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Split Trees and Galton-Watson Trees

I will talk about two important classes of random trees:

Split trees were introduced by Devroye (1998) for unifying many
important random trees of logarithmic height. They are
interesting not least because of their usefulness as models of
sorting algorithms in computer science; for instance can the
the well-known Quicksort algorithm (introduced by Hoare
[1960]) be depicted as the binary search tree

Galton-Watson trees were introduced already in 1875 to
describe under which conditions a (noble) family name would die
out or survive forever.

The conditioned Galton-Watson trees (also called
simply-generated trees) are conditioned on a given total size of
the number of nodes and represent important random trees of
non-logarithmic height, such as for instance the Cayley tree
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Examples of Split Trees

The class of split trees includes many important random trees of
logarithmic height, e.g., binary search trees, m-ary search trees,
quadtrees, median of (2k + 1)-trees, simplex trees and tries

Figure: A 3-ary and a 4-ary search tree.
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an Example of a Split Tree
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The Binary Search Tree (continued)

Since the rank of the root’s key is equally likely to be
{1,2, . . . ,n}, the size of its left subtree is distributed as bnUc,
where U is a uniform U(0,1) random variable
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Important Parameters for Split Trees

(Devroye 1998)

- Branch factor b=3

- Vertex capacity s=4>0

-The random split vector
     =(V1, V2, ..., Vb) 

Figure: A split tree with n = 35, b = 3 and s = 4. The split vector V is the
most important parameter and its components are probabilities

The binary search tree has b = 2, s = 1 and V = (U,1− U)
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Split Trees
V1

V2

Contains n items

Contains ≈nV1 items

Contains 
≈nV1V2

items

V3

Contains 
≈nV1V2V3

items

Figure: Given all split vectors in the tree, nv for v at depth d is close to
nLv = n

∏d
j=1 Vj , where the Vj ’s are i .i .d . random variables distributed as V
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Split Trees: Most Nodes
Close to Depth c lnn

2ln n

2ln n+O(ln^(1/2)n)

2ln n−O(ln^(1/2)n)

0.3711... ln n

4.31107... ln n

All levels are full up to here.

The height of the tree.

Most nodes are in this strip.

Figure: The central limit theorem holds for the depths of the nodes. Most
nodes are in a strip of width O(

√
ln n) around the depth c ln n. The figure

shows the distribution of the nodes in a binary search tree
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Galton-Watson-Trees

A Galton-Watson tree starts with a root (a first ancestor).
Children are born accordingly to some given probability
distribution

The children of the root are the first generation. Each of them
give birth to new children independently and according to the
same probability distribution

The tree grows in several generations so that new ancestors give
birth to children independently of each other and previous
generations

The family dies out if no children survives. If the family survives
(the tree becomes infinite) or dies out (the tree becomes finite)
depends on the expected number of children
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Galton-Watson-Trees

Let pi be the probability that a node has i children, thus∑
i≥0 pi = 1. We assume that p0 > 0 and p0 + p1 < 1 to avoid

trivial special cases

Let Zn be the number of individuals in generation n. It is clear
that if Zn = 0 for some n it holds that Zj = 0 for all j > n

The most important parameter is the parameter of extinction

q := P(Zn = 0 for some n) = lim
n→∞

P(Zn = 0)
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Galton-Watson-Trees

Theorem
Let q be the extinction probability and m := E(Z1) =

∑∞
i=0 ipi . Then it

holds that q = 1 if m ≤ 1 and q < 1 if m > 1.

The tree thus becomes finite with probability 1 in the sub-critical case
m < 1 and in the critical case m = 1. The tree becomes infinite with
positive probability in the super-critical case m > 1
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Conditional Galton-Watson-Trees

Interestingly, could many random trees that had been studied for
a long time individually by combinatorialists be unified by critical
Galton-Watson trees (m = 1), where one conditions on that the
total number of nodes is n Kolchin (1986)

These are in fact equivalent to simply generated trees (that is a
more common name among combinatorialists) introduced by
Meir and Moon (1978)
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Cayley Trees

A labelled rooted tree, also called a Cayley-tree, is a
well-known combinatorial tree. By labelled it means that the
nodes are marked,i.e., the order of the children is relevant

Figure: Cayley-trees of sizes 2,3 and 4
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Cayley Trees

Well-known result: There are nn−1 rooted Cayley trees with n
nodes. Note that if one has an unordered tree with n nodes this
number is divided by n

