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Planar Maps as discrete planar metric spaces

Definition:
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

faces: connected components of the
complement of edges

p-angulation: each face is bounded by p edges

This is a triangulation
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Definition:
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

M Planar Map: • V (M) := set of vertices of M
• dgr := graph distance on V (M)
• (V (M), dgr) is a (finite) metric space

In blue, distances from

0
1

1

1
1

1

1

1

2



Planar Maps as discrete planar metric spaces

Definition:
A planar map is a proper embedding of a finite connected graph into
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M Planar Map: • V (M) := set of vertices of M
• dgr := graph distance on V (M)
• (V (M), dgr) is a (finite) metric space

In blue, distances from

0
1

1

1
1

1

1

1

2

Rooted map: mark an oriented edge of the map
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Take a triangulation with n edges uniformly at random. What
does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Global :
Rescale distances to keep diameter bounded

[Le Gall 13, Miermont 13] :
converges to the Brownian map

• Gromov-Hausdorff topology
• Continuous metric space
• Homeomorphic to the sphere
• Hausdorff dimension 4
• Universality
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”Classical” large random triangulations

Take a triangulation with n edges uniformly at random. What
does it look like if n is large ?

Two points of view : global/local, continuous/discrete

Local :
Don’t rescale distances and look at
neighborhoods of the root

[Angel – Schramm 03, Krikun 05] :
Converges to the Uniform Infinite Planar
Triangulation

• Local topology
• Metric balls of radius R grow like R4

• ”Universality” of the exponent 4.



Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?



Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

G = (V,E) finite graph
Spin configuration on G:

σ : V → {−1,+1}.

− +

+
−

−

−



Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

G = (V,E) finite graph
Spin configuration on G:

σ : V → {−1,+1}.

− +

+
−

−

−
Ising model on G: take a random
spin configuration with probability

P (σ) ∝ e−
β
2

∑
v∼v′ 1{σ(v) 6=σ(v′)}

β > 0: inverse temperature.



Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:

G = (V,E) finite graph
Spin configuration on G:

σ : V → {−1,+1}.

− +

+
−

−

−
Ising model on G: take a random
spin configuration with probability

P (σ) ∝ e−
β
2

∑
v∼v′ 1{σ(v) 6=σ(v′)}

β > 0: inverse temperature.

Combinatorial formulation: P (σ) ∝ νm(σ)

with m(σ) = number of monochromatic edges and ν = eβ .

m(σ) = 4m(σ) = 4
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Adding matter: Ising model on triangulations

Tn = {rooted planar triangulations with 3n edges}.

where Q(ν, t) = generating series of Ising-weighted triangulations:

Q(ν, t) =
∑
T∈Tf

∑
σ:V (T )→{−1,+1}

νm(T,σ)te(T ).

Random triangulation with spins in Tn with probability ∝ νm(T,σ) ?

Pνn
(
{(T, σ)}

)
=

νm(T,σ)

[t3n]Q(ν, t)
.

Theorem [A. – Ménard – Schaeffer]
As n→∞, the sequence Pνn converges weakly to a probability measure
Pν for the local topology.
The measure Pν is supported on infinite triangulations with one end.



Adding matter: New asymptotic behavior

Counting exponent for undecorated maps:
coeff [tn] of generating series of (undecorated) maps
(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
∼ κρ−nn−5/2

Note : κ and ρ depend on the combinatorics of the model.



Adding matter: New asymptotic behavior

Theorem [Bernardi – Bousquet-Mélou 11]
For every ν the series Q(ν, t) is algebraic, has ρν > 0 as unique
dominant singularity and satisfies

[t3n]Q(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc = 1 + 1√

7
,

κ ρ−nν n−5/2 if ν 6= νc.

This suggests an unusual behavior of the underlying maps for ν = νc.
See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03]
and [Bouttier – Di Francesco – Guitter 04].

Counting exponent for undecorated maps:
coeff [tn] of generating series of (undecorated) maps
(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
∼ κρ−nn−5/2

Note : κ and ρ depend on the combinatorics of the model.
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Central charge :

α =
25− c+

√
(1− c)(25− c)
12



Adding matter: Watabiki’s (controversial?) predictions

Counting exponent :
coeff [tn] of generating series of (decorated) maps ∼ κρ−nn−α

Central charge :

α =
25− c+

√
(1− c)(25− c)
12

Hausdorff dimension : [Watabiki 93]

DH = 2

√
25− c+

√
49− c√

25− c+
√

1− c

• α = 5/2 gives DH = 4

• α = 7/3 gives DH = 7+
√

97
4 ≈ 4.21
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Local convergence of triangulations with spins

Pνn
(
{(T, σ)}

)
=

νm(T,σ)

[t3n]Q(ν, t)
.

Probability measure on triangulations of Tn with a spin configuration:

Theorem [A. – Ménard – Schaeffer]
As n→∞, the sequence Pνn converges weakly to a
probability measure Pν for the local topology.
The measure Pν is supported on infinite triangulations
with one end.



