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Planar maps coupled to a rigid O(n) loop model

» Planar map: planar (multi)graph properly
embedded in R? viewed up to continuous
deformations. Rooted, perimeter p fixed,
marked vertex.

> Rigid O(n) loop model: add disjoint loops
that intersect solely quadrangles through
opposite sides. Sample with probability
proportional to

loops total loop length
n# P g P & H qdegree

regular faces

for n,g, g2, qa, gs, - . . € R fixed.
» For n € (0,2] the model is critical iff:

> #faces < co a.s., but E(#faces) = oo,
» supports loops of length O(p) as p — oo. ,;-;h\ |
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Loop nesting statistics

» Let N, be the number of loops surrounding
the marked vertex in a random map of
perimeter p.

» For n € (0,2) we have [Borot, Bouttier,
Duplantier, '16] [Chen, Curien, Maillard, '17]:
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Loop nesting statistics

the marked vertex in a random map of
perimeter p.

» For n € (0,2) we have [Borot, Bouttier,
Duplantier, '16] [Chen, Curien, Maillard, '17]:

Np P 1 n
logp pooc w\/A—n?

» Large deviation behaviour:

logP(N, = |xlog p|) .
log p — xA\7(1/x)

where xA%(1/x) = — L J(rx) and

X

J(x) = xlog (im

) + arccot(x) — arccos(n/2).
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Uniformization %
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Conformal loop ensemble
Picture: [Miller, Watson, Wilson, '14]



Uniformization

K € (8/3,8)
n = 2cos (7r (1 — %))

Conformal loop ensemble
Picture: [Miller, Watson, Wilson, '14]

7 = min(v/,4/+/k)
LQG,

Liouville Quantum Gravity
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Conformal radius
CR(U:) = |¢'(0)]
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Conformal radius
CR(U:) = [¢'(0)] T, = —log CR(U;)

> The sequence (T;) of log-conformal radii of the nested loops has
i.i.d. increments and [Schramm, Sheffield, Wilson, '09]
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> The sequence (T;) of log-conformal radii of the nested loops has
i.i.d. increments and [Schramm, Sheffield, Wilson, '09]
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» Number of loops surrounding e-disk: N, ~ sup{i: T; < log(1/¢€)}
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L ) — log(1/¢)
Conformal radius *
CR(U;) = |¢'(0)] T, = —log CR(U;)

> The sequence (T;) of log-conformal radii of the nested loops has
i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

4

AT —cos(%F) RV WON!
E [e 1] o cos(ﬂ' (1—4/1{)2+8)\/n) =€

» Number of loops surrounding e-disk: N, ~ sup{i: T; < log(1/¢€)}
» Large deviation behaviour [Miller, Watson, Wilson, '14]:
log P(Ne = [xlog(1/€)]) 0
log(1/€)

X (1/x)
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» If we have a volume measure on D |t is more natural to fix 6 > 0
and ask for nesting around €(d)-disk of volume 4.
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> If we have a volume measure on D it is more natural to fix § > 0
and ask for nesting around €(d)-disk of volume 4.

> In LQG, the law of €(d) as 6 — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/€(d)) ~ hitting time of log(1/d)/~ by a BM with
drift 2/ — /2.
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> If we have a volume measure on D |t is more natural tofix § >0
and ask for nesting around €(d)-disk of volume 4.

> In LQG, the law of €(d) as 6 — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/€(d)) ~ hitting time of log(1/d)/~ by a BM with

drift 2/ — /2.
» The effect on the Iarge deviations is [Borot, Bouttier, Duplantier, '16]

log P(Ne(s) = [xlog(1/9)]) 50
log(1/4)

where U, is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

2 2
Uy(D) = %N n (1 - %) A.
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> If we have a volume measure on D |t is more natural tofix § >0
and ask for nesting around €(d)-disk of volume 4.

> In LQG, the law of €(d) as 6 — 0 is well-understood [Duplantier,
Sheffield, '08]: log(1/€(d)) ~ hitting time of log(1/d)/~ by a BM with

drift 2/ — /2.
» The effect on the Iarge deviations is [Borot, Bouttier, Duplantier, '16]

log P(Ne(s) = [xlog(1/9)]) 50
log(1/9)
n=cos(m(1—4/ r))

where U is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

2
Uy(D) = %N n (1 - %) A.

x (A 02U,)" (1/x),
\_.\,_/



“Nesting in CLE,” + “KPZ" = “Nesting in O(n) on planar maps"

Main question in this talk:

Can we disentangle the LHS starting from planar map combinatorics?



