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The process of gene regulation

Transcriptional regulation:  Proteins called 
transcription factors bind to specific sequences of the 
DNA to help or hinder the transcription of individual 
genes

Gene j Protein j Gene i 

Link ij 
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The Result: 
 A complex web of interactions

Figure taken from http://rsif.royalsocietypublishing.org/content/5/Suppl_1/S85.full 
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Building a simple model for 
gene regulation: Why Boolean?
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Input/output regulatory relationships between genes are 
observed to be strongly sigmoidal and well approximated 
by step functions.
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Boolean network models

Protein and RNA concentrations in networks are often
modeled using system of differential equations. But

for large networks the number of parameters (e.g. production
rates, interaction strengths, decay rates) can be huge.
Boolean network models sometimes do better than
Diff. Eq. models:

Albert et. al., J.Theor.Bio. (2003)
Chaves et. al., J.Theor.Bio. (2005)

show this for segment polarity network in Drosophila.

Random boolean networks have been recently used to model

yeast transcriptional network (Kauffman et. al., PNAS (2003)),
yeast cell-cycle network (Li et. al., PNAS (2004)) .
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Basic framework

Genes = nodes of a directed graph Gn.

Vertex set Vn = {1, 2, . . . , n}, n = number of genes.

Edge set En := {〈u, v〉 : u influences v}.

Once chosen, Gn remains fixed through time.

The state of x at time t = 0, 1, 2, . . . is
ηt(x) ∈ {1(‘on’), 0(‘off’)}.

〈u, v〉 ∈ En means u is an input for v . Y x = input set for x .

Update rule: For time-independent Boolean functions
φx : {0, 1}|Y x | → {0, 1},

ηt+1(x) = φx((ηt(y), y ∈ Y x)), x ∈ Vn.
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Random Boolean network model

To understand general properties of such dynamical systems,
various random Boolean network models have been formulated.

Originally developed by Kauffman (1969).
Each node has r inputs, which are uniformly chosen
The values {φx(y)} are independent coin flips.

Local update rules:  An example

1

2

3

current state
time t

current state
time t

State of 
gene 3 
at t+1

Gene 1 Gene 2

State of 
gene 3 
at t+1

0 0 0

0 1 0

1 0 1

1 1 0

Node with 2 inputs

S. Chatterjee (CUNY) Random Boolean Networks



Approximation

Many studies using simulation and heuristics.

Derrida and Pomeau (1986) studied the model under additional
assumption:

Network changes at every step. The input sets {Y x}x∈[n] and the

values{fx(v) : x ∈ [n], v ∈ {0, 1}r} are resampled at each time step.

Then, if η0, η̃0 ∈ {0, 1}n are two initial configurations and
n−1dHam(η0, η̃0) = x ∈ [0, 1], then after one time step

dHam(η1, η̃1) ∼ Binomial (n, 2p(1− p)[1− (1− x)r ]) .

One can iterate the above to have

dHam(ηt+1, η̃t+1) ∼ Binomial (n, 2p(1− p)[1− (1− yt)
r ]) ,

where yt = n−1dHam(ηt , η̃t).
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Results of DP (1986)

This in turn implies

lim
t→∞

lim
n→∞

dHam(ηt , η̃t)

n
= y∗,

where y∗ is a fixed point (with x in its basin of attraction) of the
map y 7→ ϕ(y) := 2p(1− p)(1− (1− y)r ). If 2p(1− p)r < 1, then
0 is the only fixed point of ϕ. It is stable.

If 2p(1− p)r > 1, then ϕ has another fixed point y∗ ∈ (0, 1) which
is stable, and 0 is an unstable fixed point.

Based on this observation, Derrida and Pomeau argued that the
order-chaos phase transition curve for Kauffman’s Random
Boolean Network is given by

2p(1− p) · r = 1.
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Extension of DP(’86) to complex networks

Empirical evidence suggests that gene network may have

heterogeneous degree distribution
correlation between in-degree and out-degree,
community structure

In the physics and biology literature people have considered similar
evolution of Boolean functions on complex network models with

prescribed in-degree distribution pin = (pink )k≥1: Here the
order-chaos phase transition curve for has been claimed to be

2p(1− p) · r in = 1, where r in is average in-degree.

prescribed joint distribution of in-degree and out-degree
pin,out = (pin,outk,l )k,l≥1: Here the order-chaos phase transition
curve for has been claimed to be

2p(1− p) · r
in,out

r in
= 1, where r in is average in-degree

and r in,out is the average in-degree×out-degree.
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Construction of Gn with in-degree distribution

1	   2	   3	   4	   6	  5	  

7	   12	  8	   11	  10	  9	  

In-degree distribution:
pin = {pin

k }k≥1.

