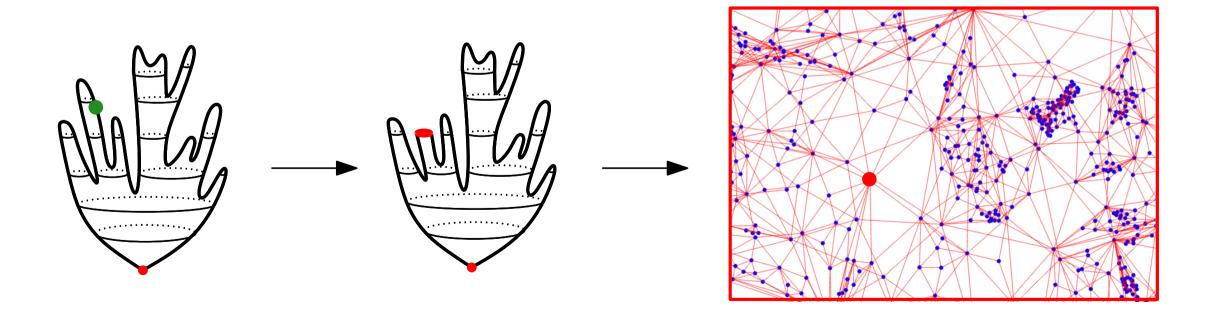
Triangulations with spins : algebraicity and local limit

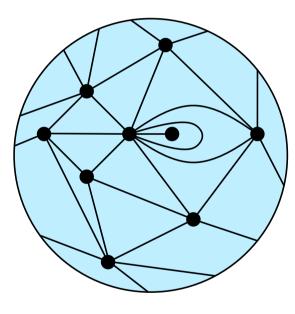
Marie Albenque (CNRS and LIX) joint work with Laurent Ménard (Paris Nanterre) and Gilles Schaeffer (CNRS and LIX)



Dynamics on random graphs, October 2017

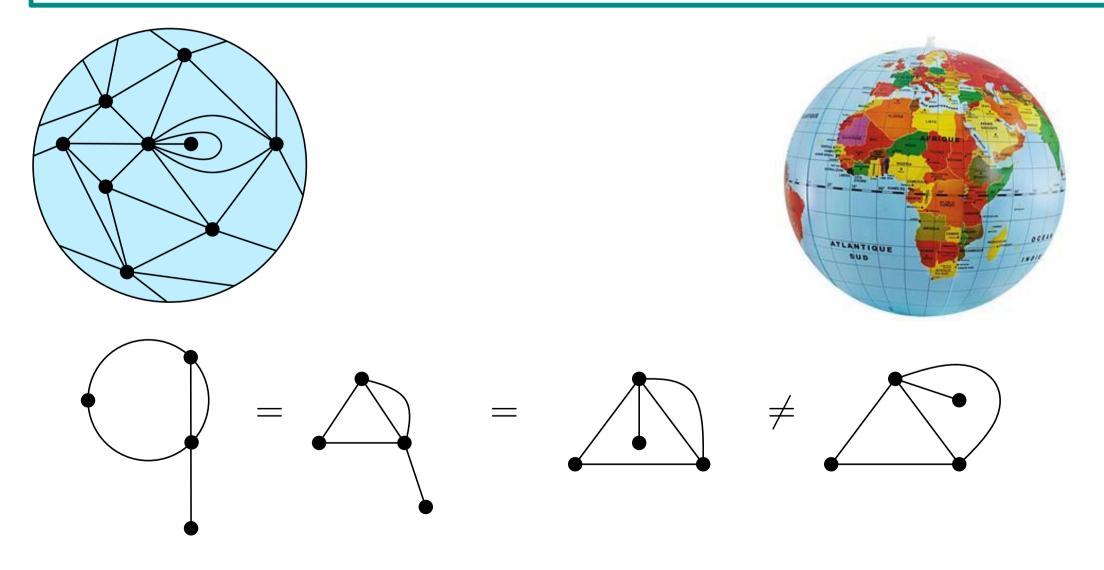
Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



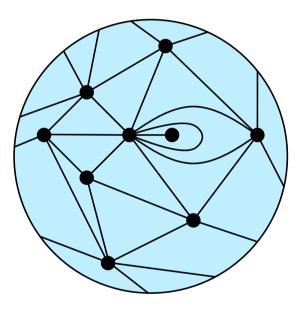
Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



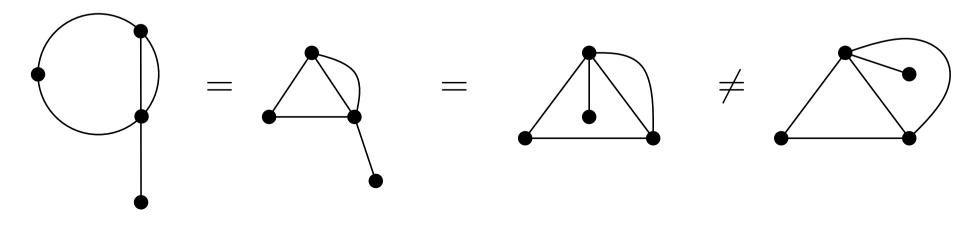
Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



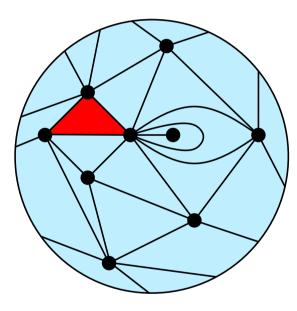
faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges



Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

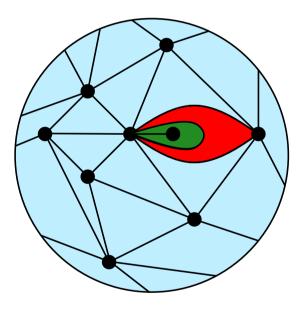


faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges

Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

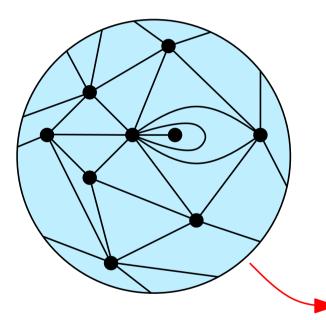


faces: connected components of the complement of edges

p-angulation: each face is bounded by p edges

Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



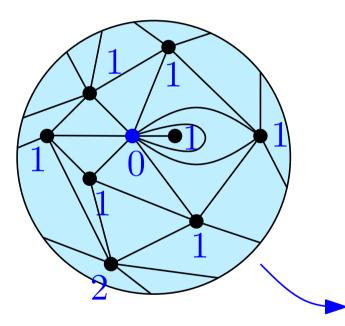
faces: connected components of the complement of edges

 $p\mbox{-}angulation:$ each face is bounded by p edges

This is a triangulation

Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



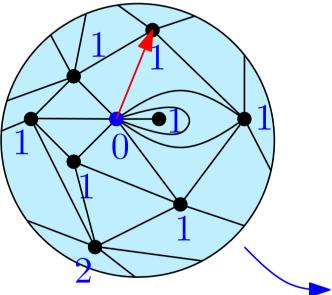
In blue, distances from •

M Planar Map:

- V(M) := set of vertices of M
- $d_{gr} :=$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

Definition:

A **planar map** is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).