A Markov process on concentric circles &

> Define the Markov process (X,) on {x € C : |x| € 2Z} such that
> |Xyu|arg X, is standard Brownian motion;
> |Xy|/2 is an independent birth-death process with birth rate
Ap = +=(2+1/p) and death rate p, = =(2 — 1/p);
> (Xy) is trapped upon hitting 0.
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A Markov process on concentric circles

> Define the Markov process (X,) on {x € C : |x| € 2Z} such that

> |Xyu|arg X, is standard Brownian motion;

> |X4|/2 is an independent birth-death process with birth rate
Ap = +=(2+1/p) and death rate p, = =(2 — 1/p);

> (Xy) is trapped upon hitting 0.

» |t a.s. hits 0 in finite time.

> Far away from 0 it resembles 2D Brownian motion.
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Loop length versus axis crossing

> Let (41,42,...¢N) be the sequence of
lengths of loops surrounding the
marked vertex in a critical O(n)
loop-decorated planar map with
perimeter p.

> Let (r1, r2, ..., ry) be the sequence of
distances of the points at which (X,)

alternates between the two half x-axes
before hitting 0 when started at (p,0). — " 4

Theorem J

If n € (0,2] then (61,0, ...0n) L (r, 12, ..., 1a) biased by (n/2)N .

—




» Can perform a time change t(u) = fou [ X |2du’, X, = 2Ry, e’
such that (©;) is standard Brownian motion and (R;) is an

independent birth-death process with rates /A\p = 4p2)\p, flp = 4p2up.
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such that (©;) is standard Brownian motion and (R;) is an

independent birth-death process with rates /A\p = 4p2)\p, flp = 4p2up.

» If b= Larccos(n/2), then there exists an hy : Z, — R such that
Hp(©, R) = cos(b®©) hp(R)

is harmonic w.r.t. the Markov process (©;, R;): until ©; = +.

s



» Can perform a time change t(u) = fou [ X |2du’, X, = 2Ry, e’
such that (©;) is standard Brownian motion and (R;) is an
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» If b= Larccos(n/2), then there exists an hy : Z, — R such that
Hp(©, R) = cos(b®©) hp(R)

is harmonic w.r.t. the Markov process (©;, R;): until ©; = +.
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Can perform a time change t(u) = fou [ X |2du’, X, = 2Ry, e’
such that (©;) is standard Brownian motion and (R;) is an

independent birth-death process with rates /A\p = 4p2)\p, flp = 4p2up.

If b= Larccos(n/2), then there exists an hp : Z; — R such that
Hp(©, R) = cos(b®©) hp(R)

is harmonic w.r.t. the Markov process (©;, R;): until ©; = +.
Biasing by (n/2)" is very similar to H,-transforming (©;, R;): into
(OF. R(”)e.

eﬁb) and Rt(b) are still independent (as long as Rt(b) # 0)!

i



Proposition

If (t;); are the half-axis alternation times of Rt(b)e"egb) and (T;) are the
log-conformal radii of CLE,, with k =4/(1 £ b), then (t;); 9 (kT
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Proposition

If (t;); are the half-axis alternation times of Rt(b)e"eg) and (T;) are the
(d)
),‘ = (HT,'),'.

log-conformal radii of CLE,; with k = 4/(1 £ b), then (t;

CLE, + LQG,

%

;f%§§0

To

T

T,

> Question Are the distributions of 7 := inf{t : Rtb =0} and
nlog y identical in the limit log(1/9) ~ 2logp — c0?
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Connection: simple diagonal random walk on Z?