A randomly chosen Cayley tree is equivalent to a conditional
Galton-Watson tree with a Po(1) distribution of the number of
children
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Depth First-Search Walk

Figure: The depth first-search walk, which can be regarded as a continuous
excursion can be analyzed on any rooted tree, but is in particular useful in
studies of conditional Galton-Watson trees
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Aldous Continuum Random Tree, CRT

Figure: The depth-first search (the continuous excursion) can be regarded
as a function Xn(2nt) for 0 ≤ t ≤ 1. There is an inverse so that one can go
from Xn(2nt) to the tree. The tree has n + 1 nodes.
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Aldous Continuum Random Tree, CRT

Figure: The depth-first search (the continuous excursion) can be regarded
as a function Xn(2nt) for 0 ≤ t ≤ 1. There is an inverse so that one can go
from Xn(2nt) to the tree. The tree has n + 1 nodes.
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Aldous Continuum Random Tree, CRT

Figure: The depth-first search (the continuous excursion) can be regarded
as a function Xn(2nt) for 0 ≤ t ≤ 1. There is an inverse so that one can go
from Xn(2nt) to the tree. The tree has n + 1 nodes.
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Aldous Continuum Random Tree, CRT

Theorem
Suppose that the conditional Galton-Watson tree Tn is critical (m = 1)
with finite variance for the number of children. Then it holds that the
depth first-search walk (the continuous excursion) Xn(2nt)√

n converges
in distribution to a Brownian excursion e(t) for 0 ≤ t ≤ 1.

(A Brownian excursion is a stochastic process which has important
applications in e.g., physics and financial mathematics)

Hence, Tn√
n converges in distribution to Aldous continuum random

tree, CRT. The tree is scaled by
√

n since the height of a
conditional Galton-Watson-tree (and thus the height of Xn(2nt))
is of order

√
n
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Some of My Own Results

Split trees Conditional Galton-Watson trees

Infinite Galton-Watson trees
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Some of My Own Results:

Renewal Theory to Study Split Trees
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Renewal Theory

Study sums Sk =
∑k

i Xi of i .i .d random variables
A light bulb has a random life time X1 with some distribution and
when it breaks it has to be replaced by a new light bulb with a life
time X2 of the same distribution
How many light bulbs are needed say in 1 year time?
This number is a random variable called counting process
N (t) := max{k : Sk ≤ t} in renewal theory
Let F (t) = P(X1 ≤ t). The renewal function is defined as
V (t) := E(N (t) and satisfies the renewal equation

V (t) =
∞∑

k=1

P(Sk ≤ t) = F (t) +

∫ t

0
V (t − s)dF (s)

= F (t) + (V ∗ dF )(t)

Law of large numbers suggests V (t) = t
E(X)+o(t)
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Applying Renewal Theory

Recall that the subtree sizes nv for v at depth d are
approximated by n

∏d
j=1 Vj

Let Sd := −
∑d

j=1 ln Vj . Note that n
∏d

j=1 Vj = ne−Sd

Define the renewal function

U(t) :=
∞∑

k=1

bkP(Sk ≤ t),

and let F (t) := bP(− ln V ≤ t)
For U(t) we obtain the following renewal equation

U(t) = F (t) + (U ∗ dF )(t)

As t →∞, U(t) satisfies

U(t) = (c + o(1))et

for some constant c
Cecilia Holmgren



B-Subtrees

B≤nV1

B≤nV1V2

B-subtree

B>nV1V2V3

B≤nV1

B>nV1V2

B-subtree
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The Random Number of Nodes
in a Split Tree

Theorem

Let N be the random number of nodes in a split tree with n items.
Then it holds that there is a constant C depending on the type of the
split tree such that

E [N] = Cn + o(n) and Var(N) = o(n2)

C. Holmgren, Electronic Journal of Probability (2012)
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Some of My Own Results:

Total Path Length and Number of Inversions

0

1 1

0

1 1 1 1

2 2
2 2
2

2 2

2 2
2 2

2 2

2 2
2

3 3

3 3
3 3

3 3
3

3 3

7

11 2 4

5 14 1 8 9 15

12

3

6 1013

7>6

Cecilia Holmgren



The Total Path Length/Running-Time
of Sorting Algorithms

Sorting algorithms sort a collection of data items (often called
keys) by comparisons of the input data

The number of comparisons for a certain key is given by its
depth in the tree

The total number of comparisons is the total path length,
which therefore represents a natural cost measure or
running time of these algorithms

Effective sorting algorithms are represented by log n-trees with
total path length, i.e., running time O(n log n)
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The Total Path Length of A Rooted Tree