In blue, distances from •

M Planar Map:

- V(M) := set of vertices of M
- $d_{gr} :=$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

Rooted map: mark an oriented edge of the map

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Global :

Rescale distances to keep diameter bounded [Le Gall 13, Miermont 13] : converges to the **Brownian map**

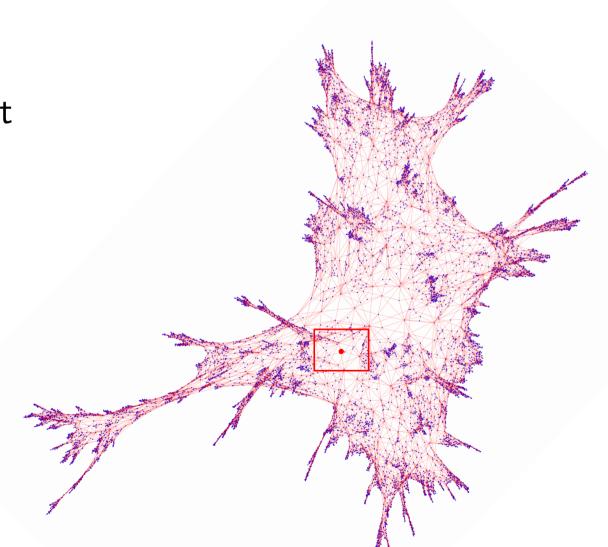
- Gromov-Hausdorff topology
- Continuous metric space
- Homeomorphic to the sphere
- Hausdorff dimension 4
- Universality

Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root



Take a triangulation with n edges uniformly at random. What does it look like if n is large ?

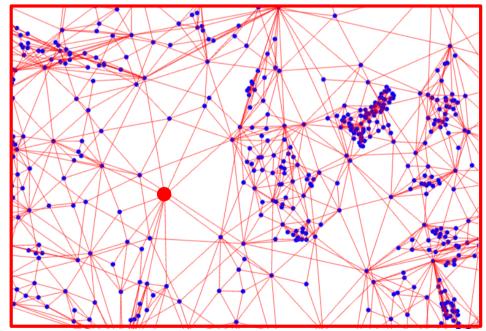
Two points of view : global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root

[Angel – Schramm 03, Krikun 05] : Converges to the Uniform Infinite Planar Triangulation

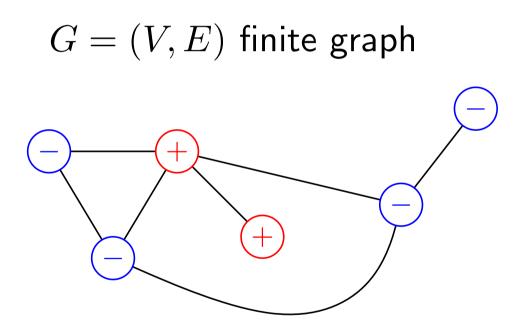
- Local topology
- Metric balls of radius R grow like R^4
- "Universality" of the exponent 4.



How does Ising model influence the underlying map?

How does Ising model influence the underlying map?

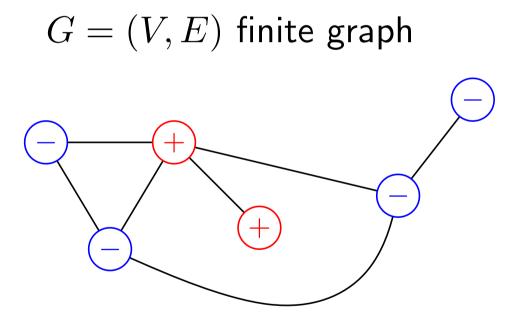
First, Ising model on a finite deterministic graph:



Spin configuration on *G*: $\sigma: V \to \{-1, +1\}.$

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:



Spin configuration on G: $\sigma: V \to \{-1, +1\}.$

Ising model on G: take a random spin configuration with probability

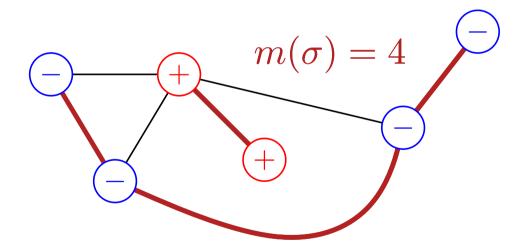
$$P(\sigma) \propto e^{-\frac{\beta}{2}\sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature.

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

G = (V, E) finite graph



Spin configuration on *G*: $\sigma: V \to \{-1, +1\}.$

Ising model on G: take a random spin configuration with probability

$$P(\sigma) \propto e^{-\frac{\beta}{2}\sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) \neq \sigma(v')\}}}$$

 $\beta > 0$: inverse temperature.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)$ = number of monochromatic edges and $\nu = e^{\beta}$.

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}$$

where $Q(\nu, t) =$ generating series of **lsing-weighted triangulations**:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}$$

 $\mathcal{T}_n = \{ \text{rooted planar triangulations with } 3n \text{ edges} \}.$

Random triangulation with spins in \mathcal{T}_n with probability $\propto
u^{m(T,\sigma)}$?

$$\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}$$

where $Q(\nu, t) =$ generating series of **lsing-weighted triangulations**:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}.$$

Theorem [A. – Ménard – Schaeffer] As $n \to \infty$, the sequence \mathbb{P}_n^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the local topology. The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps: coeff $[t^n]$ of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5/2}$

Note : κ and ρ depend on the combinatorics of the model.

Adding matter: New asymptotic behavior

Counting exponent for undecorated maps: coeff $[t^n]$ of generating series of (undecorated) maps (e.g.: triangulations, quadrangulations, general maps, simple maps,...) $\sim \kappa \rho^{-n} n^{-5/2}$

Note : κ and ρ depend on the combinatorics of the model.

Theorem [Bernardi – Bousquet-Mélou 11] For every ν the series $Q(\nu, t)$ is algebraic, has $\rho_{\nu} > 0$ as unique dominant singularity and satisfies

$$[t^{3n}]Q(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

This suggests an unusual behavior of the underlying maps for $\nu = \nu_c$. See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

Adding matter: Watabiki's (controversial?) predictions

Counting exponent :

coeff $[t^n]$ of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge :

$$\alpha = \frac{25 - c + \sqrt{(1 - c)(25 - c)}}{12}$$

Adding matter: Watabiki's (controversial?) predictions

Counting exponent :

coeff $[t^n]$ of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge :

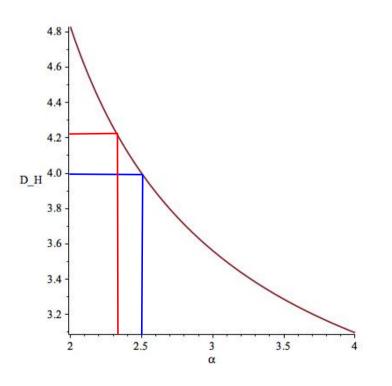
Hausdorff dimension : [Watabiki 93]

$$\alpha = \frac{25 - c + \sqrt{(1 - c)(25 - c)}}{12}$$

$$D_H = 2\frac{\sqrt{25 - c} + \sqrt{49 - c}}{\sqrt{25 - c} + \sqrt{1 - c}}$$

•
$$\alpha = 5/2$$
 gives $D_H = 4$

•
$$\alpha = 7/3$$
 gives $D_H = \frac{7+\sqrt{97}}{4} \approx 4.21$



Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\left(\{(T,\sigma)\}\right) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}.$$

Local convergence of triangulations with spins

Probability measure on triangulations of \mathcal{T}_n with a spin configuration:

$$\mathbb{P}_n^{\nu}\left(\{(T,\sigma)\}\right) = \frac{\nu^{m(T,\sigma)}}{[t^{3n}]Q(\nu,t)}$$

Theorem [A. – Ménard – Schaeffer] As $n \to \infty$, the sequence \mathbb{P}_n^{ν} converges weakly to a probability measure \mathbb{P}^{ν} for the **local topology**. The measure \mathbb{P}^{ν} is supported on infinite triangulations with one end.

