Dynamics on random graphs CIRM, Marseille, France - October 22, 2017

Nesting of loops versus winding of walks Timothy Budd

timothy.budd@ipht.fr, http://www.nbi.dk/~budd/

▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations.

▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.

- ▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.
- Rigid O(n) loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability proportional to

for $n, g, q_2, q_4, q_6, \ldots \in \mathbb{R}_+$ fixed.

- ▶ Planar map: planar (multi)graph properly embedded in \mathbb{R}^2 viewed up to continuous deformations. Rooted, perimeter p fixed, marked vertex.
- Rigid O(n) loop model: add disjoint loops that intersect solely quadrangles through opposite sides. Sample with probability proportional to

$$n^{\# ext{loops}} g^{ ext{total loop length}} \prod_{ ext{regular faces}} q_{ ext{degree}}$$

for $n, g, q_2, q_4, q_6, \ldots \in \mathbb{R}_+$ fixed.

- ▶ For $n \in (0,2]$ the model is critical iff:
 - #faces $< \infty$ a.s., but $\mathbb{E}(\# \mathsf{faces}) = \infty$,
 - supports loops of length O(p) as $p \to \infty$.

Loop nesting statistics

Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.

Loop nesting statistics

Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.

► For $n \in (0,2)$ we have [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$\frac{N_p}{\log p} \xrightarrow[p \to \infty]{\mathbb{P}} \frac{1}{\pi} \frac{n}{\sqrt{4 - n^2}}.$$

Loop nesting statistics

Let N_p be the number of loops surrounding the marked vertex in a random map of perimeter p.

▶ For $n \in (0,2)$ we have [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17]:

$$\frac{N_p}{\log p} \xrightarrow[p \to \infty]{\mathbb{P}} \frac{1}{\pi} \frac{n}{\sqrt{4-n^2}}.$$

Large deviation behaviour:

$$\frac{\log \mathbb{P}(N_p = \lfloor x \log p \rfloor)}{\log p} \longrightarrow x \Lambda_n^*(1/x)$$

where
$$x \Lambda_n^*(1/x) = -\frac{1}{\pi} J(\pi x)$$
 and

$$J(x) = x \log \left(\frac{2}{n} \frac{x}{\sqrt{1+x^2}}\right) + \operatorname{arccot}(x) - \operatorname{arccos}(n/2).$$

Nesting in ${\sf CLE}_\kappa$

► The sequence (*T_i*) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

► The sequence (*T_i*) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

▶ Number of loops surrounding ϵ -disk: $\mathcal{N}_{\epsilon} \approx \sup\{i : T_i < \log(1/\epsilon)\}$

► The sequence (*T_i*) of log-conformal radii of the nested loops has i.i.d. increments and [Schramm, Sheffield, Wilson, '09]

$$\mathbb{E}\left[e^{-\lambda T_1}\right] = \frac{-\cos\left(\frac{4\pi}{\kappa}\right)}{\cos\left(\pi\sqrt{(1-4/\kappa)^2+8\lambda/\kappa}\right)} =: e^{\Lambda_{\kappa}(\lambda)}$$

- ▶ Number of loops surrounding ϵ -disk: $\mathcal{N}_{\epsilon} \approx \sup\{i : T_i < \log(1/\epsilon)\}$
- ► Large deviation behaviour [Miller, Watson, Wilson, '14]:

$$\frac{\log \mathbb{P}(\mathcal{N}_{\epsilon} = \lfloor x \log(1/\epsilon) \rfloor)}{\log(1/\epsilon)} \xrightarrow{\epsilon \to 0} x \Lambda_{\kappa}^*(1/x)$$

▶ If we have a volume measure on $\mathbb D$ it is more natural to fix $\delta>0$ and ask for nesting around $\epsilon(\delta)$ -disk of volume δ .