The total path length is the sum of the depths of all items (often
represented by keys in tree data structures) in the tree
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The Running Time of Quicksort
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An Equivalent Definition
of the Total Path Length

The total path length can also be defined as the sum of all proper
subtree sizes, i.e., Ψ(T n) =

∑
v 6=σ nv
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The Total Path Length of Split Trees

Theorem

Let Ψ(T n) be the total path length in a split tree with split vector
V = (V1, . . . ,Vb). Then E [Ψ(T n)] = Cn ln n + nω(ln n) + o(n), where
C is a constant (depending on V) and ω is a continuous periodic
function. Let Xn := Ψ(T n)−E[Ψ(T n)]

n . Then Xn → X in distribution, where
X is the unique solution of the fixed point equation

X d
=

b∑
k=1

VkX (k) + C(V),

where X (k) are independent and identically distributed copies of X ,
satisfying E[X ] = 0 and Var(X ) <∞ and C(V) is a function of V.

N. Broutin and C. Holmgren, Annals of Applied Probability (2012)
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What is an Inversion of a Rooted Tree?

Write u < v if u is an ancestor of v . Given a bijection
λ : V → {1, . . . , |V |} (a node labelling), define an inversion as
a pair (u, v) so that λ(u) > λ(v)
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The Number of Inversions of Split Trees

Let I(Tn) be the number of inversions in a split tree. Let
V = (V1, . . . ,Vb) be the split vector and assume that − ln Vi is
non-lattice. Then E [I(Tn)] = 1

2E [Ψ(T n)] = C1
2 n ln n + C2

2 n + o(n).

Theorem

Let Xn = I(Tn)−E[I(Tn)]
n . Then Xn → X in distribution, where X is the

unique solution of the fixed point equation

X d
= αU0 +

b∑
i=1

ViX (i) + C(V)

where U0 ∼ Unif(0,1), each X (i) is an independent copy of X and
C(V) is a function of the split vector V. The variables are independent
except for the Vi ’s.

X. S. Cai, C. Holmgren, T. Johansson, S. Janson & F. Skerman arXiv:1709.00216
(2017)
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The Number of Inversions of Conditional
Galton-Watson Trees

Let e(s), s ∈ [0,1] be the random path of a standard Brownian
excursion, and define C(s, t) = 2 mins≤u≤t e(u). We define a random
variable η =

∫
[0,1]2 C(s, t)ds dt

Theorem

Suppose Tn is a conditional Galton–Watson tree with offspring
distribution ξ such that E [ξ] = 1, Var (ξ) = σ2 ∈ (0,∞), and

E
[
eαξ
]
<∞ for some α > 0, and define Yn =

I(Tn)− 1
2 Υ(Tn)

n5/4 . Then,

Yn
d→ Y def

=
1√
12σ
√
η N ,

where N is a standard normal random variable, independent from the
random variable η.

X. S. Cai, C. Holmgren, T. Johansson, S. Janson & F. Skerman arXiv:1709.00216
(2017) Cecilia Holmgren



Some of My Own Results:

Cutting Down Split Trees and Conditonal
Galton-Watson Trees
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What is a Cutting in a Rooted Tree?

Choose a random node
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What is a Cutting in a Rooted Tree?

Choose a random node
Cut in this node so that the tree separates into two parts and
keep only the part which contains the root
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What is a Cutting in a Rooted Tree?

Choose a random node
Cut in this node so that the tree separates into two parts and
keep only the part which contains the root
What is the maximum number of cuts required to cut the root?
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The Number of Cuts to Cut Down a Split Tree

Theorem

Let X (Tn) be the random number of cuts that is required to cut down
a split tree with n items. Then it holds that n→∞,(

X (T n)− f (n)
) / c1n

c2 log2 n
d→ −W , where

f (n) :=
c1n

c log n
+

c1n log log n
c log2 n

− c2n
c log2 n

for constants c, c1 and c2 depending on the type of the split tree,
where W has a weakly 1-stable distribution.

C. Holmgren, Combinatorics Probability and Computing (2010) (for the
specific case of the binary search tree)
C. Holmgren, Advances in Applied Probability (2011) (for all split trees)
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The Number of Cuts to Cut Down a
Conditional Galton-Watson Tree

Theorem

Let X (T n) be the random number of cuts that is required to cut down
a (critical) conditional Galton-Watson tree T n.

lim
n→∞

P(
X (T n)

σ
√

n
≥ x) = e−x2/2,

with the constant σ2 = Var(ξ) where ξ is the offspring distribution. .