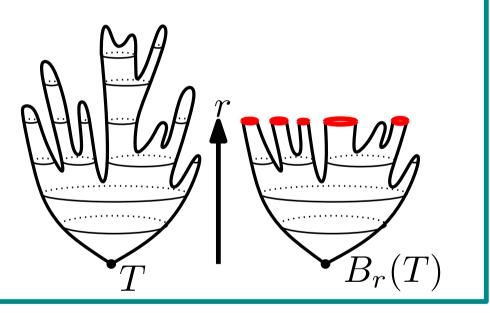
Local topology

 $\mathcal{T}_f := \{ \text{finite rooted planar triangulations with spins} \}.$

Definition: The **local topology** on \mathcal{T}_f is induced by the distance:

$$d_{loc}(T, T') := (1 + \max\{r \ge 0 : B_r(T)\}$$

where $B_r(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance < rfrom the root.



Local topology

 $\mathcal{T}_f := \{ \text{finite rooted planar triangulations with spins} \}.$

Definition: The **local topology** on \mathcal{T}_f is induced by the distance: $d_{loc}(T, T') := (1 + \max\{r \ge 0 : B_r(T)\}$ where $B_r(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance < rfrom the root.

- (\mathcal{T}, d_{loc}) : closure of (\mathcal{T}_f, d_{loc}) . It is a **Polish** space.
- $\mathcal{T}_{\infty} := \mathcal{T} \setminus \mathcal{T}_{f}$ set of **infinite** planar triangulations with spins.

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_n^{\nu}\left(\left\{(T,v)\in\mathcal{T}_n\,:\,B_r(T,v)=\Delta\right\}\right)\xrightarrow[n\to\infty]{}\mathbb{P}^{\nu}\left(\left\{T\in\mathcal{T}_\infty\,:\,B_r(T)=\Delta\right\}\right)$$

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_{n}^{\nu} \bigg(\left\{ (T, v) \in \mathcal{T}_{n} : B_{r}(T, v) = \Delta \right\} \bigg) \xrightarrow[n \to \infty]{} \mathbb{P}^{\nu} \bigg(\left\{ T \in \mathcal{T}_{\infty} : B_{r}(T) = \Delta \right\} \bigg)$$
Problem: the space (\mathcal{T}, d_{loc}) or
 $(\mathcal{T}, d_{loc}^{\bullet})$ is **not compact**!
Ex:
degree n

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_{n}^{\nu} \bigg(\left\{ (T, v) \in \mathcal{T}_{n} : B_{r}(T, v) = \Delta \right\} \bigg) \xrightarrow[n \to \infty]{} \mathbb{P}^{\nu} \bigg(\left\{ T \in \mathcal{T}_{\infty} : B_{r}(T) = \Delta \right\} \bigg)$$
Problem: the space (\mathcal{T}, d_{loc}) or
 $(\mathcal{T}, d_{loc}^{\bullet})$ is **not compact**!
Ex:
degree n

2. No loss of mass at the limit:

the measure \mathbb{P}^{ν} defined by the limits in 1. is a probability measure.

Portemanteau theorem + Levy – Prokhorov metric: To show that \mathbb{P}_n^{ν} converges weakly to \mathbb{P}^{ν} , prove

1. For every r > 0 and every possible ball Δ , show:

$$\mathbb{P}_{n}^{\nu} \left(\left\{ (T, v) \in \mathcal{T}_{n} : B_{r}(T, v) = \Delta \right\} \right) \xrightarrow[n \to \infty]{} \mathbb{P}^{\nu} \left(\left\{ T \in \mathcal{T}_{\infty} : B_{r}(T) = \Delta \right\} \right)$$
Problem: the space (\mathcal{T}, d_{loc}) or
 $(\mathcal{T}, d_{loc}^{\bullet})$ is **not compact**!
Ex: degree n

2. No loss of mass at the limit:

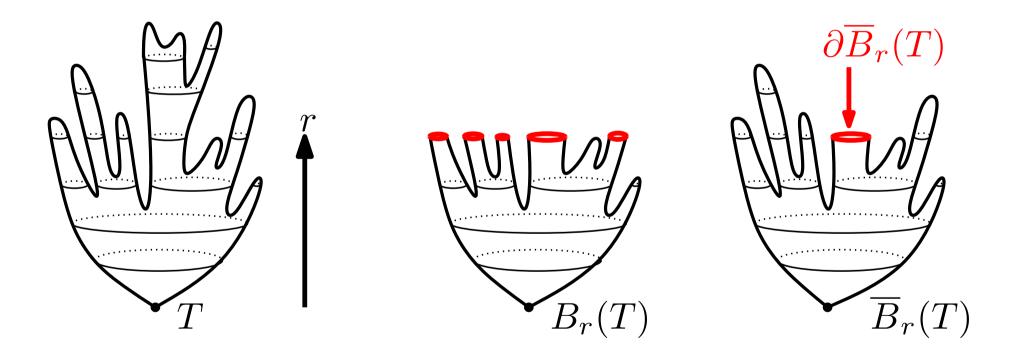
the measure \mathbb{P}^{ν} defined by the limits in 1. is a probability measure.

$$\forall r \ge 0, \quad \sum_{r-\text{balls }\Delta} \mathbb{P}^{\nu} \left(\left\{ T \in \mathcal{T}_{\infty} : B_r(T) = \Delta \right\} \right) = 1.$$

Local topology: Hulls

Balls $B_r(T)$ not practical (multiple holes). Take hulls instead:

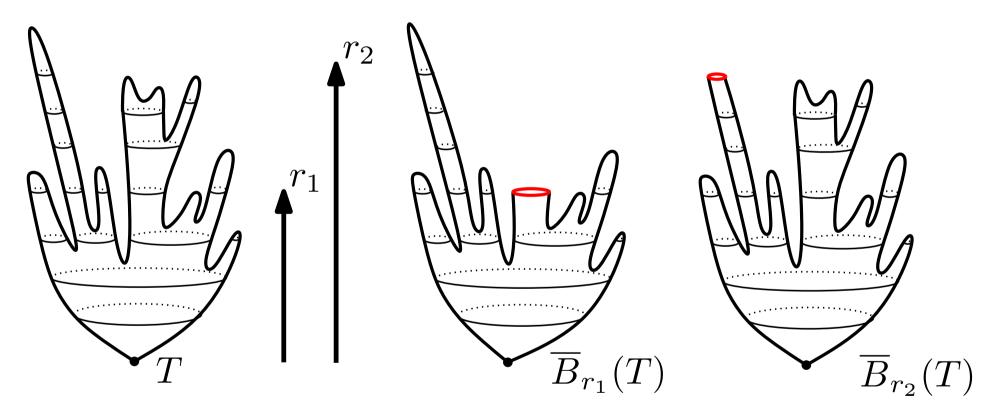
 $\overline{B}_r(T) := \begin{array}{l} \text{everything not in the largest connected} \\ \text{component of } T \setminus B_r(T) \end{array}$