- ▶ If we have a volume measure on $\mathbb D$ it is more natural to fix $\delta > 0$ and ask for nesting around $\epsilon(\delta)$ -disk of volume δ .
- ▶ In LQG $_{\gamma}$ the law of $\epsilon(\delta)$ as $\delta \to 0$ is well-understood [Duplantier, Sheffield, '08]: $\log(1/\epsilon(\delta)) \approx$ hitting time of $\log(1/\delta)/\gamma$ by a BM with drift $2/\gamma \gamma/2$.

- ▶ If we have a volume measure on $\mathbb D$ it is more natural to fix $\delta > 0$ and ask for nesting around $\epsilon(\delta)$ -disk of volume δ .
- ▶ In LQG $_{\gamma}$ the law of $\epsilon(\delta)$ as $\delta \to 0$ is well-understood [Duplantier, Sheffield, '08]: $\log(1/\epsilon(\delta)) \approx$ hitting time of $\log(1/\delta)/\gamma$ by a BM with drift $2/\gamma \gamma/2$.
- ▶ The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]

$$\frac{\log \mathbb{P}(\mathcal{N}_{\epsilon(\delta)} = \lfloor x \log(1/\delta) \rfloor)}{\log(1/\delta)} \xrightarrow{\delta \to 0} x \underbrace{(\Lambda_{\kappa} \circ 2U_{\gamma})^{*}}_{} (1/x),$$

where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$U_{\gamma}(\Delta) \coloneqq rac{\gamma^2}{4} \Delta^2 + \left(1 - rac{\gamma^2}{4}
ight) \Delta.$$

- ▶ If we have a volume measure on $\mathbb D$ it is more natural to fix $\delta > 0$ and ask for nesting around $\epsilon(\delta)$ -disk of volume δ .
- ▶ In LQG $_{\gamma}$ the law of $\epsilon(\delta)$ as $\delta \to 0$ is well-understood [Duplantier, Sheffield, '08]: $\log(1/\epsilon(\delta)) \approx$ hitting time of $\log(1/\delta)/\gamma$ by a BM with drift $2/\gamma \gamma/2$.
- ▶ The effect on the large deviations is [Borot, Bouttier, Duplantier, '16]

$$\frac{\log \mathbb{P}(\mathcal{N}_{\epsilon(\delta)} = \lfloor x \log(1/\delta) \rfloor)}{\log(1/\delta)} \xrightarrow{\delta \to 0} x \underbrace{(\Lambda_{\kappa} \circ 2U_{\gamma})^{*}}_{\Lambda_{n=\cos(\pi(1-4/\kappa))}^{*}} (1/x),$$

where U_{γ} is the famous KPZ formula [Knizhnik, Polyakov, Zamolodchikov, '88]

$$U_{\gamma}(\Delta) := rac{\gamma^2}{4} \Delta^2 + \left(1 - rac{\gamma^2}{4}
ight) \Delta.$$

"Nesting in CLE_{κ} " + "KPZ" = "Nesting in O(n) on planar maps"

Main question in this talk:

Can we disentangle the LHS starting from planar map combinatorics?

A Markov process on concentric circles

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $ightharpoonup |X_u| \arg X_u$ is standard Brownian motion;
 - ▶ $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - (X_u) is trapped upon hitting 0.

A Markov process on concentric circles

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $ightharpoonup |X_u| \arg X_u$ is standard Brownian motion;
 - ▶ $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - (X_u) is trapped upon hitting 0.
- ▶ It a.s. hits 0 in finite time.

A Markov process on concentric circles

- ▶ Define the Markov process (X_u) on $\{x \in \mathbb{C} : |x| \in 2\mathbb{Z}\}$ such that
 - $ightharpoonup |X_u| \arg X_u$ is standard Brownian motion;
 - ▶ $|X_u|/2$ is an independent birth-death process with birth rate $\lambda_p = \frac{1}{16}(2+1/p)$ and death rate $\mu_p = \frac{1}{16}(2-1/p)$;
 - $ightharpoonup (X_u)$ is trapped upon hitting 0.
- ▶ It a.s. hits 0 in finite time.
- ► Far away from 0 it resembles 2D Brownian motion.

Let $(\ell_1, \ell_2, \dots \ell_N)$ be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.