L. Addario-Berry, N. Broutin and C. Holmgren, Annals of Applied Probability (2014)
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Number of Cuts to Cut Down a Cayley Tree

Figure: A Cayley tree.
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Number of Cuts to Cut Down a Cayley Tree
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Figure: We choose nodes to cut in randomly until the root is cut
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Number of Cuts to Cut Down a Cayley Tree
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Figure: We cut in a node by deleting the edge over that node. It is not
allowed to continue to cut in subtrees that we have already cut
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Number of Cuts to Cut Down a Cayley Tree
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Figure: We have cut down all these four subtrees, when the root of the first
tree, which is the node labelled 5, finally is cut
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Number of Cuts to Cut Down a Cayley Tree

1
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5

Figure: The subtrees that are cut down are placed in a path after each
other, where the first cut node becomes the new root of a tree. A coupling
argument shows that the new tree is also a Cayley tree
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Number of Cuts to Cut Down a Cayley Tree
1

2
4

5

Figure: Thus, the new tree is distributed as a Cayley-tree and the path
between the node labelled 1 and the node labelled 5 represents a path
between the root and a random node in the tree. This distance scaled by√

n has a Rayleigh distribution
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The Number of Cuts to Cut Down a
Conditional Galton-Watson Tree

By using a coupling argument we have shown that the number of
cuts to cut down a Cayley-tree is distributed as the distance
between the root of the Cayley tree and a random node in the
tree. A well-known result is that this distance scaled by

√
n is

Rayleigh distributed

We can then show the same result for general conditional
Galton-Watson trees T n by using the Aldous continuum
random tree CRT, which is the ”limiting tree” of all conditional
Galton-Watson-trees (scaled by

√
n)

L. Addario-Berry, N. Broutin and C. Holmgren, Annals of Applied Probability (2014)
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Some of My Own Results:

Bootstrap Percolation on Galton-Watson Trees
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Bootstrap Percolation on Galton-Watson Trees

(1) Start with an arbitrary infinite Galton-Watson tree

Aim: To find the threshold for the infection probability p that
determines when the final infected cluster occupies the whole tree

(i.e., the tree percolates)
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Bootstrap Percolation on Galton-Watson Trees

(2) Let the nodes be infected with probability p

Aim: To find the threshold for the infection probability p that
determines when the final infected cluster occupies the whole tree

(i.e., the tree percolates)
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Bootstrap Percolation on Galton-Watson Trees

(3) Nodes with 2 infected neighbors get infected

Aim: To find the threshold for the infection probability p that
determines when the final infected cluster occupies the whole tree

(i.e., the tree percolates)
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Bootstrap Percolation on Galton-Watson Trees

(4) Infection continues until no more nodes get infected

Aim: To find the threshold for the infection probability p that
determines when the final infected cluster occupies the whole tree

(i.e., the tree percolates)
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Bootstrap Percolation on Galton-Watson Trees

(4) Infection continues until no more nodes get infected

Aim: To find the threshold for the infection probability p that
determines when the final infected cluster occupies the whole tree

(i.e., the tree percolates)
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Critical Probabilities for Galton-Watson Trees

Let Tξ be the Galton-Watson tree with offspring distribution ξ.
Let the critical probability be

pC(Tξ) := inf{p : P(Tξ percolates) > 0}.

Assume that P(ξ = 0) = 0 and define

f(b) := inf{pC(Tξ) | E(ξ) = b}

Theorem
1 If b = 1 then f(1) = 1.
2 There are constants c and C such that if b ≥ 2 then

c
b

e−b ≤ f(b) ≤ Ce−b.

B. Bollobás, K. Gunderson, C. Holmgren, S. Janson and M. Przykucki
Electronic Journal of Probability (2014)

Cecilia Holmgren



Healthy 1-Forts Stops Infection
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Healthy 1-Forts Stops Infection
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Healthy 1-Forts Stops Infection

By using a branching process to analyze a fixed point-equation we
could determine the probability that the root stays healthy forever, i.e.,
that it belongs to a healthy 1-fort
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Bootstrap Percolation on Galton-Watson Trees

For Galton-Watson trees with offspring distribution ξ we
have shown sharp bounds for the function f(b) , which is the
infimum of the critical probabilities over all Galton-Watson trees
with E(ξ) = b. (This function is never 0, but of order e−b and
thus is much smaller than the critical probability for the complete
b-ary tree which is 1

2b2 )