Local topology

Tf := {finite rooted planar triangulations with spins}.

Definition:
The local topology on Tf is induced by the distance:

r

T Br(T )

where Br(T ) is the submap (with
spins) of T composed by the faces
of T with a vertex at distance < r
from the root.

dloc(T, T
′) := (1 + max{r ≥ 0 : Br(T ) = Br(T

′)})−1



Local topology

Tf := {finite rooted planar triangulations with spins}.

Definition:
The local topology on Tf is induced by the distance:

• (T , dloc): closure of (Tf , dloc). It is a Polish space.

• T∞ := T \ Tf set of infinite planar triangulations with spins.

r

T Br(T )

where Br(T ) is the submap (with
spins) of T composed by the faces
of T with a vertex at distance < r
from the root.

dloc(T, T
′) := (1 + max{r ≥ 0 : Br(T ) = Br(T

′)})−1



Weak convergence for the local topology

Portemanteau theorem + Levy – Prokhorov metric:
To show that Pνn converges weakly to Pν , prove
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{(T, v) ∈ Tn : Br(T, v) = ∆}

)
−→
n→∞
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(
{T ∈ T∞ : Br(T ) = ∆}

)
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1. For every r > 0 and every possible ball ∆, show:
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Weak convergence for the local topology

Portemanteau theorem + Levy – Prokhorov metric:
To show that Pνn converges weakly to Pν , prove

Pνn
(
{(T, v) ∈ Tn : Br(T, v) = ∆}

)
−→
n→∞

Pν
(
{T ∈ T∞ : Br(T ) = ∆}

)
.

2. No loss of mass at the limit:
the measure Pν defined by the limits in 1. is a probability measure.

degree n

1. For every r > 0 and every possible ball ∆, show:

Problem: the space (T , dloc) or
(T , d•loc) is not compact! Ex:

∀r ≥ 0,
∑

r−balls∆

Pν
(
{T ∈ T∞ : Br(T ) = ∆}

)
= 1.



Local topology: Hulls
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∂Br(T )

Balls Br(T ) not practical (multiple holes). Take hulls instead:

Br(T ) :=
everything not in the largest connected
component of T \Br(T )



Local topology: Hulls

Balls Br(T ) not practical (multiple holes). Take hulls instead:

Br(T ) :=

T

Problem: Hulls are not nested !

r1

Br1(T )

r2

Br2(T )

everything not in the largest connected
component of T \Br(T )



Local topology: Pointed hulls

B•r (T, v) =


(T, v) if v ∈ Br(T );

Br(T ) and the connected components

of T \Br(T ) that do not contain v
if v /∈ Br(T ).

r

(T, v) Br(T, v) B•r (T, v)

∂B•r (T, v)

For (T, v) ∈ T •f := { finite rooted triangulations with pointed vertex }:

v



Local topology: Pointed hulls

B•r (T, v) =


(T, v) if v ∈ Br(T );

Br(T ) and the connected components

of T \Br(T ) that do not contain v
if v /∈ Br(T ).

r

(T, v) Br(T, v) B•r (T, v)

∂B•r (T, v)

For (T, v) ∈ T •f := { finite rooted triangulations with pointed vertex }:

v

Convergence for d•loc ⇒ convergence for dloc with the same limit.
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P•n ∆ ???
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Local convergence and generating series

Theorem [A. – Ménard – Schaeffer]
For every ω, the series t|ω|Zω(ν, t) is algebraic, has ρν as unique
dominant singularity and satisfies

Need to evaluate, for every possible hull ∆

P•n ∆ ???

( )

Simple (rooted) cycle,
spins given by a word ω

=
νm(∆)−m(ω) [t3n−e(∆)+|ω|]Z•ω(ν, t)

[t3n]Q•(ν, t)

Generating series of triangulations
with simple boundary ω

[t3n]t|ω|Zω(ν, t) ∼
n→∞

{
κω(νc) ρ

−n
νc n−7/3 if ν = νc = 1 + 1√

7
,

κω(ν) ρ−nν n−5/2 if ν 6= νc.



Triangulations with simple boundary

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.



Triangulations with simple boundary

= +
∑
a

a

|ω| ≤ 3, Zω

(
Z⊕ω + Z	ω +

∑
ω=ω1aω2

Zaω1
·Zaω2

)
= × ν1←−ω=−→ω t

Peeling equation :

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.



Triangulations with simple boundary

= +
∑
a

a

|ω| ≤ 3, Zω

(
Z⊕ω + Z	ω +

∑
ω=ω1aω2

Zaω1
·Zaω2

)
= × ν1←−ω=−→ω t

Peeling equation :

Double recursion on |ω| and number of 	’s :
enough to prove 1. and 2. for the tpZ⊕p ’s

To get exact asymptotics we need, as series in t3,

1. algebraicity,
2. no other dominant singularity than ρν .