Local topology: Hulls

Balls $B_r(T)$ not practical (multiple holes). Take hulls instead:

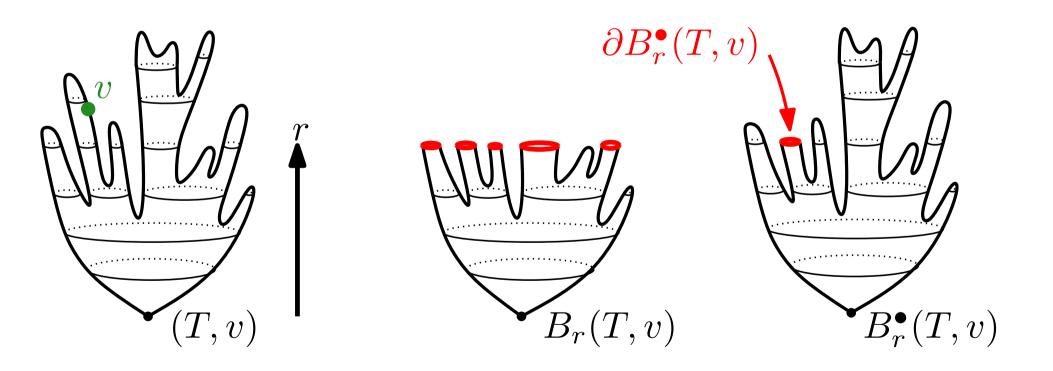
 $\overline{B}_r(T) := \begin{array}{l} \text{everything not in the largest connected} \\ \text{component of } T \setminus B_r(T) \end{array}$



Problem: Hulls are not **nested** !

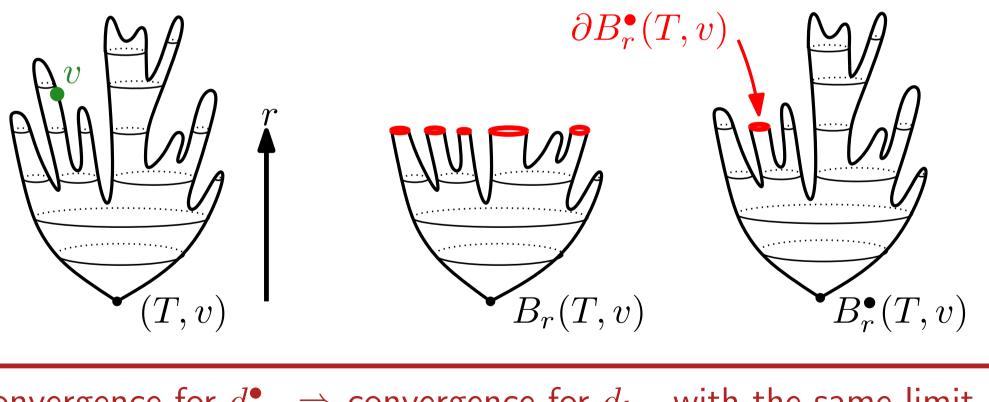
Local topology: Pointed hulls

For $(T, v) \in \mathcal{T}_{f}^{\bullet} := \{$ finite rooted triangulations with pointed vertex $\}:$ $B_{r}^{\bullet}(T, v) = \begin{cases} (T, v) & \text{if } v \in B_{r}(T); \\ B_{r}(T) \text{ and the connected components} \\ \text{of } T \setminus B_{r}(T) \text{ that do not contain } v \end{cases} \text{ if } v \notin B_{r}(T).$



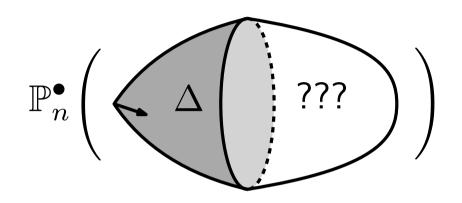
Local topology: Pointed hulls

For $(T, v) \in \mathcal{T}_{f}^{\bullet} := \{$ finite rooted triangulations with pointed vertex $\}:$ $B_{r}^{\bullet}(T, v) = \begin{cases} (T, v) & \text{if } v \in B_{r}(T); \\ B_{r}(T) \text{ and the connected components} \\ \text{of } T \setminus B_{r}(T) \text{ that do not contain } v \end{cases} \text{ if } v \notin B_{r}(T).$

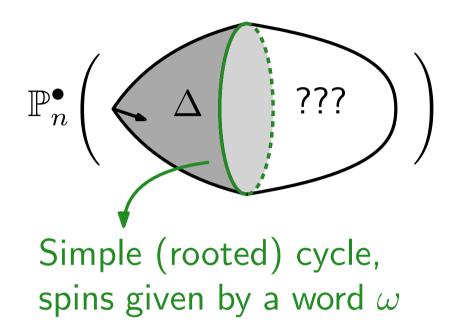


Convergence for $d_{loc}^{\bullet} \Rightarrow$ convergence for d_{loc} with the same limit.

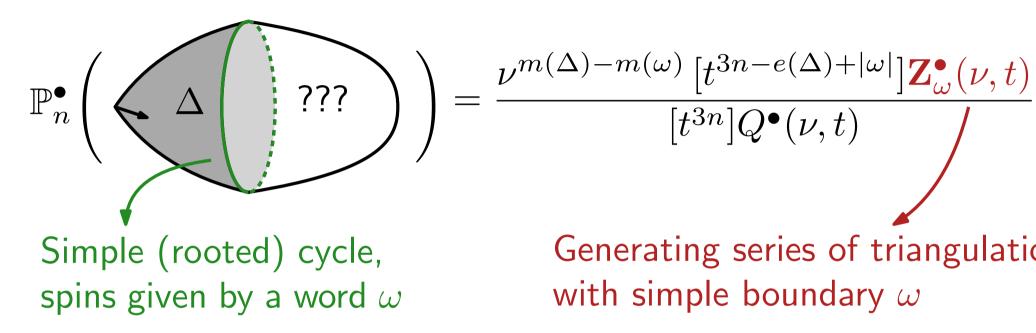
Need to evaluate, for every possible hull Δ



Need to evaluate, for every possible hull Δ

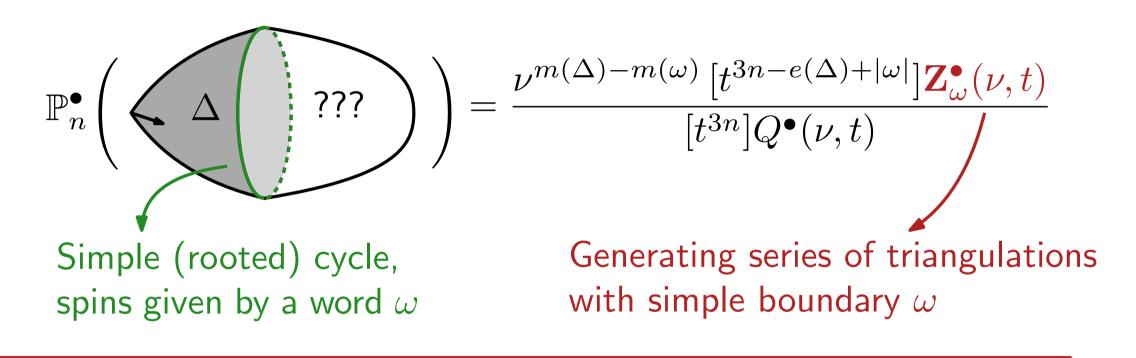


Need to evaluate, for every possible hull Δ



Generating series of triangulations with simple boundary ω

Need to evaluate, for every possible hull Δ



Theorem [A. – Ménard – Schaeffer] For every ω , the series $t^{|\omega|}Z_{\omega}(\nu, t)$ is algebraic, has ρ_{ν} as unique dominant singularity and satisfies

$$[t^{3n}]t^{|\omega|}Z_{\omega}(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa_{\omega}(\nu_c) \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa_{\omega}(\nu) \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

Triangulations with simple boundary

Fix a word ω , with injections from and into triangulations of the sphere:

 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

To get exact asymptotics we need, as series in t^3 ,

1. algebraicity,

2. no other dominant singularity than ρ_{ν} .

