Combinatorial and algorithmic properties of Robinson matrices

Monique Laurent

Joint work with Matteo Seminaroti

Centrum Wiskunde & Informatica (CWI), Amsterdam & Tilburg University

LAGOS 2017 - CIRM, Marseille

• The seriation problem: Robinson matrices and the spectral algorithm

• Combinatorial algorithms: links to (unit) interval (hyper)graphs

 Classical graph search: Lexicographic Breadth-First Search (Lex-BFS) & unit interval graphs

New weighted graph search: Similarity-First Search (SFS)
& Robinson matrices

Motivation: Archeology

Sequence dating

Sir William Matthew Flinders Petrie (1853-1942) Order the graves chronologically based on the stylistic and technical characteristics of objects (potteries...) found in the sites.

W.M.F. Petrie. Sequences in prehistoric remains. *Journal of the Anthropological Institute of Great Britain and Ireland*, 1899.

W.S. Robinson (1951): Order n objects (graves), given by their pairwise similarities, in such a way that similar objects (graves) are placed close to each other in the ordering.

W.S. Robinson (1951): Order n objects (graves), given by their pairwise similarities, in such a way that similar objects (graves) are placed close to each other in the ordering.

	G1	G2	G3	G4	G5		G1	G3	G5	G2	G4			
G1	/ 3	1	2	0	1	G1	(3	2	1	1	0 \			
G2	1	4	2	3	3	G3	2	4	2	2	0			
G3	2	2	4	0	2	G5	1	2	3	3	2			
G4	0	3	0	4	2	G2	1	2	3	4	3			
G5	$\setminus 1$	3	2	2	3 /	G4	0	0	2	3	4 /			
Robinsonian matrix A							Robinson matrix $\Pi A \Pi^{T}$							

W.S. Robinson (1951): Order n objects (graves), given by their pairwise similarities, in such a way that similar objects (graves) are placed close to each other in the ordering.

	G1	G2	G3	G4	G5		G1	G3	G5	G2	G4
G1	/ 3	1	2	0	1	G1	/ 3	2	1	1	0 \
G2	1	4	2	3	3	G3	2	4	2	2	0
G3	2	2	4	0	2	G5	1	2	3	3	2
G4	0	3	0	4	2	G2	1	2	3	4	3
G5	$\setminus 1$	3	2	2	3 /	G4	0	0	2	3	4 /
Robinsonian matrix A							Ro	obinso T	n mat $IA\Pi^{T}$	trix	
Theorem (Kendall 1071)											

• P is Petrie $\iff PP^T$ is Robinson.

W.S. Robinson (1951): Order n objects (graves), given by their pairwise similarities, in such a way that similar objects (graves) are placed close to each other in the ordering.

	G1	G2	G3	G4	G5		G1	G3	G5	G2	G4			
G1	/ 3	1	2	0	1 \	G1	/ 3	2	1	1	0 \			
G2	1	4	2	3	3	G3	2	4	2	2	0			
G3	2	2	4	0	2	G5	1	2	3	3	2			
G4	0	3	0	4	2	G2	1	2	3	4	3			
G5	$\setminus 1$	3	2	2	3 /	G4	0	0	2	3	4 /			
Robinsonian matrix A							Robinson matrix $\Pi A \Pi^{T}$							

Theorem (Kendall 1971)

• P is Petrie $\iff PP^T$ is Robinson.

• P has unimodal columns $\iff P \circ P^{\mathsf{T}} = (\sum_{z} \min\{P_{xz}, P_{yz}\})_{x,y}$ is Robinson.

 $A \in S^n$ is a **Robinson similarity** if its entries **increase** monotonically along rows and columns when moving toward the diagonal:

 $A_{xz} \le \min\{A_{xy}, A_{yz}\}$ $\forall \ 1 \le x < y < z \le n$

 $A \in S^n$ is a **Robinson similarity** if its entries **increase** monotonically along rows and columns when moving toward the diagonal:

 $A \in S^n$ is a **Robinsonian similarity** if there exists a permutation π such that $\Pi A \Pi^T = A^{\pi} := (A_{\pi(x),\pi(y)})_{x,y}$ is a **Robinson similarity**.