Fix a word ω, with injections from and into triangulations of the sphere:

[t3n]t|ω|Zω = Θ
(
ρ−nν n−α

)
, with α = 5/2 of 7/3 depending on ν.
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Positive boundary conditions : two catalytic variables

= +
∑

Peeling equation at interface 	–⊕ :

= +
∑

A(x) :=
∑
p≥1

Z⊕px
p =

+

νtx2+ +
νt

x
(A(x))2

S(x, y) :=
∑
p,q≥1

Z⊕p	qx
pyq

+

νt

x

(
A(x)−xZ⊕

)
+νt [y]S(x, y)

= txy+
t

x

(
S(x, y)−x[x]S(x, y)

)
+
t

y

(
S(x, y)−y[y]S(x, y)

)
+
t

x
S(x, y)A(x) +

t

y
S(x, y)A(y)



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads

K(x, y) · S(x, y) = R(x, y)

K(x, y) = 1− t

x
− t

y
− t

x
A(x)− t

y
A(y).where
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From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads

K(x, y) · S(x, y) = R(x, y)

K(x, y) = 1− t

x
− t

y
− t

x
A(x)− t

y
A(y).where

1. Find two series Y1 and Y2 in Q(x)[[t]] such that K(x, Yi/t) = 0.

It gives 1
Y1

(A(Y1/t) + 1) = 1
Y2

(A(Y2/t) + 1).

I(y) := 1
y (A(y/t) + 1) is called an invariant.

2. Work a bit with the help of R(x, Yi/t) = 0 to get a second invariant
J(y) depending only on t, ν, Z⊕(t), y and A(y/t).

3. Prove that J(y) = C0(t) + C1(t)I(y) + C2(t)I2(y) with Ci’s explicit
polynomials in t, Z⊕(t) and Z⊕2(t).

Equation with one catalytic variable for A(y) with Z⊕ and Z⊕2 !



Explicit solution for positive boundary conditions

2t2ν(1− ν)

(
A(y)

y
− Z⊕

)
= y · Polynom

(
ν,
A(y)

y
, Z⊕, Z⊕2 , t, y

)Equation with one catalytic variable reads:

[Bousquet-Mélou – Jehanne 06] gives algebraicity.
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Explicit solution for positive boundary conditions

2t2ν(1− ν)

(
A(y)

y
− Z⊕

)
= y · Polynom

(
ν,
A(y)

y
, Z⊕, Z⊕2 , t, y

)Equation with one catalytic variable reads:

[Bousquet-Mélou – Jehanne 06] gives algebraicity.

Easier : [Bernardi – Bousquet Mélou 11] gives us access to Z⊕ and Z⊕2 !

t3 = U
P1(µ,U)

4(1− 2U)2(1 + µ)3

ty = V
P2(µ,U, V )

(1− 2U)(1 + µ)2(1− V )2

t3A(t, ty) =
V P3(µ,U, V )

4(1− 2U)2(1 + µ)3(1− V )3

Maple: rational parametrization !

with ν = 1+µ
1−µ and

Pi’s explicit polynomials.



Going back to local convergence

P•n (B•r (T, v) = ∆) =
νm(∆)−m(∂∆) [t3n−e(∆)+|∂∆|]Z•∂∆(ν, t)

[t3n]Q•(ν, t)

→
n→∞

κ∂∆
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ρ|∆|−|∂∆|νm(∆)−m(∂∆).

Fix r ≥ 0 and take ∆ a r-hull with boundary spins ∂∆:
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Going back to local convergence

P•n (B•r (T, v) = ∆) =
νm(∆)−m(∂∆) [t3n−e(∆)+|∂∆|]Z•∂∆(ν, t)

[t3n]Q•(ν, t)

→
n→∞

κ∂∆

κ
ρ|∆|−|∂∆|νm(∆)−m(∂∆).

Need to prove, for every r :∑
r−hulls∆

κ∂∆

κ
ρ|∆|−|∂∆|νm(∆)−m(∂∆) = 1

Fix r ≥ 0 and take ∆ a r-hull with boundary spins ∂∆:

Easy for r = 0 and nested hulls : by induction !
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Fix r and a word ω, we want :
∑

r+1−hulls∆
s.t. ∂∆=ω

κω
κ
ρ|∆|−|ω|c νm(∆)−m(ω) = 1

=
∑
ω

κω
κ
ZLω,ω (ρc, ν)ρ−|ω|c ν−m(ω)

∑
r−hulls∆
s.t. ∂∆=ω

ρ|∆|−|ω|c νm(∆)−m(ω)

where ZLω,ω is the generating series of layers with boundary
conditions given by ω and ω.

= ω

= ω
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What we would like to know:

• Singularity with respect to the UIPT?
• Volume growth?
• At least volume growth 6= 4 at νc?

• A spatial Markov property.
• Some links with Boltzmann triangulations.

Thank you for your attention!