- ▶ Let $(\ell_1, \ell_2, \dots \ell_N)$ be the sequence of lengths of loops surrounding the marked vertex in a critical O(n)loop-decorated planar map with perimeter p.
- ▶ Let $(r_1, r_2, ..., r_N)$ be the sequence of distances of the points at which (X_{ii}) alternates between the two half x-axes before hitting 0 when started at (p, 0).

- ▶ Let $(\ell_1, \ell_2, \dots \ell_N)$ be the sequence of lengths of loops surrounding the marked vertex in a critical O(n)loop-decorated planar map with perimeter p.
- ▶ Let $(r_1, r_2, ..., r_N)$ be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

- Let $(\ell_1, \ell_2, \dots \ell_N)$ be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- Let (r_1, r_2, \ldots, r_N) be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

- Let $(\ell_1, \ell_2, \dots \ell_N)$ be the sequence of lengths of loops surrounding the marked vertex in a critical O(n) loop-decorated planar map with perimeter p.
- Let $(r_1, r_2, ..., r_N)$ be the sequence of distances of the points at which (X_u) alternates between the two half x-axes before hitting 0 when started at (p, 0).

Theorem

If $n \in (0,2]$ then $(\ell_1,\ell_2,\ldots\ell_N) \stackrel{(d)}{=} (r_1,r_2,\ldots,r_N)$ biased by $(n/2)^N$.

► Can perform a time change $t(u) = \int_0^u |X_{u'}|^2 \mathrm{d}u'$, $X_u = 2R_{t(u)}e^{i\Theta_{t(u)}}$ such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates $\hat{\lambda}_p = 4p^2\lambda_p$, $\hat{\mu}_p = 4p^2\mu_p$.

- ► Can perform a time change $t(u) = \int_0^u |X_{u'}|^2 \mathrm{d}u'$, $X_u = 2R_{t(u)}e^{i\Theta_{t(u)}}$ such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates $\hat{\lambda}_p = 4p^2\lambda_p$, $\hat{\mu}_p = 4p^2\mu_p$.
- ▶ If $b = \frac{1}{\pi} \arccos(n/2)$, then there exists an $h_b : \mathbb{Z}_+ \to \mathbb{R}$ such that

$$H_b(\Theta, R) = \cos(b\Theta) h_b(R)$$

is harmonic w.r.t. the Markov process $(\Theta_t, R_t)_t$ until $\Theta_t = \pm \pi$.

- ► Can perform a time change $t(u) = \int_0^u |X_{u'}|^2 \mathrm{d}u'$, $X_u = 2R_{t(u)}e^{i\Theta_{t(u)}}$ such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates $\hat{\lambda}_p = 4p^2\lambda_p$, $\hat{\mu}_p = 4p^2\mu_p$.
- ▶ If $b=rac{1}{\pi}\arccos(n/2)$, then there exists an $h_b:\mathbb{Z}_+ o\mathbb{R}$ such that

$$H_b(\Theta, R) = \cos(b\Theta) h_b(R)$$

is harmonic w.r.t. the Markov process $(\Theta_t,R_t)_t$ until $\Theta_t=\pm\pi$.

▶ Biasing by $(n/2)^{\mathcal{N}}$ is very similar to H_b -transforming $(\Theta_t, R_t)_t$ into $(\Theta_t^{(b)}, R_t^{(b)})_t$.

- ► Can perform a time change $t(u) = \int_0^u |X_{u'}|^2 \mathrm{d}u'$, $X_u = 2R_{t(u)}e^{i\Theta_{t(u)}}$ such that (Θ_t) is standard Brownian motion and (R_t) is an independent birth-death process with rates $\hat{\lambda}_p = 4p^2\lambda_p$, $\hat{\mu}_p = 4p^2\mu_p$.
- ▶ If $b=rac{1}{\pi}\arccos(n/2)$, then there exists an $h_b:\mathbb{Z}_+ o\mathbb{R}$ such that

$$H_b(\Theta, R) = \cos(b\Theta) h_b(R)$$

is harmonic w.r.t. the Markov process $(\Theta_t,R_t)_t$ until $\Theta_t=\pm\pi$.