Triangulations with simple boundary

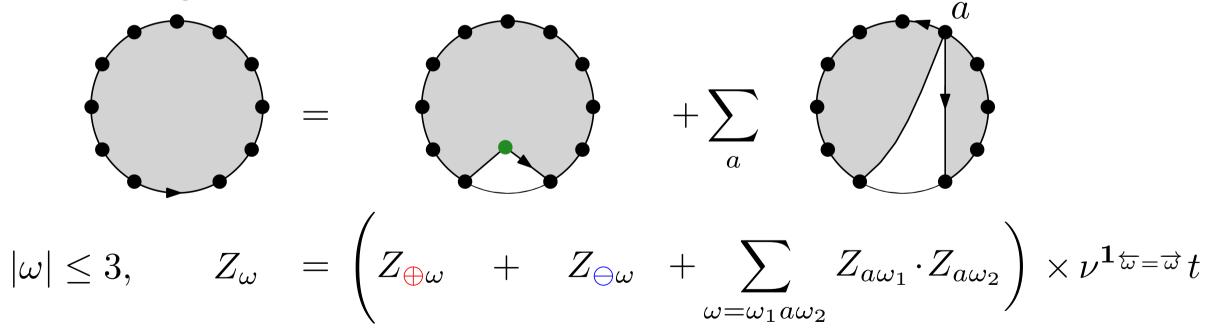
Fix a word ω , with injections from and into triangulations of the sphere:

 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Peeling equation :



Triangulations with simple boundary

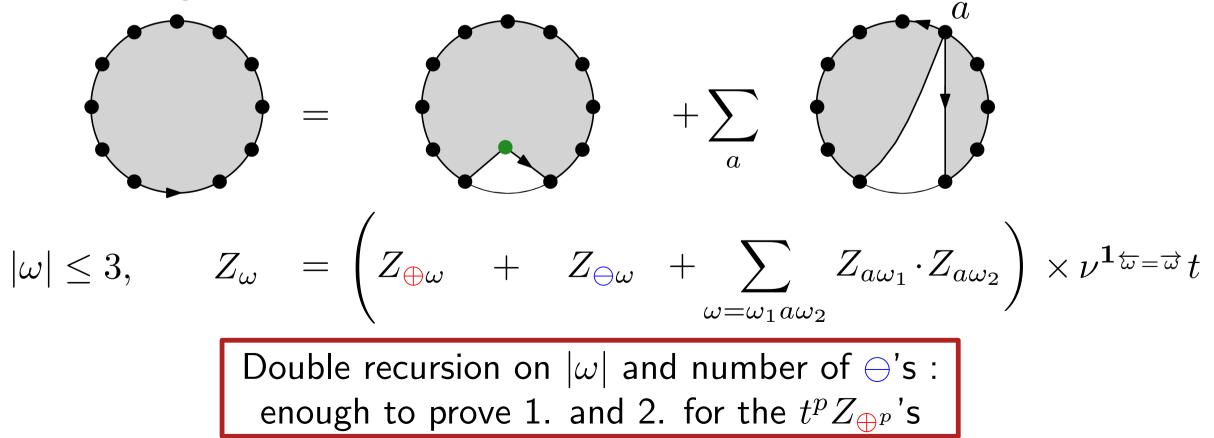
Fix a word ω , with injections from and into triangulations of the sphere:

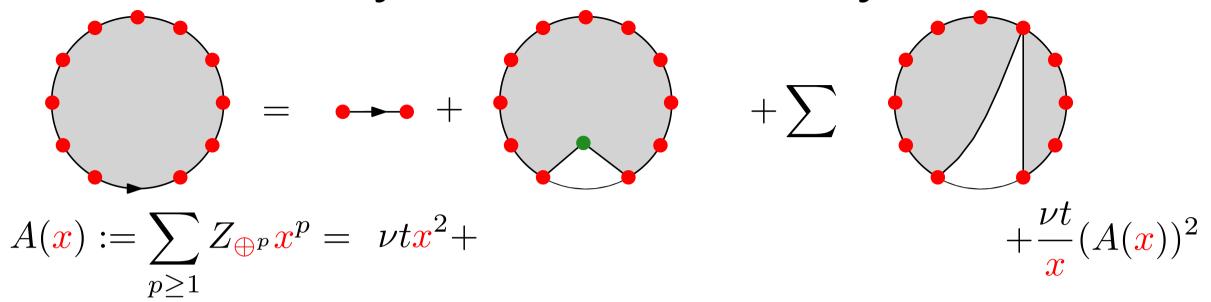
 $[t^{3n}]t^{|\omega|}Z_{\omega} = \Theta\left(\rho_{\nu}^{-n}n^{-\alpha}\right), \text{ with } \alpha = 5/2 \text{ of } 7/3 \text{ depending on } \nu.$

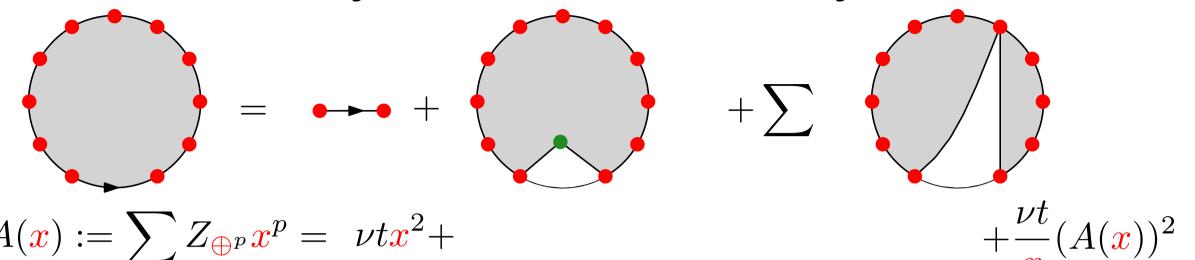
To get exact asymptotics we need, as series in t^3 ,

- 1. algebraicity,
- 2. no other dominant singularity than ρ_{ν} .