Choose I1, I2, . . . , In i.i.d. from pin.

Allocate Ix oriented half-edges to
node x pointing to it.

Choose the input set
Y x = {Y1(x), . . . ,YIx (x)} uniformly
at random from Vn \ {x}.
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Construction of Gn with (in/out)-degree distribution

1	   2	   3	   6	  4	   5	  

11	  8	   9	   12	  10	  7	  

Joint degree distribution: pin,out,
marginals have equal mean.

Choose {(Ix ,Ox)}nx=1 i.i.d. from pin,out.

Need total in-degree = total
out-degree.

Allocate Ix and Ox oriented half-edges
to x pointing inward and outward resp.

Choose a matching uniformly at
random between the sets of inward and
outward half-edges.
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Dynamics

Once Gn is chosen let Y x be the input set of node x .

Recall: ηt+1(x) = φx((ηt(y), y ∈ Y x)).
Adopting Kauffman’s model, the values φx(v) are 1 or 0 with
probability p and 1− p.

Proving rigorous results about the formulated discrete dynamical
systems turns out to be quite hard.

We will consider a slight modification of the dynamical system,
which has been called “Annealed Approximation” in the physics
literature.

The special case of our results, where the in-degree is fixed (not
random), was considered earlier – C. & Durrett (2011), Montford
& Valesin (2013).
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An Example

Fix node x ∈ Vn.

In LHS figure the states of {Y x
i }4

i=1 is the same in time t − 1 and
time t. Hence ηt(x) = ηt+1(x).

But in RHS figure the state of Y x
4 is different in time t − 1 and

time t. Hence ηt(x) 6= ηt+1(x) with probability 2p(1− p), as both
values of fx are independent biased coin flips.
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Simplified Problem: Threshold contact process dynamics

Consider another process {ζt(x)}t≥1, where
ζt(x) = 1{ηt(x) 6=ηt−1(x)}.

Then approximate dynamics for ζt : A threshold contact process in
which

P (ζt+1(x) = 1| ζt(y) = 1 for at least one y ∈ Y x) = 2p(1− p),

and ζt+1(x) = 0 otherwise.
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Main result 1

Let ζt , t ≥ 1, be the threshold contact process with parameter
q = 2p(1− p).

Persistence time for ζt is the time to reach all-zero configuration.

For given in-degree distribution pin with finite second moment and
pin

0 = pin
1 = 0, let r in be the mean of pin, and P be the law of Gn.

Theorem (C., PTRF 2015)

There is a set of ‘good graphs’ Gn with P(Gn) = 1− o(1) such
that for any Gn ∈ Gn

if q · r in < 1, then ζt persists for time O(log n).

if q · r in > 1, then

ζt persists for time O(ecn).
the density of 1’s in ζt , starting from all-one at the beginning,
stays close to

π = π(q,pin), the survival probability for a branching process

with offspring distribution (1− q)δ0 + qpin.
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Main result 2

For given in-degree/out-degree joint distribution pin,out with finite
second moment and pin

0 = pin
1 = 0, let r in be the mean of pin,

r in,out be the mean of in-degree × out-degree, and P be the law of
Gn.

Theorem (C., PTRF 2015)

There is a set of ‘good graphs’ Gn with P(Gn) = 1− o(1) such
that for any Gn ∈ Gn

if q · r in,out
r in

< 1, then ζt persists for time O(log n).

if q · r in,out
r in

> 1, then

ζt persists for time O(ecn).
the density of 1’s in ζt , starting from all-one at the beginning,
stays close to

π = π(q,pin,out), the survival probability for a branching process

with offspring distribution (1− q)δ0 + qp̃in,

where p̃in is the size biased version of pin.
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Intuition behind the results

Let ξt be the set valued process ξt = {x : ζt(x) = 1}.
Let the dual graph Ĝn = (Vn, Ên), where Ên is obtained from
En by reversing arrows.

The time-dual process (say ξ̂t) on Ĝn satisfies

x ∈ ξ̂t implies

P[Y x ⊂ ξ̂t+1] = q = 1− P[Y x ⊂ (ξ̂t+1)c ].

Prolonged persistence of the two process are equivalent.

The dual ξ̂t behaves locally like a branching process on Ĝn.

Let r be the average out-degree in a ’small’ neighborhood of a
typical vertex in Ĝn.
Positive probability of survival when mean offspring number
qr > 1.
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The threshold contact process

Graphical representation. Let ξAt := {x : ζt(x) = 1} if
A = {y : ζ0(y) = 1}.