- ▶ Biasing by $(n/2)^{\mathcal{N}}$ is very similar to H_b -transforming $(\Theta_t, R_t)_t$ into $(\Theta_t^{(b)}, R_t^{(b)})_t$.
- $ightharpoonup \Theta_t^{(b)}$ and $R_t^{(b)}$ are still independent (as long as $R_t^{(b)} \neq 0$)!

Proposition

If $(t_i)_i$ are the half-axis alternation times of $R_t^{(b)}e^{i\Theta_t^{(b)}}$ and (T_i) are the log-conformal radii of CLE_{κ} with $\kappa=4/(1\pm b)$, then $(t_i)_i\stackrel{(d)}{=}(\kappa T_i)_i$.

Proposition

If $(t_i)_i$ are the half-axis alternation times of $R_t^{(b)}e^{i\Theta_t^{(b)}}$ and (T_i) are the log-conformal radii of CLE_{κ} with $\kappa=4/(1\pm b)$, then $(t_i)_i\stackrel{(d)}{=}(\kappa T_i)_i$.

• Question: Are the distributions of $\tau := \inf\{t : R_t^{(b)} = 0\}$ and $\kappa \log \frac{1}{\epsilon(\delta)}$ identical in the limit $\log(1/\delta) \sim 2\log p \to \infty$?

• (W_i) exits at ℓ with prob $\sum_{n=0}^{\infty} \frac{p}{n} \binom{n}{n-p} \binom{n}{n-\ell} 4^{-n}$. ℓ

$$J_{\ell,p}(k) \coloneqq \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

• (W_i) exits at ℓ with prob $\sum_{n \text{ even}} \frac{p}{n} \left(\frac{n}{\frac{n-p}{2}}\right) \left(\frac{n}{\frac{n-\ell}{2}}\right) 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.

• (W_i) exits at ℓ with prob $\sum_{\substack{n \text{ even} \\ n}} \frac{p}{n} {n \choose \frac{n-p}{2}} {n \choose \frac{n-\ell}{2}} 4^{-n} \cdot \ell$

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

- ▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on \mathbb{Z}_+ .

• (W_i) exits at ℓ with prob $\sum_{n \text{ even}} \frac{p}{n} {n \choose \frac{n-p}{2}} {n \choose \frac{n-\ell}{2}} 4^{-n}$. ℓ

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

- ▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on \mathbb{Z}_+ .
- ▶ The exit distribution of $R_t e^{i\Theta_t}$ also determines an operator on \mathcal{D}

$$\int_0^\infty e^{-s\mathsf{K}}\mathrm{d}F(s)$$

where $F(s) = \frac{1}{2} \mathbb{P}(\sup_{t \in (0,s)} |\Theta_t| > \pi/2)$ and **K** is the generator $\mathbf{K}e_p = \lim_{t \to 0} \frac{1}{t} \mathbb{E}[e_p - e_{R_t}]$ of R_t .

• (W_i) exits at ℓ with prob $\sum_{n \text{ even}} \frac{p}{n} \left(\frac{n}{\frac{n-p}{2}}\right) \left(\frac{n}{\frac{n-\ell}{2}}\right) 4^{-n}$.

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

- ▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on \mathbb{Z}_+ .
- ► The exit distribution of $R_t e^{i\Theta_t}$ also determines an operator on \mathcal{D}

$$\int_0^\infty \mathrm{e}^{-s\mathbf{K}}\mathrm{d}F(s) = \frac{1}{2}\,\mathrm{sech}\left(\sqrt{2\mathbf{K}}\frac{\pi}{2}\right)$$

where $F(s)=\frac{1}{2}\mathbb{P}(\sup_{t\in(0,s)}|\Theta_t|>\pi/2)$ and \mathbf{K} is the generator $\mathbf{K}e_p=\lim_{t\to0}\frac{1}{t}\mathbb{E}[e_p-e_{R_t}]$ of R_t .

