Guankom graviky = random aeomekry
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GQuankom apaviky = random agomekry

In the late 90's Ambjgrn and Loll proposed a Lorentzian model for
1 + d-quantum gravity where the time dimension plays a special
role.

Uniform Triangulations Causal Triangulations
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Definition by picture :
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Definition by picture :
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Cl > ke + horizonkal conneckiong

Approximate model :
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e beack

Take a large uniform (plane) tree T,, (conditioned geometric BGW)
and consider %, the graph obtained by either considering the
associated causal triangulation or simply adding the horizontal
connections between successive vertices at height.

When n — oo the local limit of T, is given by T, Kesten's critical
geometric Bienaymé—Galton—Watson tree conditioned to survive,

and one associates similarly the infinite graph %w. o
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Figure — A large ball around the root in T in spring-electrical
embedding, layered representation and 3D embedding of its associated
causal triangulation.
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Simolakiong

Figure — Contour lines
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Figure — Contour lines



Simolakiong
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Figure — Guess!
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Figure — Tutte embedding




Lover beond on Lhe. vidth : blocks

Definition
A block G, of height r is

@ P

n T, T35 Ty Tz Ty Tr Ts T
Figure — The layer of height 4 in the random graph obtained from an iid

sequence of GW trees. This layer can be decomposed into blocks of
height 4 and we represented the first three blocks in this sequence.

If &(G,) is the left-right width of the block we define

f(r)zsup{k}O:lP(Q(gr)2@21/2}. c‘é\})



Lower bound on the widkh : renormaligakion
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Figure — Decomposing a big block into smaller blocks
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“enormaligakion

Proposition

For some constant ¢ > 0 we have

f(r)y>c- (m/\ (r/m)f(m)).
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“enormaligakion

Proposition

For some constant ¢ > 0 we have

f(r)y>c- (m/\ (r/m)f(m)).

= f(r) > plo(1),
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£rkon's elekon

Krikun (2005) found a way to encode bi-pointed triangulations by
a "reverse decorated tree”.

Figure — Krikun's skeleton decomposition in a nutshell
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Lecking backsard




Lecking backward




Vovinviard 4riangles
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K Ndden cavgpl map




ok R/ Z-dable

Proposition (Krikun 05, see also C.& Le Gall 16)

The blue trees are (almost) i.i.d. Galton-Watson trees with critical
offspring generating function given by

ée(k)zk =1- <1+ \/11j>_2.

in particular (k) ~ Ck=>/2 as k — oo. Conditionally on them the
gray holes are filled-in with independent Boltzmann triangulations
of the proper perimeters.




Mokakis Mokandic

What does it change?

Proposition
For some constant ¢ > 0 we have

f(r) = ¢ (mA(r/m)2F(m)).
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Mokakis Mokandic

What does it change?

Proposition

For some constant ¢ > 0 we have

F(r)>c- (m/\ (r/m)2f(m)).

f(ry=c-r, for large r.

The typical width of a block is proportional to its height.
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Mokakic, Mokandig

What does it change?

Proposition
For some constant ¢ > 0 we have

F(r)>c- (m/\ (r/m)2f(m)).

f(ry=c-r, for large r.

The typical width of a block is proportional to its height.
The girth of causal “stable” triangulations is now linear in the
height (C. & Hutchcroft & Nachmias).




Mokakic, Mokandig

What does it change?

Proposition
For some constant ¢ > 0 we have

F(r)>c- (m/\ (r/m)2f(m)).

f(ry=c-r, for large r.

The typical width of a block is proportional to its height.
The girth of causal “stable” triangulations is now linear in the
height (C. & Hutchcroft & Nachmias).

Consequences on geometry of uniform random triangulations (work
in progress).




Quizz : What is it ? What can we ask ?

Figure — Simulations by T. Budzinski

Thank you for your attention !
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