 $A \in S^n$ is a **Robinson similarity** if its entries **increase** monotonically along rows and columns when moving toward the diagonal:

 $A \in S^n$ is a **Robinsonian similarity** if there exists a permutation π such that $\Pi A \Pi^T = A^{\pi} := (A_{\pi(x),\pi(y)})_{x,y}$ is a **Robinson similarity**. Then π is called a **Robinson ordering** of A.

 $A \in S^n$ is a **Robinson similarity** if its entries **increase** monotonically along rows and columns when moving toward the diagonal:

 $A \in S^n$ is a **Robinsonian similarity** if there exists a permutation π such that $\Pi A \Pi^T = A^{\pi} := (A_{\pi(x),\pi(y)})_{x,y}$ is a **Robinson similarity**. Then π is called a **Robinson ordering** of A.

The seriation problem: Find such a Robinson ordering π (if it exists).

 $D \in S^n$ is a **Robinson dissimilarity** if its entries **decrease** monotonically along rows and columns when moving toward the diagonal:

 $D_{xz} \ge \max\{D_{xy}, D_{yz}\}$ $\forall \ 1 \le x < y < z \le n$

 $D \in S^n$ is a **Robinson dissimilarity** if its entries **decrease** monotonically along rows and columns when moving toward the diagonal:

 $D \in S^n$ is a **Robinsonian dissimilarity** if there exists a permutation π such that $D^{\pi} := (D_{\pi(x),\pi(y)})_{x,y}$ is a **Robinson dissimilarity**, that is: A = -D is a Robinsonian similarity.

Given $A \in S^n$, find a permutation π (Robinson ordering) for which A^{π} is Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking, combinatorial data analysis, etc.

Given $A \in S^n$, find a permutation π (Robinson ordering) for which A^{π} is Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking, combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

$$QAP(A, D) \qquad \min_{\pi} \sum_{x,y=1}^{n} A_{xy} D_{\pi(x)\pi(y)}.$$

• With
$$D = ((x - y)^2)$$

Given $A \in S^n$, find a permutation π (Robinson ordering) for which A^{π} is Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking, combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

$$QAP(A, D) \qquad \min_{\pi} \sum_{x,y=1}^{n} A_{xy} D_{\pi(x)\pi(y)}.$$

• With $D = ((x - y)^2) \rightsquigarrow$ 2-SUM problem, NP-hard for general A [George-Pothen 97]

Given $A \in S^n$, find a permutation π (Robinson ordering) for which A^{π} is Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking, combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

$$QAP(A, D) \qquad \min_{\pi} \sum_{x,y=1}^{n} A_{xy} D_{\pi(x)\pi(y)}.$$

• With $D = ((x - y)^2) \rightsquigarrow$ 2-SUM problem, NP-hard for general A [George-Pothen 97]

• Motivates the spectral algorithm of [Atkins-Boman-Hendrickson 98]

Given $A \in S^n$, find a permutation π (Robinson ordering) for which A^{π} is Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking, combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

$$QAP(A,D) \qquad \min_{\pi} \sum_{x,y=1}^{n} A_{xy} D_{\pi(x)\pi(y)}.$$

• With $D = ((x - y)^2) \rightsquigarrow$ 2-SUM problem, NP-hard for general A [George-Pothen 97]

- Motivates the spectral algorithm of [Atkins-Boman-Hendrickson 98]
- Note D is a Robinson dissimilarity & Toeplitz $\sim \mathsf{QAP}(A,D)$ is poly-time solvable if A is a Robinsonian similarity

Theorem (L-Seminaroti 2015)

1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or D is Toeplitz, then the identity permutation solves QAP(A, D) at optimality.

Theorem (L-Seminaroti 2015)

- 1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or D is Toeplitz, then the identity permutation solves QAP(A, D) at optimality.
- 2. If π is a Robinson (similarity) ordering of A, σ is a Robinson (dissimilarity) ordering of D, and A^{π} or D^{σ} is Toeplitz, then $\sigma^{-1}\pi$ solves QAP(A, D) at optimality.

Theorem (L-Seminaroti 2015)

- 1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or D is Toeplitz, then the identity permutation solves QAP(A, D) at optimality.
- 2. If π is a Robinson (similarity) ordering of A, σ is a Robinson (dissimilarity) ordering of D, and A^{π} or D^{σ} is Toeplitz, then $\sigma^{-1}\pi$ solves QAP(A, D) at optimality.