• (W_i) exits at ℓ with prob $\sum_{n \text{ even}} \frac{p}{n} {n \choose \frac{n-p}{2}} {n \choose \frac{n-\ell}{2}} 4^{-n}$.

$$J_{\ell,p}(k) := \sum_{n \text{ even}} k^n \frac{p}{n} \binom{n}{\frac{n-p}{2}} \binom{n}{\frac{n-\ell}{2}} 4^{-n}.$$

- ▶ Encode in an operator \mathbf{J}_k on some Hilbert space \mathcal{D} with basis $(e_p)_{p\geq 1}$: $\mathbf{J}_k e_p := \sum_{\ell=1}^{\infty} J_{\ell,p}(k) e_{\ell}$.
- Let Θ_t be Brownian motion and R_t a unknown continuous time Markov process on \mathbb{Z}_+ .
- ▶ The exit distribution of $R_t e^{i\Theta_t}$ also determines an operator on \mathcal{D}

$$\mathbf{J}_{k} \stackrel{!}{=} \int_{0}^{\infty} e^{-s\mathbf{K}} \mathrm{d}F(s) = \frac{1}{2} \operatorname{sech}\left(\sqrt{2\mathbf{K}} \frac{\pi}{2}\right)$$

where $F(s) = \frac{1}{2}\mathbb{P}(\sup_{t \in (0,s)} |\Theta_t| > \pi/2)$ and **K** is the generator $\mathbf{K}e_p = \lim_{t \to 0} \frac{1}{t}\mathbb{E}[e_p - e_{R_t}]$ of R_t .

 $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} \, g'(z) \mathrm{d}A(z)$$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy)) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n] f(z)} [z^n] g(z).$$

▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f,g\rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} \, g'(z) \mathrm{d}A(z) = \sum_{n=1}^{\infty} n \, \overline{[z^n] f(z)} \, [z^n] g(z).$$

- ▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.
- $lackbox{f M}$ May represent ${f J}_k = {f \Psi}_k^\dagger {f \Psi}_k$ where ${f \Psi}_k$ is the operator

$$\Psi_k f := f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k} z}$$

▶ $\mathcal{D} = \mathcal{D}(\mathbb{D})$ is Hilbert space of analytic functions f on the unit disk $\mathbb{D} \subset \mathbb{C}$ with f(0) = 0 and finite norm w.r.t. $(\mathrm{d}A(x+iy) := \frac{1}{\pi}\mathrm{d}x\mathrm{d}y)$

$$\langle f, g \rangle_{\mathcal{D}} = \int_{\mathbb{D}} \overline{f'(z)} g'(z) dA(z) = \sum_{n=1}^{\infty} n \overline{[z^n] f(z)} [z^n] g(z).$$

- ▶ Basis $(e_p)_{p=1}^{\infty}$ given by $e_p(z) = z^p$ with $\langle e_l, e_p \rangle_{\mathcal{D}} = p \mathbf{1}_{\{l=p\}}$.
- $lackbox{f M}$ May represent ${f J}_k = {f \Psi}_k^\dagger {f \Psi}_k$ where ${f \Psi}_k$ is the operator

$$\Psi_k f := f \circ \psi_k, \qquad \psi_k(z) = \frac{1 - \sqrt{1 - k z^2}}{\sqrt{k} z}$$

By conformal invariance of the Dirichlet inner product,

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

▶ To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

- ▶ To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.
- ▶ Look for a nice conformal mapping.

$$\langle f, \mathbf{J}_k g \rangle_{\mathcal{D}} = \langle \mathbf{\Psi}_k f, \mathbf{\Psi}_k g \rangle_{\mathcal{D}} = \langle f \circ \psi_k, g \circ \psi_k \rangle_{\mathcal{D}} = \langle f, g \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}.$$

- ▶ To diagonalize J_k it suffices to find a basis (f_m) that is orthogonal w.r.t. both $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.
- ▶ Look for a nice conformal mapping.
- ▶ An elliptic integral does the job $(k' = \sqrt{1-k^2}, k_1 = \frac{1-k'}{1+k'})$

$$v_{k_1}(z) = \frac{1}{4K(k_1)} \int_0^z \frac{\mathrm{d}x}{\sqrt{(k_1 - x^2)(1 - k_1 x^2)}} = \frac{\arcsin\left(\frac{z}{\sqrt{k_1}}, k_1\right)}{4K(k_1)}$$

▶ The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R} + i(-T_k, T_k)$ that is even around $\pm 1/4$, hence 1-periodic.