Each gadget appears independently with
probability q = 2p(1− p).

t

0

t

Time

Space
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Dual Coalescing Branching process

Look at the process going backward in time.

It is a coalescing branching process ξ̂t on Ĝn. Node x gives birth at
time t to |Y x | many children at time t − 1 if the gadget is present.
Duality: Prolomged persistence of ξt ⇔ Survival for ξ̂t .
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Duality relation

Fix A,B ⊂ Vn.

Duality relation between {ξt} and {ξ̂t}:
P(ξAt ∩ B 6= ∅) = P(ξ̂Bt ∩ A 6= ∅).

Putting A = Vn,B = {x}, P(x ∈ ξVn
t ) = P(ξ̂

{x}
t 6= ∅).

So probability of prolonged persistence for ξt is same as the
survival probability for ξ̂t .

t
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t

Time

Space

B

path using the gadgets

A
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Subcritical case: qr < 1

Here, we get an upper bound for the size of the coalescing
branching process on Ĝn by coupling with a subcritical branching
process.

This, together with soft argument, gives logarithmic persistence for
the coalescing branching process.
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Supercritical case: qr > 1

The argument has mainly two parts:

Survival of the coalescing branching process starting from
singletons – this gives information about the quasi-stationary
density of 1’s in the threshold contact process.

Survival of the coalescing branching process starting from
large sets – this gives information about the persistence time
for the threshold contact process.
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Survival from a singleton

Fix x ∈ Vn.

If no collision occurs in the neighborhood of x , then

ξ̂
{x}
t is a branching process.

If Zt is a branching process with mean offspring µ and
B = {Zt survives }, then

P(Zt+1 < (µ− δ)Zt |B) ≤ e−c(δ)t .

P
(∣∣∣ξ̂{x}O(log log n)

∣∣∣ ≥ (log n)a
)
≈ π.
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Survival from a singleton

Fix x ∈ Vn. If no collision occurs in the neighborhood of x , then

ξ̂
{x}
t is a branching process.

If Zt is a branching process with mean offspring µ and
B = {Zt survives }, then

P(Zt+1 < (µ− δ)Zt |B) ≤ e−c(δ)t .

P
(∣∣∣ξ̂{x}O(log log n)

∣∣∣ ≥ (log n)a
)
≈ π.

x

O(log log n)

P (Total number of vertices ≤ n1/4) = 1− o(1)

P (No collision) = 1− o(1)

(log n)a number of particles
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Survival from a large set

Suppose A ⊂ [n].
Use a coupling between the directed k-neighborhood of A and a
forest {ZA

t , 0 ≤ t ≤ k} along with partitions ZA
t into CA

t (closed) ,
OA

t (open), and RA
t (removed).

We choose ZA
0 = A and CA

0 = RA
0 = ∅, so OA

0 = A.
For each t ≥ 0, every site of OA

t mimics the corresponding vertex
in Gn

We scan the sites of ZA
t+1 in an increasing order, and define a site

to be

removed if more than 2r children of the same ancestor has
been scanned

closed if collision occurs

open otherwise
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For u ∈ ZA
t , let ←−u A

t ∈ A denote the unique root-ancestor of u. For
any subset B ⊂ A and t ≥ 1 let ZA,B

0 = OA,B
0 = B and

ZA,B
t := {u ∈ ZA

t :←−u A
t ∈ B}

CA,B
t := ZA,B

t ∩ CA
t , OA,B

t := ZA,B
t ∩ OA

t .
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Ingredients

We will use the following LD estimate for the number of open
nodes.

Let X ≥ 0 be any random variable such that 2(EX )2 ≤ EX 2 <∞.
Then log Ee−tX ≤ var(X )t2/2− E (X )t for any t > 0.

Let F be a forest with m roots having (fi )
m
i=1 children at level k .

mroots : F0 = {1, 2, . . . ,m}

klevels

Then, using above LD estimate, if
∑

i∈[m] fi ≥ 2Cmq−k , then

P(|ξ̂F0
k | ≤ Cm) ≤ exp

−cqk(
∑
i ı[m]

fi )
2/
∑
i ı[m]

f 2
i

 .
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Proof of exponential persistence

Suppose B ⊂ A ⊂ [n] such that |A| = m and |B| ≥ (1− δ)|A|. Let

km := log2[∆ log(n/m)],∆ large, and ρ, σ > 0

There is a collection of good graphs, such that if Gn is good, then

for any vertex set A with (log n)a ≤ |A| ≤ εn, there is D ⊂ A
satisfying

|D| ≥ δ|A|, |OA,{x}
ρσkm

| ≥ (4/δ)q−ρσkm ∀ x ∈ D.

and hence letting F be the sub-forest of ∪ρσkmk=0 OA,D
k such that

each root has (4/δ)q−ρσkm leaves, and applying the previous
forest estimate

P(|ξ̂Aρσkm | > |A|) ≥ P(|ξ̂F0
ρσkm
| > 1

δ
|D|) ≥ 1−exp(−cm/ logb(n/m)).