For any offspring distribution ξ, we have also shown upper and
lower bounds of the critical probabilities pC(Tξ). These
bounds explain that offspring distributions highly concentrated
around their mean b yield much higher values for the critical
probability than offsprings with larger variations from the mean b.
(The complete b-ary tree is a special case of a Galton-Watson
tree, and has a large critical value)

B. Bollobás, K. Gunderson, C. Holmgren, S. Janson and M. Przykucki
Electronic Journal of Probability (2014)
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Some of My Own Results:

Fringe Subtrees to Study Random Trees
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What is a Fringe Subtree?
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What is a Fringe Subtree?
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What is a Fringe Subtree?
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Counting Fringe Subtrees
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Counting Fringe Subtrees
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Functions of Subtrees

Let T be a tree and f (T ) be a function to R. In a random tree Tn. Set

Xn =
∑

u

f(Tn(u)),

summing over all nodes in Tn, where Tn(u) is the subtree rooted at u.
We can thus use Xn to calculate the number of subtrees with
properties that interest us by choosing appropriate functions f
Examples:

Let f (Tn(u)) = 1{Tn(u) ≈ T}. Then Xn is the number of
subtrees that are equal to T

Let f (Tn(u)) = 1{| Tn(u) |= k}. Then Xn is the number of
subtrees with exactly k nodes

Let f (Tn(u)) = 1{| Tn(u) |= 1}. Then Xn is the number of
leaves
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Fringe Subtrees in some Split Trees

By using Stein’s method we could prove general limit theorems
for sums of functions of fringe subtrees in the case of the binary
search tree and the random recursive tree. When the fringe
subtrees are not too large we get normal limit laws and when
they are large (tending to infinity) we get Poisson limit laws
C. Holmgren and S. Janson, Electr. Journ. Probab. 2015a

We could then use Pólya urns to show normal limit laws of fringe
subtrees in the more general classes of m-ary search trees
(including the binary search tree) and preferential attachment
trees (including the random recursive tree). These results could
for example be applied to show a central limit theorem for the
number of ”2-protected” nodes in m-ary search trees
C. Holmgren and S. Janson, Electr. Journ. Probab. 2015b;
C. Holmgren, S. Janson and M. Sileikis Electr. Journ. Combin. 2017
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Example: Protected Nodes in the Binary Search Tree

We consider the number of so-called 2-protected nodes in binary
search trees. A node is 2-protected if the shortest distance to a leaf is
at least two, i.e., it is neither a leaf or the parent of a leaf

n-Xn=2# +3#

=2# -#
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Protected Nodes in the Binary Search Tree

The following theorem was shown by Mahmoud and Ward using
generating functions and the contraction method.

Theorem

Let Xn be the number of protected nodes in a binary search tree.
Then

Xn − 11
30n

√
n

d−→ N
(

0,
29
225

)
.

We provide a simple proof of this theorem using that the number
of unprotected nodes equals twice the number of leaves minus
the number of cherry subtrees
C. Holmgren and S. Janson, Electr. Journ. Probab. 2015a
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Embedded Heavy Trees

The embedded 2-heavy tree in a conditional Galton-Watson tree
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Embedded Heavy Trees

The embedded 2-heavy tree in a conditional Galton-Watson tree
We have applied fringe subtrees to analyze embedded heavy
subtrees and in the special case of the ”heavy path” we instead
used the Aldous continuum random tree

L. Devroye, C. Holmgren and H. Sulzbach, 2017 arXiv: 1701.02527
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Summary

We have studied two classes of trees: Splittrees (many of these
are used as sorting algorithms e.g., the binary search
tree/Quicksort and Galton-Watson-trees (that describe family
trees). Conditional Galton-Watson-trees contain many
combinatorial trees e.g., the Cayley-tree

By the introduction of split trees that are logarithmic (the height is
c · logn) and conditional Galton-Watson-trees (height is C ·

√
n)

one can show general results for all trees at once

My own results use renewal theory as a general method to
analyze spit trees. For conditional Galton-Watson trees I have
used Aldous continuum random tree CRT

Using a branching process to study a fixed-point equation we
found sharp results for bootstrap percolation in all infinite
Galton-Watson trees
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Summary

We have also shown general normal and Poisson limit laws for
fringe subtrees in some split trees that could be directly applied
for solving many other problems such as for example the number
of protected nodes in such trees

We have also applied fringe subtrees and the Aldous continuum
random tree to analyze embedded heavy subtrees in
conditional Galton-Watson trees
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