Peeling equation :

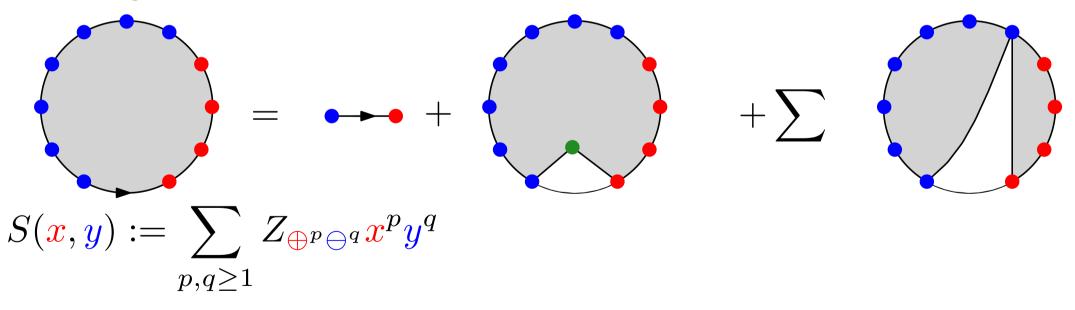


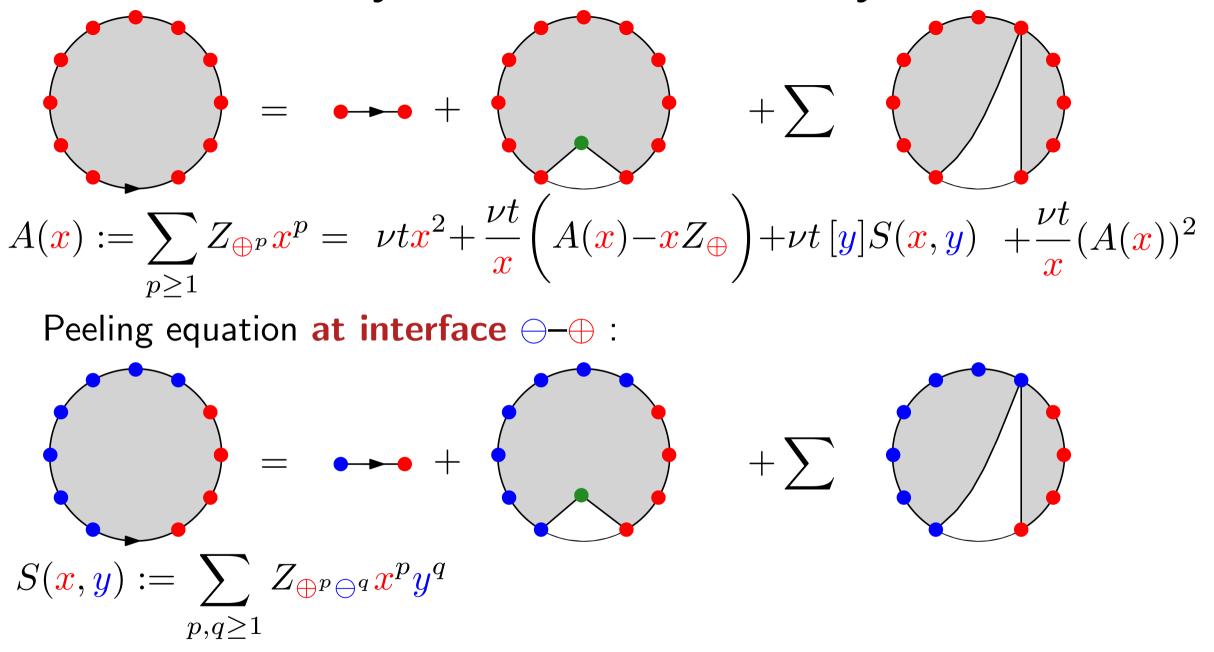


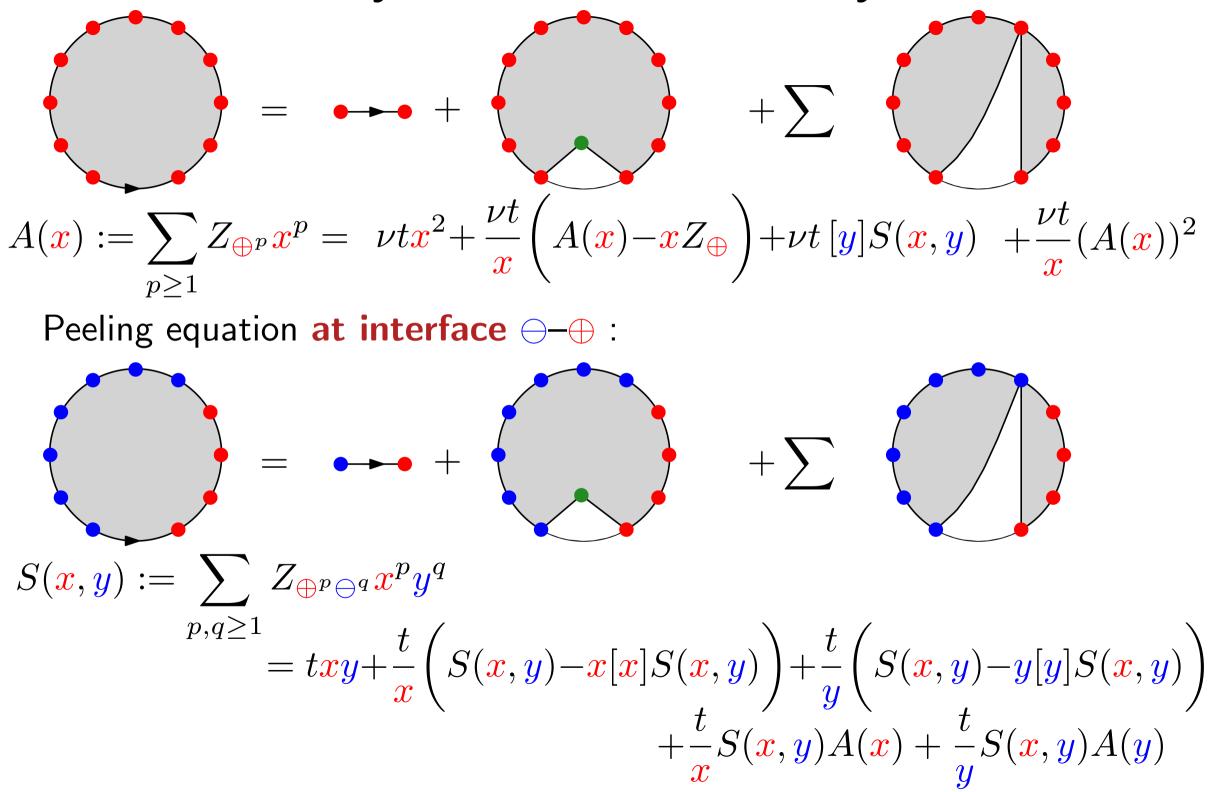


$$A(\mathbf{x}) := \sum_{p>1} Z_{\oplus^p} \mathbf{x}^p = \nu t \mathbf{x}^2 +$$

Peeling equation at interface $\ominus -\oplus$:







Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y}) \cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} \left(A(Y_1/t) + 1 \right) = \frac{1}{Y_2} \left(A(Y_2/t) + 1 \right)$.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y}) \cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a second invariant J(y) depending only on $t, \nu, Z_{\bigoplus}(t), y$ and A(y/t).

Kernel method: equation for S reads

$$K(\boldsymbol{x},\boldsymbol{y})\cdot S(\boldsymbol{x},\boldsymbol{y}) = R(\boldsymbol{x},\boldsymbol{y})$$

where $K(\boldsymbol{x},\boldsymbol{y}) = 1 - \frac{t}{\boldsymbol{x}} - \frac{t}{\boldsymbol{y}} - \frac{t}{\boldsymbol{x}}A(\boldsymbol{x}) - \frac{t}{\boldsymbol{y}}A(\boldsymbol{y}).$

1. Find two series Y_1 and Y_2 in $\mathbb{Q}(x)[[t]]$ such that $K(x, Y_i/t) = 0$. It gives $\frac{1}{Y_1} (A(Y_1/t) + 1) = \frac{1}{Y_2} (A(Y_2/t) + 1)$. $I(y) := \frac{1}{y} (A(y/t) + 1)$ is called an invariant.