Contains the special case when A is a block matrix:

and $D = ((x - y)^2)$

[Fogel-Jenatton-Bach-Aspremont NIPS'13]

Given $A \ge 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy}(v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_A v$

 $\begin{array}{ll} \text{Given } A \geq 0 & \text{``Relax'' 2-SUM:} & \min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2 & \text{by} \\ \\ \min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy}(v_x - v_y)^2 & = v^\mathsf{T} \underline{L}_A v & \text{s.t.} & \|v\| = 1, \ e^\mathsf{T} v = 0. \end{array}$

Given $A \ge 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy}(v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_A v$ s.t. ||v|| = 1, $e^{\mathsf{T}} v = 0$.

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Given $A \geq 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by

 $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy} (v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_{\underline{A}} v \quad \text{ s.t. } \|v\| = 1, \ e^{\mathsf{T}} v = 0.$

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix $L_A := Diag(Ae) - A$ has a monotone Fiedler vector.

Given $A \geq 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by

 $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy} (v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_A v \quad \text{ s.t. } \|v\| = 1, \ e^{\mathsf{T}} v = 0.$

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

- 1. If A is Robinson then its Laplacian matrix $L_A := Diag(Ae) A$ has a monotone Fiedler vector.
- 2. Assume A is irreducible with $\min_{i,j} A_{ij} = 0$. If A is Robinsonian then $\lambda_2(L_A) > \mathbf{0}$ and $\lambda_2(L_A)$ is simple.

Given $A \geq 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by

 $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy} (v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_A v \quad \text{ s.t. } \|v\| = 1, \ e^{\mathsf{T}} v = 0.$

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

- 1. If A is Robinson then its Laplacian matrix $L_A := Diag(Ae) A$ has a monotone Fiedler vector.
- 2. Assume A is irreducible with $\min_{i,j} A_{ij} = 0$. If A is Robinsonian then $\lambda_2(L_A) > \mathbf{0}$ and $\lambda_2(L_A)$ is simple.
- 3. If the Fiedler vector v_2 has no repeated entries, then a permutation π orders v_2 monotonically $\iff \pi$ is a Robinson ordering of A.

Given $A \geq 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by

 $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy} (v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_A v \quad \text{ s.t. } \|v\| = 1, \ e^{\mathsf{T}} v = 0.$

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

- 1. If A is Robinson then its Laplacian matrix $L_A := Diag(Ae) A$ has a monotone Fiedler vector.
- 2. Assume A is irreducible with $\min_{i,j} A_{ij} = 0$. If A is Robinsonian then $\lambda_2(L_A) > \mathbf{0}$ and $\lambda_2(L_A)$ is simple.
- 3. If the Fiedler vector v_2 has no repeated entries, then a permutation π orders v_2 monotonically $\iff \pi$ is a Robinson ordering of A.

General case: If v_2 has repeated entries, then **recurse** the algorithm on the submatrices indexed by the repeated entries.

Given $A \geq 0$: "Relax" 2-SUM: $\min_{\pi} \sum_{x,y} A_{xy}(\pi(x) - \pi(y))^2$ by

 $\min_{v \in \mathbb{R}^n} \sum_{x,y} A_{xy} (v_x - v_y)^2 = v^{\mathsf{T}} \underline{L}_{A} v \quad \text{ s.t. } \|v\| = 1, \ e^{\mathsf{T}} v = 0.$

 \sim Fiedler value: $\lambda_2(L_A)$, whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

- 1. If A is Robinson then its Laplacian matrix $L_A := Diag(Ae) A$ has a monotone Fiedler vector.
- 2. Assume A is irreducible with $\min_{i,j} A_{ij} = 0$. If A is Robinsonian then $\lambda_2(L_A) > \mathbf{0}$ and $\lambda_2(L_A)$ is simple.
- 3. If the Fiedler vector v_2 has no repeated entries, then a permutation π orders v_2 monotonically $\iff \pi$ is a Robinson ordering of A.

General case: If v_2 has repeated entries, then **recurse** the algorithm on the submatrices indexed by the repeated entries.

Can encode **all** Robinson orderings of A using PQ-trees.