Applying this estimate repeatedly, we get exponential persistence.
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Choice of good graph

Let EA,B := {|OA,B
ρσkm
| ≥ |B|(4/δ)q−ρσkm}. η > 0 is small, so

r̃ := r(1− η) > q−1.

HA,B
k :=

{
ρ∑

i=1

|CA,B
ρ(k−1)+i | ≤ (1 + 5δ)|OA,B

ρ(k−1)|
}
,

LA,Bk,j :=
{
|ZA,B
ρ(k−1)+j | ≥ r̃ |OA,B

ρ(k−1)+j−1|
}

and LA,Bk := ∩ρj=1L
A,B
k,j .

ρ

ρkm

ρ(km + 1)

ρσkm

|B|

2|B|

2km |B|

2km [r̃ρ(1− r̃−1(1 + 5δ))](σ−1)km |B|

2km r̃ρ(1− r̃−1(1 + 5δ))|B|

≥ (4/δ)|B|q−ρσkm

EA,B occurs on ∩σkmk=1H
A,B
k ∩σkmk=km+1 L

A,B
k ,

if (m/n) ≤ ε (small) and ρ, σ are large. .
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Choice of good graph (continued)

P
(

(HA,B
k )c

∣∣∣ |OA,B
ρ(k−1)|

)
≤ exp

(
−(1 + 5δ/2)|OA,B

ρ(k−1)| log(n/m)
)

P
(

(HA,B
k )c ∩ ∩k−1

j=1 H
A,B
j

)
≤ exp (−(1 + 5δ/2)|B| log(n/m))

≤ exp (−(1 + δ)m log(n/m)) .

|OA,B
ρkm
| ≥ 2km |B| on ∩km1 HA,B

j . For k > km,

P
(

(LA,Bk,i )c
∣∣∣ |OA,B

ρ(k−1)+i−1|
)
≤ exp

(
−|OA,B

ρ(k−1)+i−1|I (η)
)
,

where I (·) is the LD rate function.

P
(

(LA,Bk,i )c ∩i−1
j=1 L

A,B
k,j ∩kj=1 H

A,B
j

)
≤ exp

(
−(r̃ − (1 + 5δ))2km |B|In(η)

)
≤ exp(−(1 + 3δ)|B| log(n/m)) ≤ exp(−(1 + δ)m log(n/m)).

Using union bound

P
(
E c
A,B

)
≤ Ckm exp(−(1 + δ)m log(n/m))

≤ exp(−(1 + 3δ/4)m log(n/m)).
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Choice of good graph (continued)

P
(
E c
A,B

)
≤ exp(−(1 + 3δ/4)m log(n/m)).

EA := ∩B⊂A:|B|≥(1−δ)|A|{|OA,B
ρσkm
| ≥ |B|(4/δ)q−ρσkm}.

Using union bound, if (m/n) ≤ ε (small), then

P (∃A ⊂ [n] : |A| = m,E c
A occurs ) ≤ exp(−3δ/8m log(n/m)),

P (∃A ⊂ [n] : (log n)a ≤ |A| ≤ εn,E c
A occurs )

≤ n exp

(
−3δ/8(log n)a log

n

(log n)a

)
= o(n−1/2).

We choose our good graphs to be

Gn := {EA occurs ∀ A ⊂ [n] s.t. (log n)a ≤ |A| ≤ εn}.
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Recap: Phase transition

Let Ĝn be the edge-reversed graph with out-degree distribution p
and mean r .

Theorem (C., PTRF 2015)

If 2p(1− p) · r > 1, then the threshold contact process on Gn is
supercritical. It persists for exponentially long. The density of 1’s
is ≈ π = π(p,p),
the survival probability for a certain supercritical “branching process”.

If 2p(1− p) · r < 1, persistence time is logarithmic.
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Open Questions

rigorous results about the actual dynamical system

Properties of the final configuration in the subcritical regime.

Critical random Boolean networks: persistence time?

Effect of node-dependent values of p?

Other models of control, e.g. the “threshold model”, where
the ground graph is weighted and a gene is in state 1 at time
t + 1 if the (signed) linear combination of its input weights at
time t cross a threshold θ.
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Thank you
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