There exists a mapping
® : {diagonal walks} — {maps with nested loops}
such that
(W) : Wy = (p,0)) = critical map of
perimeter p with nested O(2) loops




There exists a mapping
® : {diagonal walks} — {maps with nested loops}

such that
(W) : Wy = (p,0)) = critical map of
perimeter p with nested O(2) loops

(W;) and (X, ) have same exit
distribution from half-plane




Exit distribution from half plane 517
» (W) exits at ¢ with prob Z %(é)(%ﬂ‘”.

n even

Jep(k) = 3 w%(nfp) <nf2>4—".

n even 2
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Exit distribution from half plane [TB.17]
» (W) exits at £ with prob Z " (n )4

n even

- B

n even

» Encode in an operator J, on some Hilbert space |

D with basis (e,)p>1: Jk€p = D ooy Jop(k)er
> Let ©; be Brownian motion and R; a unknown
continuous time Markov process on Z ..
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» Encode in an operator J, on some Hilbert space |
D with basis (e,)p>1: Jk€p = D ooy Jop(k)er
> Let ©; be Brownian motion and R; a unknown

continuous time Markov process on Z ..

» The exit distribution of R,e’®* also determines ¢
an operator on D

/Ooo e *KdF(s)

where F(s) = %]P’(supte(o,s) |©¢] > 7/2) and K
is the generator Ke, = lim;_,0 1E[e, — eg,] of
R:.




Exit distribution from half pIane (T8,17]
» (W) exits at ¢ with prob Z " (n )4

n even

- B

n even

» Encode in an operator J, on some Hilbert space |
D with basis (e,)p>1: Jk€p = D ooy Jop(k)er
> Let ©; be Brownian motion and R; a unknown

continuous time Markov process on Z ..

» The exit distribution of R,e’®* also determines ¢
an operator on D

> 1

/ e *KdF(s) = = sech (\/2Kz)
; 2 2
where F(s) = %]P’(supte(o,s) |©¢] > 7/2) and K
is the generator Ke, = lim;_,0 1E[e, — eg,] of
R:.




Exit distribution from half pIane (T8,17]
» (W) exits at ¢ with prob Z " (n )4

n even

- B

n even

» Encode in an operator J, on some Hilbert space |
D with basis (e,)p>1: Jk€p = D ooy Jop(k)er
> Let ©; be Brownian motion and R; a unknown

continuous time Markov process on Z ..

» The exit distribution of R,e’®* also determines ¢
an operator on D

> 1
J= / e *KdF(s) = = sech (\/2Kz)
; 2 2
where F(s) = %]P’(supte(o,s) |©¢] > 7/2) and K
is the generator Ke, = lim;_,0 1E[e, — eg,] of
R:.




Dirichlet space D 2.
» D =D(D) is Hilbert space of analytic functions f on the unit disk 4

D C C with f(0) = 0 and finite norm w.r.t. (dA(x + iy) := Ldxdy)

(F 8)p = / 71(2) &/ (2)dA(2)
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» D =D(D) is Hilbert space of analytic functions f on the unit disk (S
D C C with f(0) = 0 and finite norm w.r.t. (dA(x + iy) := Ldxdy)

o0

(f.&)p = /D f(2)&'(2)dA(z) = Y _ n[z"]f(2) [2"]g(2)-
n=1
» Basis ()52 given by ey(z) = zP with (e, e5)p, = p1l{=p}-
» May represent J, = \Uz\llk where W is the operator
1—v1—k2z?
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Dirichlet space D L

» D =D(D) is Hilbert space of analytic functions f on the unit disk 1
D C C with f(0) = 0 and finite norm w.r.t. (dA(x + iy) := Ldxdy)

o0

(f.8)p = /H)Wg’(Z)dA(Z) = n[z"f(2) [z"]g(2)-

n=1

» Basis ()52 given by ey(z) = zP with (e, e5)p, = p1l{=p}-
» May represent J, = lll;f(lllk where W is the operator

_ _ 2
Wif = for,  Uk(z) = % Vlkzkz

» By conformal invariance of the Dirichlet inner product,

<f7Jkg>D = <wkf7wkg>D = <fo kaago wk>D = <f7g>D(¢k(D))




(f,Jeg)p = (Wif, Wig)p = (f oYk, 8 0 Vi) p = (F, &) D(wi())- '%

» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both (-,-)pm) and (-, )pw, (D))
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» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both <~, '>D(]D>) and <~, '>D(\Uk(D))-
» Look for a nice conformal mapping.




(f,Jeg)p = (Wif, Wig)p = (f ok, 8 0 hi)p = (. 8) D(yu(D))- Af

» To diagonalize J it suffices to find a basis (f) that is orthogonal
w.r.t. both (-,-)pm) and (-, )pw, (D))

» Look for a nice conformal mapping.