Combinatorial algorithms Interval (hyper)graphs

Unit interval graphs

Links to interval (hyper)graphs

For a similarity $A \in S^n$, a **ball** is any set $B(x, \delta) = \{y \in [n], A_{xy} \ge \delta\}$. \mathcal{B} : set of all balls; V = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

- 1. A is a Robinsonian similarity
- 2. the ball hypergraph $\mathcal{H} = (V, \mathcal{B})$ is an interval hypergraph: its vertices/hyperedges incidence matrix has C1P

Links to interval (hyper)graphs

For a similarity $A \in S^n$, a **ball** is any set $B(x, \delta) = \{y \in [n], A_{xy} \ge \delta\}$. \mathcal{B} : set of all balls; V = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

- 1. A is a Robinsonian similarity
- 2. the ball hypergraph $\mathcal{H} = (V, \mathcal{B})$ is an interval hypergraph: its vertices/hyperedges incidence matrix has C1P
- the intersection graph of B is an interval graph ⇐→ its max.cliques/vertices incidence matrix has C1P [Fulkerson-Gross 65]

Links to interval (hyper)graphs

For a similarity $A \in S^n$, a **ball** is any set $B(x, \delta) = \{y \in [n], A_{xy} \ge \delta\}$. \mathcal{B} : set of all balls; V = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

- 1. A is a Robinsonian similarity
- 2. the ball hypergraph $\mathcal{H} = (V, \mathcal{B})$ is an interval hypergraph: its vertices/hyperedges incidence matrix has C1P
- the intersection graph of B is an interval graph ⇐⇒ its max.cliques/vertices incidence matrix has C1P [Fulkerson-Gross 65]

Can test whether $M \in \{0,1\}^{p \times q}$ with m ones has C1P in O(p+q+m)using PQ-trees. [Booth-Lueker 76]
Existing recognition algorithms for Robinsonian matrices

	Year	Complexity	Subroutine	Paradigm
Mirkin & Rodin	1984	$O(n^4)$	PQ-trees	interval hypergraphs
Chepoi & Fichet	1997	$O(n^3)$	PQ-trees	interval hypergraphs
Préa & Fortin	2014	$O(n^2)$	PQ-trees	interval graphs
Atkins et al.	1998	$O(n(T(n) + n\log n))$	eigenvalues	Fiedler vector
Laurent & Seminaroti	2015	O(L(m+n))	Lex-BFS	unit interval graphs
Laurent & Seminaroti	2017	$O(n^2 + mn\log n)$	SFS	new weighted graph search

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.

Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

 $A \in \{0,1\}^{n \times n}$ is a Robinsonian similarity if and only if A is the adjacency matrix of a unit interval graph G.

G is a unit interval graph if $\ \exists$ unit intervals I_1,\ldots,I_n in $\mathbb R$ such that

 $\{x,y\} \in E \quad \Longleftrightarrow \quad I_x \cap I_y \neq \emptyset.$

Fact (Roberts 1969)

 $A \in \{0,1\}^{n \times n}$ is a Robinsonian similarity if and only if A is the adjacency matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a **unit interval graph** if and only if there exists a linear order π of the vertices satisfying the **3-point condition**:

$$\{x,z\} \in E \quad \Longrightarrow \quad \{x,y\}, \{y,z\} \in E \quad \text{if} \ x <_{\pi} y <_{\pi} z$$

Fact (Roberts 1969)

 $A \in \{0,1\}^{n \times n}$ is a Robinsonian similarity if and only if A is the adjacency matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a **unit interval graph** if and only if there exists a linear order π of the vertices satisfying the **3-point condition**:

$$\{x,z\}\in E \quad \Longrightarrow \quad \{x,y\}, \{y,z\}\in E \quad \text{if} \ x<_\pi y<_\pi z$$

Recall the Robinson (similarity) property:

Fact (Roberts 1969)

 $A \in \{0,1\}^{n \times n}$ is a Robinsonian similarity if and only if A is the adjacency matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a **unit interval graph** if and only if there exists a linear order π of the vertices satisfying the **3-point condition**:

$$\{x,z\}\in E \quad \Longrightarrow \quad \{x,y\}, \{y,z\}\in E \quad \text{if} \ x<_\pi y<_\pi z$$

Recall the Robinson (similarity) property:

Theorem (Corneil 2004)

One can recognize unit interval graphs in O(|V| + |E|) using Lex-BFS.