2. Work a bit with the help of $R(x, Y_i/t) = 0$ to get a second invariant J(y) depending only on $t, \nu, Z_{\bigoplus}(t), y$ and A(y/t).

3. Prove that $J(y) = C_0(t) + C_1(t)I(y) + C_2(t)I^2(y)$ with C_i 's explicit polynomials in $t, Z_{\bigoplus}(t)$ and $Z_{\bigoplus^2}(t)$.

Equation with one catalytic variable for A(y) with Z_{\oplus} and Z_{\oplus^2} !

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Polynom}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity.

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Polynom}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity.

Easier : [Bernardi – Bousquet Mélou 11] gives us access to Z_{\oplus} and Z_{\oplus^2} !

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$2t^{2}\nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y\cdot\operatorname{Polynom}\left(\nu,\frac{A(y)}{y},Z_{\oplus},Z_{\oplus^{2}},t,y\right)$$

[Bousquet-Mélou – Jehanne 06] gives algebraicity.

Easier : [Bernardi – Bousquet Mélou 11] gives us access to Z_{\oplus} and Z_{\oplus^2} ! Maple: rational parametrization !

$$t^{3} = U \frac{P_{1}(\mu, U)}{4(1 - 2U)^{2}(1 + \mu)^{3}}$$
$$ty = V \frac{P_{2}(\mu, U, V)}{(1 - 2U)(1 + \mu)^{2}(1 - V)^{2}}$$
$$t^{3}A(t, ty) = \frac{VP_{3}(\mu, U, V)}{4(1 - 2U)^{2}(1 + \mu)^{3}(1 - V)^{3}}$$

with $\nu = \frac{1+\mu}{1-\mu}$ and P_i 's explicit polynomials.

Going back to local convergence

Fix $r \geq 0$ and take Δ a *r*-hull with boundary spins $\partial \Delta$:

$$\begin{split} \mathbb{P}_{n}^{\bullet}\left(B_{r}^{\bullet}(T,\nu)=\Delta\right) &= \frac{\nu^{m(\Delta)-m(\partial\Delta)}\left[t^{3n-e(\Delta)+|\partial\Delta|}\right]Z_{\partial\Delta}^{\bullet}(\nu,t)}{[t^{3n}]Q^{\bullet}(\nu,t)}\\ & \xrightarrow[n\to\infty]{} \frac{\kappa_{\partial\Delta}}{\kappa}\rho^{|\Delta|-|\partial\Delta|}\nu^{m(\Delta)-m(\partial\Delta)}. \end{split}$$

Going back to local convergence

Fix $r \geq 0$ and take Δ a *r*-hull with boundary spins $\partial \Delta$:

$$\begin{split} \mathbb{P}_{n}^{\bullet}\left(B_{r}^{\bullet}(T,\nu)=\Delta\right) &= \frac{\nu^{m(\Delta)-m(\partial\Delta)}\left[t^{3n-e(\Delta)+|\partial\Delta|}\right]Z_{\partial\Delta}^{\bullet}(\nu,t)}{[t^{3n}]Q^{\bullet}(\nu,t)} \\ & \xrightarrow[n\to\infty]{} \frac{\kappa_{\partial\Delta}}{\kappa}\rho^{|\Delta|-|\partial\Delta|}\nu^{m(\Delta)-m(\partial\Delta)}. \end{split}$$

Need to prove, for every r :

$$\sum_{r-\text{hulls }\Delta} \frac{\kappa_{\partial \Delta}}{\kappa} \rho^{|\Delta| - |\partial \Delta|} \nu^{m(\Delta) - m(\partial \Delta)} = 1$$

Going back to local convergence

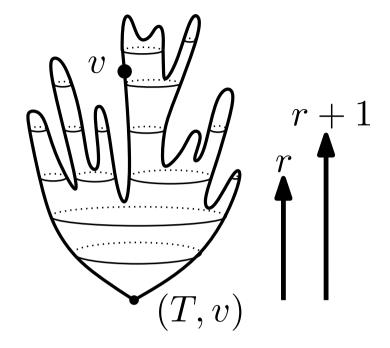
Fix $r \geq 0$ and take Δ a *r*-hull with boundary spins $\partial \Delta$:

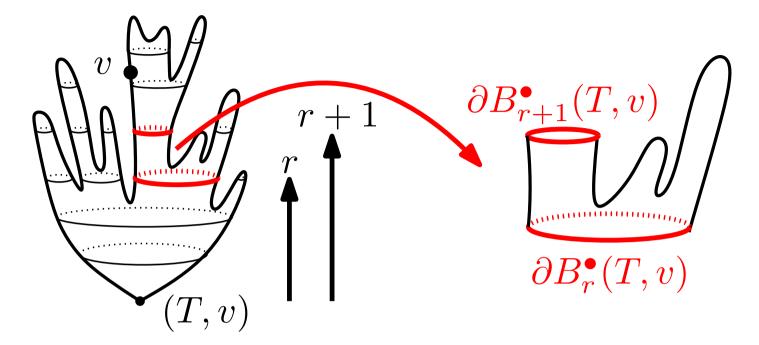
$$\begin{split} \mathbb{P}_{n}^{\bullet}\left(B_{r}^{\bullet}(T,\nu)=\Delta\right) &= \frac{\nu^{m(\Delta)-m(\partial\Delta)}\left[t^{3n-e(\Delta)+|\partial\Delta|}\right]Z_{\partial\Delta}^{\bullet}(\nu,t)}{[t^{3n}]Q^{\bullet}(\nu,t)} \\ & \xrightarrow[n\to\infty]{} \frac{\kappa_{\partial\Delta}}{\kappa}\rho^{|\Delta|-|\partial\Delta|}\nu^{m(\Delta)-m(\partial\Delta)}. \end{split}$$

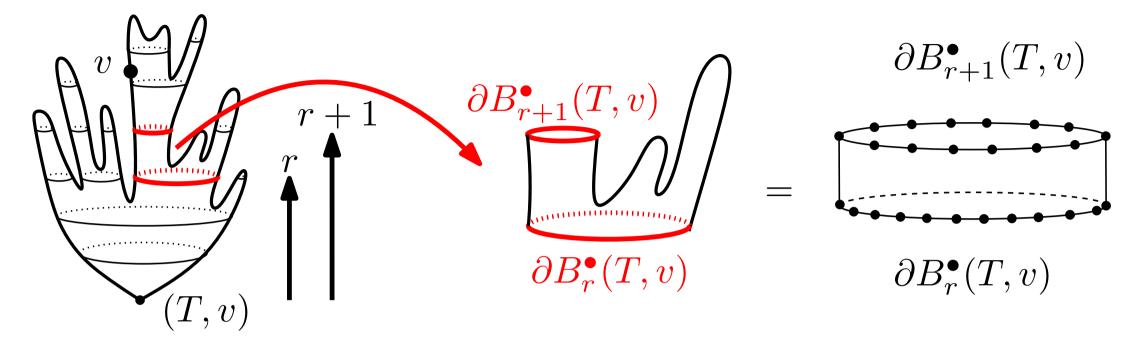
Need to prove, for every r :