- ▶ The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R} + i(-T_k, T_k)$ that is even around $\pm 1/4$, hence 1-periodic.
- ▶ Basis $\cos(2\pi m(\cdot + 1/4))$, $m \ge 1$, is orthogonal w.r.t. Dirichlet on strip of any height.

- ▶ The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R} + i(-T_k, T_k)$ that is even around $\pm 1/4$, hence 1-periodic.
 - n
- ▶ Basis $\cos(2\pi m(\cdot + 1/4))$, $m \ge 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- ► Hence basis

$$f_m(z) = \cos(2\pi m(v_{k_1}(z) + 1/4)) - \cos(\pi m/2), \quad m \ge 1$$
 of $\mathcal D$ is orthogonal w.r.t. $\langle \cdot, \cdot \rangle_{\mathcal D(\mathbb D)}$ and $\langle \cdot, \cdot \rangle_{\mathcal D(\psi_k(\mathbb D))}$.

- ▶ The push-forward of $f \in \mathcal{D}$ extends to an analytic function on the strip $\mathbb{R} + i(-T_k, T_k)$ that is even around $\pm 1/4$, hence 1-periodic.
- ▶ Basis $\cos(2\pi m(\cdot + 1/4))$, $m \ge 1$, is orthogonal w.r.t. Dirichlet on strip of any height.
- ► Hence basis

$$f_m(z) = \cos(2\pi m(v_{k_1}(z) + 1/4)) - \cos(\pi m/2), \quad m \ge 1$$

of \mathcal{D} is orthogonal w.r.t. $\langle \cdot, \cdot \rangle_{\mathcal{D}(\mathbb{D})}$ and $\langle \cdot, \cdot \rangle_{\mathcal{D}(\Psi_k(\mathbb{D}))}$.

▶ Conclusion: J_k has eigenvectors $(f_m)_{m>1}$ and eigenvalues

$$\frac{\langle f_m, f_m \rangle_{\mathcal{D}(\psi_k(\mathbb{D}))}}{\langle f_m, f_m \rangle_{\mathcal{D}(\mathbb{D})}} = \frac{\sinh(2m\pi T_k)}{\sinh(4m\pi T_k)} = \frac{1}{2} \operatorname{sech}(2m\pi T_k), \qquad T_k = \frac{K(k')}{4K(k)}.$$

▶ $\mathbf{J}_k = \frac{1}{2} \operatorname{sech}(\sqrt{2\mathbf{K}_k} \frac{\pi}{2})$ has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.

- ▶ $J_k = \frac{1}{2} \operatorname{sech}(\sqrt{2K_k} \frac{\pi}{2})$ has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup and eigenvalues $8m^2T_k^2$

- ▶ $J_k = \frac{1}{2} \operatorname{sech}(\sqrt{2K_k} \frac{\pi}{2})$ has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- **K**_k has same eigenvectors as J_k and eigenvalues $8m^2T_k^2$
- Explicit calculation:

icit calculation:
$$\mathbf{K}_k e_p = \left(\frac{2K(k')}{\pi}\right)^2 \frac{p^2}{16} \left[\left(8 - 4k^2\right) e_p - \left(2 \pm \frac{1}{p}\right) k^2 e_{p\pm 1} \right]$$