Graph search: Lex-BFS

Q:	1	2	3	4	5	6

Given a graph G = (V, E):

Q:	1	2	3	4	5	6

Given a graph G = (V, E):

visited vertices

2:	2	3	4	5	6
2:	Ζ	3	4	9	0

Given a graph G = (V, E):

visited vertices

~	
()	٠
Sec.	•

|--|

Given a graph G = (V, E):

visited vertices

Given a graph G = (V, E):

visited vertices

Given a graph G = (V, E):

visited vertices

unvisited vertices (stored in a queue Q) pivot

Q: 4 5 6

Given a graph G = (V, E):

visited vertices

unvisited vertices (stored in a queue Q) pivot

Q: 4 5 6

Given a graph G = (V, E):

visited vertices

Given a graph G = (V, E):

visited vertices

Given a graph G = (V, E):

visited vertices

Given a graph G = (V, E):

visited vertices

Different queue updates lead to different graph search algorithms:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Lexicographic Breadth-First Search (Lex-BFS)

Let N(p) denote the neighborhood of the current pivot p.

Lex-BFS₊: Order the vertices in each block according to a given order τ

Lex-BFS₊: Order the vertices in each block according to a given order τ **Lex-BFS runs in time** O(|V| + |E|) [Rose-Tarjan'75, Habib et al.'00]

 $\tau = (1, 2, 3, 4, 5, 6)$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

 $\tau = (1, 2, 3, 4, 5, 6)$

 $\tau = (1, 2, 3, 4, 5, 6)$

 $\tau = (1, 2, 3, 4, 5, 6)$

The Lex-BFS_+ ordering is $\sigma=(1,2,3,5,4,6)$

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

1. $\sigma = \text{Lex-BFS}(G)$

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

1.
$$\sigma = \text{Lex-BFS}(G)$$

2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

1. $\sigma = \text{Lex-BFS}(G)$ 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$ 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π
- 5. else return "G is not a unit interval graph"

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π
- 5. else return "G is not a unit interval graph"

Hence: In time O(|V| + |E|), return a Robinson ordering of A_G or state A_G is not Robinsonian.

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π
- 5. else return "G is not a unit interval graph"

Hence: In time O(|V| + |E|), return a Robinson ordering of A_G or state A_G is not Robinsonian.

What about general matrices A?
Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π
- 5. else return "G is not a unit interval graph"

Hence: In time O(|V| + |E|), return a Robinson ordering of A_G or state A_G is not Robinsonian.

What about general matrices A?

Option 1: Use Lex-BFS for the 'level graphs' of A. [L-Seminaroti'15]

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).

Output: an ordering π of V satisfying the 3-point condition, or stating that G is not a unit interval graph.

- 1. $\sigma = \text{Lex-BFS}(G)$
- 2. $\sigma_+ = \text{Lex-BFS}_+(G, \sigma^{-1})$
- 3. $\pi = \text{Lex-BFS}_+(G, \sigma_+^{-1})$
- 4. if π satisfies 3-vertex condition return π
- 5. else return "G is not a unit interval graph"

Hence: In time O(|V| + |E|), return a Robinson ordering of A_G or state A_G is not Robinsonian.

What about general matrices A?

Option 1: Use Lex-BFS for the 'level graphs' of *A*. [L-Seminaroti'15] **Option 2:** Generalize Lex-BFS to weighted graphs: **SFS**.

Recognizing Robinsonian matrices with Lex-BFS

Lemma

Consider $A \in S^n$ taking values $\alpha_0 = 0 < \alpha_1 < \alpha_2 < \ldots < \alpha_L$.

A is Robinson \iff A is a conic combination of 0/1 Robinson matrices:

$$A = \sum_{l=1}^{L} (\alpha_l - \alpha_{l-1}) A_{G_l},$$

where graph G_l has edges $\{x, y\}$ with $A_{xy} \ge \alpha_l$.

Algorithm (rough sketch):

- 1. Find the level graphs G_1, \ldots, G_L of A.
- Find an ordering π of V which satisfies the 3-point condition for all graphs G_l (l = 1,...,L). Then π is a Robinson ordering of A. If none exists, then A is not Robinsonian.