> An elliptic integral does the job (k' = V1 — k?, ky = }jr—,f:)

dx arcsn (\/ik\l, kl)

1 z
)= 4K(k1)/0 Vik—x) (1= kx?)  4K(k)

Vi, (2

1Ty
D Vky ; v (7)
E:

B (D) . . .
(v 6 i
_ K()

% T = &)

—iTy



» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around +1/4, hence 1-periodic. %

P (D)

—iTy



» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around +1/4, hence 1-periodic.

» Basis cos(2rm(- + 1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

.

D
=1
/ﬁfr\s f - vkl
71 )] 1
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tx) that is even around +1/4, hence 1-periodic.

» Basis cos(2rm(- + 1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

» Hence basis

fm(z) = cos(2rm(vy, (z) + 1/4)) — cos(mm/2), m>1
of D is orthogonal w.r.t. (-, )pm) and (-, ) p(w,(D))-

=
L]
—
e
o
Sl




strip R + i(— Tk, Tx) that is even around +1/4, hence 1-periodic.
Basis cos(2rm( - + 1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

Hence basis

The push-forward of f € D extends to an analytic function on the %

fm(z) = cos(2rm(vy, (z) + 1/4)) — cos(mm/2), m>1

of D is orthogonal w.r.t. (-, )pm) and (-, ) p(w,(D))-
Conclusion: Ji has eigenvectors (f)m>1 and eigenvalues

(fm, fm) D))  sinh(2mmTy) 1 K(K')
oo sinh(AmaT) — 2 5h@mm i) Te= g5
iTy
D
> i
f foup
1 P (D) . . !
\ © ] < 0 1

—iTy,



» Ji = Lsech(v/2K ) has eigenvalues % sech(2mm Ty), m > 1.
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» K, has same eigenvectors as Ji and eigenvalues 8m? T,f
» Explicit calculation:
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» Ji = Lsech(v/2K ) has eigenvalues % sech(2mm Ty), m > 1.
» K, has same eigenvectors as Ji and eigenvalues 8m? T,f
» Explicit calculation:

2K(K')\° p? 1
Kre, = ( 7(T )> ’1’—6 [(8—4k2) & — (2j: E) k2e,,i1]

2

k—1 P 1 1

2oL P olge, — (24 - —(2- ") eps],
16[6”( p>epﬂ( p)”l]

which is exactly the generator of the birth-death process R;.




» Ji = Lsech(v/2K ) has eigenvalues % sech(2mm Ty), m > 1.
» K, has same eigenvectors as Ji and eigenvalues 8m? T,f é -
» Explicit calculation:

2K(K')\° p? 1
Kre, = ( 7(T )> ’1’—6 [(8—4k2) & — (2j: E) k2e,,i1]

2
k=1 P 1 1
; R |:4eP - (2 + p) ep+1 - (2 - p) ep—1:| )

which is exactly the generator of the birth-death process R;.

Proposition

The sequences of locations where the diagonal random walk (W;) and the
Markov process (X,) alternate between the x- and y-axis are equal in law.
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Building planar maps from walks
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» Consider walks with steps in {—1,0,1}2\ {(0,0)}
» Excursion w in upper-half plane from (0,0) to (—p — 2,0), p > 1.
» Wish to cut w into excursions from (0,0) to (d — 2,0), d > 0.
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» &, is a bijection with rooted planar maps of perimeter p with

» for each face of degree d > 1 an excursion above or below axis from
(0,0) to (d — 2,0)
» for each vertex an excursion above axis from (0,0) to (—2,0).
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> If (W) is a simple diagonal random walk started at (p,0) and killed
at (0,0),
then ®((W;)) is a rooted planar map with a marked vertex and rigid
loops surrounding the marked vertex with probability proportional to
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> If (W;) is a simple diagonal random walk started at (p, 0) and killed
at (0,0),
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> If (W) is a simple diagonal random walk started at (p,0) and killed
at (0’ 0)’ biased by (n/z)#half—axis alternations’
then ®((W;)) is a rooted planar map with a marked vertex and rigid
loops surrounding the marked vertex with probability proportional to

loops . .total loop length
n# P g pleng H Qdegree

regular faces

for some g, g2, qa,... € Ry.
> #loops = #half-axis alternations of (W;).



Thanks for you attention!
Comments?