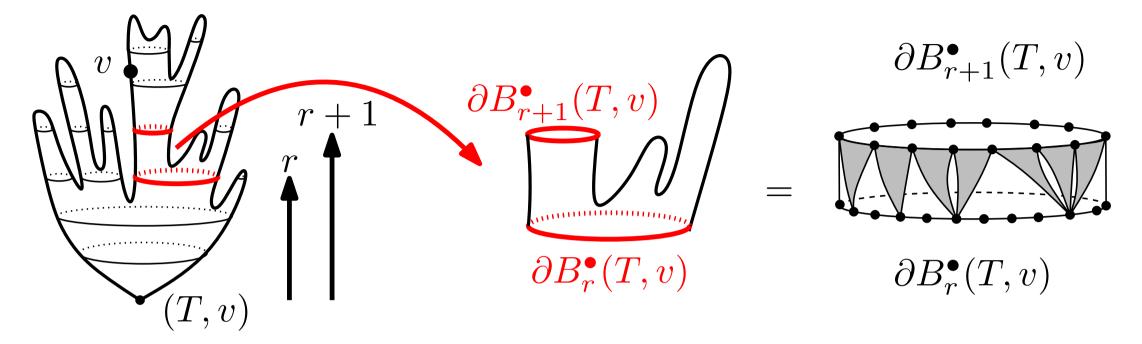
$$\sum_{r-\text{hulls }\Delta} \frac{\kappa_{\partial \Delta}}{\kappa} \rho^{|\Delta| - |\partial \Delta|} \nu^{m(\Delta) - m(\partial \Delta)} = 1$$

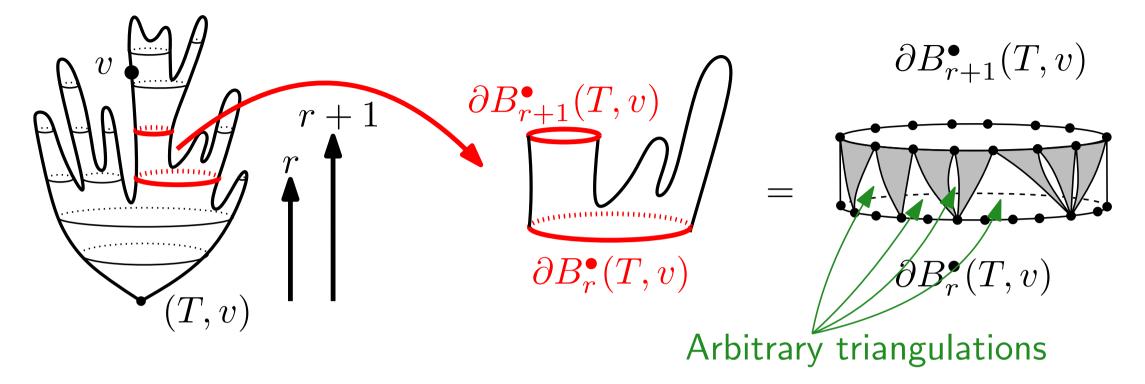
Easy for r = 0 and nested hulls : by induction !

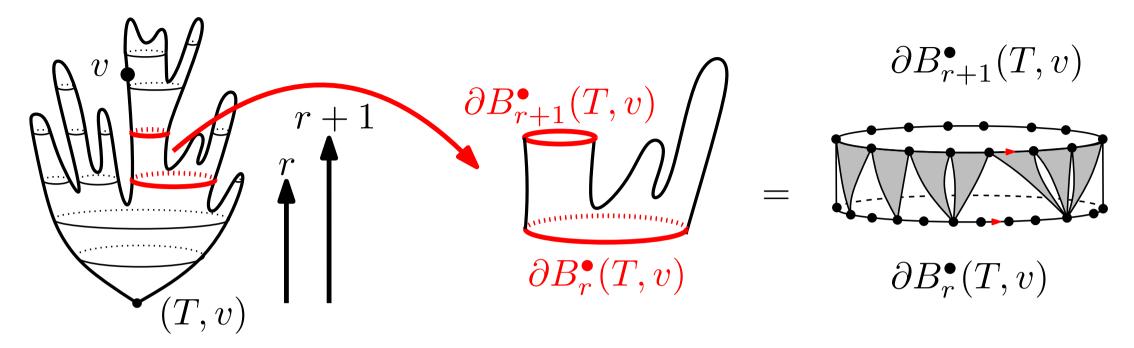




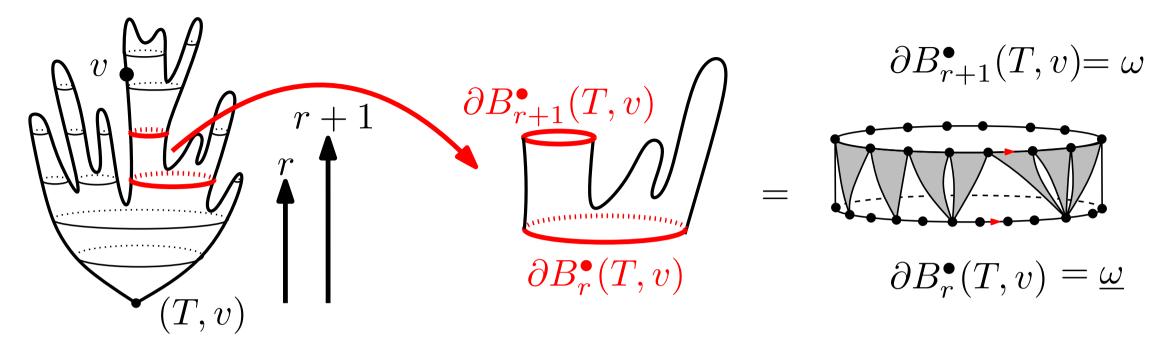








Fix r and a word ω , we want : $\sum_{\substack{r+1-\text{hulls }\Delta\\\text{s.t. }\partial\Delta=\omega}} \frac{\kappa_{\omega}}{\kappa} \rho_c^{|\Delta|-|\omega|} \nu^{m(\Delta)-m(\omega)} = 1$



Fix r and a word ω , we want : $\sum_{\substack{r+1-\text{hulls }\Delta\\\text{s.t. }\partial\Delta=\omega}} \frac{\kappa_{\omega}}{\kappa} \rho_c^{|\Delta|-|\omega|} \nu^{m(\Delta)-m(\omega)} = 1$

$$= \sum_{\underline{\omega}} \frac{\kappa_{\omega}}{\kappa} Z_{\mathcal{L}_{\underline{\omega},\omega}}(\rho_c,\nu) \rho_c^{-|\omega|} \nu^{-m(\omega)} \sum_{\substack{r-\text{hulls } \underline{\Delta} \\ \text{s.t. } \partial \underline{\Delta} = \underline{\omega}}} \rho_c^{|\underline{\Delta}| - |\underline{\omega}|} \nu^{m(\underline{\Delta}) - m(\underline{\omega})}$$

where $Z_{\mathcal{L}_{\underline{\omega},\omega}}$ is the generating series of layers with boundary conditions given by ω and $\underline{\omega}$.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end *a.s.*

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end *a.s.*
- A spatial Markov property.
- Some links with Boltzmann triangulations.

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end *a.s.*
- A spatial Markov property.
- Some links with Boltzmann triangulations.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end *a.s.*
- A spatial Markov property.
- Some links with Boltzmann triangulations.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?
- At least volume growth $\neq 4$ at ν_c ?

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end *a.s.*
- A spatial Markov property.
- Some links with Boltzmann triangulations.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?
- At least volume growth $\neq 4$ at ν_c ?

Thank you for your attention!