 \sim algorithm in O(L(n+m))

[L-Seminaroti 2015]

Weighted graph search: Similarity-First Search (SFS)

SFS runs in $O(n + m \log n)$ if A has m nonzero entries. [L-Seminaroti 17]

 $\tau = (1, 2, 3, 4, 5, 6)$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

 $\tau = (1, 2, 3, 4, 5, 6)$

 $\tau = (1, 2, 3, 4, 5, 6)$

1 3 2	6 5 4
---------	-------

 $\tau = (1, 2, 3, 4, 5, 6)$

The ${\rm SFS}_+$ ordering is $\sigma=(1,3,2,6,5,4)$

SFS and Robinson matrices

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1. $\sigma_0 = SFS(A)$

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \text{SFS}(A)$$

2. for $i = 1, ..., n - 2$

5. end

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \mathsf{SFS}(A)$$

2. for $i = 1, \dots, n-2$
3. $\sigma_i = \mathsf{SFS}_+(A, \sigma_{i-1}^{-1})$

5. end

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \text{SFS}(A)$$

2. for $i = 1, ..., n -$

3.
$$\sigma_i = \mathsf{SFS}_+(A, \sigma_{i-1}^{-1})$$

4. if σ_i is a Robinson ordering **return** $\pi = \sigma_i$

 $\mathbf{2}$

5. end

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \mathsf{SFS}(A)$$

2. for
$$i = 1, \ldots, n-2$$

3.
$$\sigma_i = \mathsf{SFS}_+(A, \sigma_{i-1}^{-1})$$

- 4. if σ_i is a Robinson ordering **return** $\pi = \sigma_i$
- 5. end
- 6. return "A is not Robinsonian"

Theorem (L-Seminaroti 2017)

Let $A \in S^n$ be nonnegative with m nonzero entries. Then:

1. $A \in S^n$ is Robinsonian $\iff \sigma_{n-2}$ is a Robinson ordering.

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \mathsf{SFS}(A)$$

2. for
$$i = 1, \ldots, n-2$$

3.
$$\sigma_i = \mathsf{SFS}_+(A, \sigma_{i-1}^{-1})$$

- 4. if σ_i is a Robinson ordering **return** $\pi = \sigma_i$
- 5. end
- 6. return "A is not Robinsonian"

Theorem (L-Seminaroti 2017)

Let $A \in S^n$ be nonnegative with m nonzero entries. Then:

- 1. $A \in S^n$ is Robinsonian $\iff \sigma_{n-2}$ is a Robinson ordering.
- 2. The multisweep recognition algorithm runs in $O(n^2 + mn \log n)$ time.

Input: a nonnegative matrix $A \in S^n$

Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1.
$$\sigma_0 = \mathsf{SFS}(A)$$

2. for
$$i = 1, \ldots, n-2$$

3.
$$\sigma_i = \mathsf{SFS}_+(A, \sigma_{i-1}^{-1})$$

- 4. if σ_i is a Robinson ordering **return** $\pi = \sigma_i$
- 5. end
- 6. return "A is not Robinsonian"

Theorem (L-Seminaroti 2017)

Let $A \in S^n$ be nonnegative with m nonzero entries. Then:

- 1. $A \in S^n$ is Robinsonian $\iff \sigma_{n-2}$ is a Robinson ordering.
- 2. The multisweep recognition algorithm runs in $O(n^2 + mn \log n)$ time.
- 3. Simpler test at line 4: Check whether $\sigma_i = \sigma_{i-1}^{-1}$. If **YES** then: if σ_i is Robinson then A is Robinsonian; else A is not Robinsonian.

• $a \in V$ is an **anchor** of A if there exists a Robinson ordering π of A starting (or ending) at a

 π : **a** a_1 a_2 \cdots b_2 b_1 b

- *a* ∈ V is an anchor of A if there exists a Robinson ordering π of A starting (or ending) at *a*
- a, b ∈ V are opposite anchors of A if there exists a Robinson ordering π of A starting at a and ending at b

 π : **a** a_1 a_2 \cdots b_2 b_1 **b**

- *a* ∈ V is an anchor of A if there exists a Robinson ordering π of A starting (or ending) at *a*
- *a*, *b* ∈ *V* are **opposite anchors** of *A* if there exists a Robinson ordering *π* of *A* starting at *a* and ending at *b*
 - $\sigma: a \quad a_1 \quad a_2 \quad \cdots \quad b_2 \quad b_1 \quad b$

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and $\sigma = SFS(A)$ has last vertex b.