- ▶ $J_k = \frac{1}{2} \operatorname{sech}(\sqrt{2K_k} \frac{\pi}{2})$ has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- ▶ \mathbf{K}_k has same eigenvectors as \mathbf{J}_k and eigenvalues $8m^2T_k^2$
- Explicit calculation:

$$\mathbf{K}_{k}e_{p} = \left(\frac{2K(k')}{\pi}\right)^{2} \frac{p^{2}}{16} \left[\left(8 - 4k^{2}\right) e_{p} - \left(2 \pm \frac{1}{p}\right) k^{2} e_{p\pm 1} \right]$$
$$\xrightarrow{k \to 1} \frac{p^{2}}{16} \left[4e_{p} - \left(2 + \frac{1}{p}\right) e_{p+1} - \left(2 - \frac{1}{p}\right) e_{p-1} \right],$$

which is exactly the generator of the birth-death process R_t .

- ▶ $\mathbf{J}_k = \frac{1}{2} \operatorname{sech}(\sqrt{2\mathbf{K}_k} \frac{\pi}{2})$ has eigenvalues $\frac{1}{2} \operatorname{sech}(2m\pi T_k)$, $m \ge 1$.
- ightharpoonup $m K_{\it k}$ has same eigenvectors as $m J_{\it k}$ and eigenvalues $8m^2T_{\it k}^2$
- Explicit calculation:

$$\mathbf{K}_{k}e_{p} = \left(\frac{2K(k')}{\pi}\right)^{2} \frac{p^{2}}{16} \left[\left(8 - 4k^{2}\right) e_{p} - \left(2 \pm \frac{1}{p}\right) k^{2} e_{p\pm 1} \right]$$
$$\xrightarrow{k \to 1} \frac{p^{2}}{16} \left[4e_{p} - \left(2 + \frac{1}{p}\right) e_{p+1} - \left(2 - \frac{1}{p}\right) e_{p-1} \right],$$

which is exactly the generator of the birth-death process R_t .

Proposition

The sequences of locations where the diagonal random walk (W_i) and the Markov process (X_u) alternate between the x- and y-axis are equal in law.

- ▶ Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.

- ▶ Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Excursion** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ▶ Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- ▶ Excursion w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

-

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ► Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ▶ Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- ▶ Consider walks with steps in $\{-1,0,1\}^2 \setminus \{(0,0)\}$
- **Exercision** w in upper-half plane from (0,0) to (-p-2,0), $p \ge 1$.
- ▶ Wish to cut w into excursions from (0,0) to (d-2,0), $d \ge 0$.

- \triangleright Φ_p is a bijection with rooted planar maps of perimeter p with
 - for each face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - \triangleright a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- ▶ This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ▶ a marked face of degree ℓ,
 - for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- ► This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

- This extends to a bijection $\Phi_{\ell,p}$ between walks on the slit plane from (p,0) to $(-\ell,0)$ and rooted planar maps with perimeter p and
 - ightharpoonup a marked face of degree ℓ ,
 - ▶ for each (unmarked) face of degree $d \ge 1$ an excursion above or below axis from (0,0) to (d-2,0)
 - for each vertex an excursion above axis from (0,0) to (-2,0).

▶ If (W_i) is a simple diagonal random walk started at (p,0) and killed at (0,0), then $\Phi((W_i))$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$2^{\#\text{loops}}g^{\text{total loop length}}\prod_{\text{regular faces}}q_{\text{degree}}$$

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

▶ If (W_i) is a simple diagonal random walk started at (p,0) and killed at (0,0), then $\Phi((W_i))$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$2^{\#\text{loops}}g^{\text{total loop length}}\prod_{\text{regular faces}}q_{\text{degree}}$$

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

• #loops = #half-axis alternations of (W_i) .

▶ If (W_i) is a simple diagonal random walk started at (p,0) and killed at (0,0), biased by $(n/2)^{\# half-axis\ alternations}$, then $\Phi((W_i))$ is a rooted planar map with a marked vertex and rigid loops surrounding the marked vertex with probability proportional to

$$n^{\# ext{loops}} g^{ ext{total loop length}} \prod_{ ext{regular faces}} q_{ ext{degree}}$$

for some $g, q_2, q_4, \ldots \in \mathbb{R}_+$.

• #loops = #half-axis alternations of (W_i) .

Thanks for you attention! Comments?