

Theorem [FHHH 17]
For percolation on H(d, n) with degree m =d(n—1) andd =2,3,...,6,

@y _ L 281 1
‘ m 2(d-17m

is a point inside the critical window.

REMARK: The width of the critical window is O(m™'V=1/3) = O(n~43"1)
[Borgs et al. ‘05, so 1/m is not in the critical window when d > 4.
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Critical percolation on the Hamming graph

Theorem [FHHH ‘17+]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V~1/3). Then,

(T5) - it
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Critical percolation on the Hamming graph

Theorem [FHHH ‘17+]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V~1/3). Then,

(T5) - it

[Exactly the same as the ERRG]
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About the proof (1)

Geometry = problems

The proof uses an exploration process, just like Aldous. But non-trivial
geometry gives rise to two problems:
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Geometry = problems

The proof uses an exploration process, just like Aldous. But non-trivial
geometry gives rise to two problems:

« PROBLEM 1: consecutive steps in the exploration are highly dependent

« PROBLEM 2: current cluster is dependent on all explored clusters

wu

[\
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About the proof (2)

Percolation and branching random walks

We describe percolation configurations as a projection of randomly
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Percolation and branching random walks

We describe percolation as a collection of randomly embedded

Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when
they collide, or visit a previously visited site, or grow too big. We call them
killed branching random walks.

Advantages:

« The path between two particles in a (not killed) BRW is a simple
random walk

« Intersections and self-intersections of BRWs are easy to estimate

« Explore the GW-trees instead of clusters
Disadvantage:

« The measure of killed BRW’s on H(d, n) is more complicated than the
percolation product measure

19/25
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Hamming graph, this gives too much dependence between consecutive steps.
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Reducing dependence between exploration steps

A two-scale exploration

Standard exploration processes activate the direct neighbors. On the
Hamming graph, this gives too much dependence between consecutive steps.
Instead, we explore a large chunk of the cluster at once, corresponding to the
first r, > log” n generations in the GW-tree. We only activate the boundary.
Advantage:

« Random walk on H(d, n) mixes fast, so the r,-th generation of the BRW

is very well mixed = no dependence between large-scale exploration
steps

Disadvantage:

« The number of explored vertices is now random. But for r,, small
enough the number concentrates.
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the Hamming graph it does matter.

21/25



About the proof (4)

Reducing dependence between current cluster and explored clusters

A sticky coupling

When exploring the ERRG the geometry of the already explored clusters does
not matter (removing a cluster of size k from G(#, p) gives G(n — k, p)). On
the Hamming graph it does matter. But the geometry of the explored clusters

does not matter for the probability that a BRW started from a randomly
chosen vertex hits them.

21/25



About the proof (4)

Reducing dependence between current cluster and explored clusters

A sticky coupling

When exploring the ERRG the geometry of the already explored clusters does
not matter (removing a cluster of size k from G(#, p) gives G(n — k, p)). On
the Hamming graph it does matter. But the geometry of the explored clusters
does not matter for the probability that a BRW started from a randomly
chosen vertex hits them.

We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.

21/25






About the proof

Reducing dependence between current cluster and explored clusters
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In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
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About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n —k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the expected size of the
intersection with a BRW started from a randomly chosen vertex.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
Advantage:

« The sticky coupling for BRW on the Hamming graph is very quick: whp

only O(1) vertices do not stick together

Disadvantage:

+ Many different processes and couplings going on at the same time
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Miscellaneous

What about the surplus?

We prove the joint convergence

|G| Surplus(C;) a4 ©) %(0)
V2/3’ y2/3-1/d . i "2(d-1)2 s

[Very different from the ERRG scaling limit]

What about d > 4, or other graphs?

Improving our result to d < 9 is feasible but hard work. Improving beyond
that, or to other graphs (e.g. hypercubes) requires some new ideas. The main
problem is that our method requires explicit knowledge of p..
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