1. b is an anchor of A.

(In fact any anchor arises as end vertex of some SFS ordering of A.)

- *a* ∈ V is an anchor of A if there exists a Robinson ordering π of A starting (or ending) at *a*
- *a*, *b* ∈ *V* are **opposite anchors** of *A* if there exists a Robinson ordering *π* of *A* starting at *a* and ending at *b*

 $\sigma: a \quad a_1 \quad a_2 \quad \cdots \quad b_2 \quad b_1 \quad b$

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and $\sigma = SFS(A)$ has last vertex b.

1. b is an anchor of A.

(In fact any anchor arises as end vertex of some SFS ordering of A.)

2. If the **first vertex** a in σ is an anchor of A, then a, b are opposite anchors of A.

- *a* ∈ V is an anchor of A if there exists a Robinson ordering π of A starting (or ending) at *a*
- *a*, *b* ∈ *V* are **opposite anchors** of *A* if there exists a Robinson ordering *π* of *A* starting at *a* and ending at *b*

 $\sigma: a \quad a_1 \quad a_2 \quad \cdots \quad b_2 \quad b_1 \quad b$

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and $\sigma = SFS(A)$ has last vertex b.

1. b is an anchor of A.

(In fact any anchor arises as end vertex of some SFS ordering of A.)

2. If the **first vertex** a in σ is an anchor of A, then a, b are opposite anchors of A.

Key ingredient: combinatorial characterization of (opposite) anchors of A in terms of certain "forbidden paths".

Anchor flipping property of SFS_+

 $\sigma_{\mathbf{0}}: \quad u_1 \qquad u_2 \qquad u_3 \qquad \dots \qquad u_{n-2} \qquad u_{n-1} \qquad \mathbf{a}$

Anchor flipping property of SFS_+

Theorem (Anchors Flipping)

Assume $A \in S^n$ is Robinsonian and $\sigma_i = SFS_+(A, \sigma_{i-1})$ with $i \ge 1$. σ_1 start with a and end with b; σ_2 start with b and end with a;

Theorem (Anchors Flipping)

Assume $A \in S^n$ is Robinsonian and $\sigma_i = SFS_+(A, \sigma_{i-1})$ with $i \ge 1$. σ_1, σ_3 start with a and end with b; σ_2, σ_4 start with b and end with a; etc.

Theorem (Anchors Flipping)

Assume $A \in S^n$ is Robinsonian and $\sigma_i = SFS_+(A, \sigma_{i-1})$ with $i \ge 1$. σ_1, σ_3 start with a and end with b; σ_2, σ_4 start with b and end with a; etc.

Key fact: $a_1 = y_{n-1}$ and b_1 are opposite anchors of $A[V \setminus \{a, b\}]$.

Theorem (Anchors Flipping)

Assume $A \in S^n$ is Robinsonian and $\sigma_i = SFS_+(A, \sigma_{i-1})$ with $i \ge 1$. σ_1, σ_3 start with a and end with b; σ_2, σ_4 start with b and end with a; etc.

Moreover: $\sigma_{n-2}[A \setminus \{a, b\}]$ can be seen as result of the multisweep algorithm applied to $A[V \setminus \{a, b\}]$, starting with $\sigma_3[V \setminus \{a, b\}]$. \sim can apply induction.

Crucial technical tool: Path avoiding a vertex

For distinct $x, y, z \in V$, $P = (x = v_0, v_1, \dots, v_{k-1}, v_k = y)$ is a **path from** x to y avoiding z if each triple (v_i, z, v_{i+1}) is **not Robinson**, i.e.,

 $A_{v_i v_{i+1}} > \min\{A_{zv_i}, A_{zv_{i+1}}\}, \quad \forall \ i = 0, 1, \dots, k-1.$

Crucial technical tool: Path avoiding a vertex

For distinct $x, y, z \in V$, $P = (x = v_0, v_1, \dots, v_{k-1}, v_k = y)$ is a **path from** x to y avoiding z if each triple (v_i, z, v_{i+1}) is **not Robinson**, i.e.,

$$A_{v_i v_{i+1}} > \min\{A_{zv_i}, A_{zv_{i+1}}\}, \quad \forall \ i = 0, 1, \dots, k-1.$$

Fact

Assume A is Robinsonian. If \exists path $x \rightsquigarrow y$ avoiding z then z does not lie between x and y in any Robinson ordering π of A.
Crucial technical tool: Path avoiding a vertex

For distinct $x, y, z \in V$, $P = (x = v_0, v_1, \dots, v_{k-1}, v_k = y)$ is a **path from** x to y avoiding z if each triple (v_i, z, v_{i+1}) is **not Robinson**, i.e.,

$$A_{v_i v_{i+1}} > \min\{A_{zv_i}, A_{zv_{i+1}}\}, \quad \forall \ i = 0, 1, \dots, k-1.$$

Fact

Assume A is Robinsonian. If \exists path $x \rightsquigarrow y$ avoiding z then z does not lie between x and y in any Robinson ordering π of A.

Theorem

 $\begin{array}{ll} a \text{ is an anchor of } A \iff \not \exists \ u, v \in V, \text{ a path } a \rightsquigarrow u \text{ avoiding } v, \text{ and a path} \\ a \rightsquigarrow v \text{ avoiding } u & (\text{since } \pi : a \cdots v \cdots u \text{ or } \pi : a \cdots u \cdots v) \end{array}$

Crucial technical tool: Path avoiding a vertex

For distinct $x, y, z \in V$, $P = (x = v_0, v_1, \dots, v_{k-1}, v_k = y)$ is a **path from** x to y avoiding z if each triple (v_i, z, v_{i+1}) is **not Robinson**, i.e.,

$$A_{v_i v_{i+1}} > \min\{A_{zv_i}, A_{zv_{i+1}}\}, \quad \forall \ i = 0, 1, \dots, k-1.$$

Fact

Assume A is Robinsonian. If \exists path $x \rightsquigarrow y$ avoiding z then z does not lie between x and y in any Robinson ordering π of A.

Theorem

 $a \text{ is an anchor of } A \iff \not\exists u, v \in V, \text{ a path } a \rightsquigarrow u \text{ avoiding } v, \text{ and a path} a \rightsquigarrow v \text{ avoiding } u \text{ (since } \pi : a \cdots v \cdots u \text{ or } \pi : a \cdots u \cdots v)$

(since $\pi: \mathbf{a} \cdots \mathbf{u} \cdots \mathbf{b}$)

Theorem

Two anchors a, b of A are **opposite anchors** $\iff A$ path $a \rightsquigarrow b$ avoiding some u

```
A weighted asteroidal triple for A is a triple \{x, y, z\} such that

\exists path x \rightsquigarrow y avoiding z; \exists path x \rightsquigarrow z avoiding y; and

\exists path y \rightsquigarrow z avoiding x.
```

If such triple exists then A is not Robinsonian!

A weighted asteroidal triple for A is a triple $\{x, y, z\}$ such that \exists path $x \rightsquigarrow y$ avoiding z; \exists path $x \rightsquigarrow z$ avoiding y; and \exists path $y \rightsquigarrow z$ avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian \iff there does not exist a weighted asteroidal triple.

A weighted asteroidal triple for A is a triple $\{x, y, z\}$ such that \exists path $x \rightsquigarrow y$ avoiding z; \exists path $x \rightsquigarrow z$ avoiding y; and \exists path $y \rightsquigarrow z$ avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian \iff there does not exist a weighted asteroidal triple.

• Can find a weighted asteroidal triple in $O(n^3)$:

A weighted asteroidal triple for A is a triple $\{x, y, z\}$ such that \exists path $x \rightsquigarrow y$ avoiding z; \exists path $x \rightsquigarrow z$ avoiding y; and \exists path $y \rightsquigarrow z$ avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian \iff there does not exist a weighted asteroidal triple.

• Can find a weighted asteroidal triple in $O(n^3)$: this certifies A is **not** Robinsonian.

A weighted asteroidal triple for A is a triple $\{x, y, z\}$ such that \exists path $x \rightsquigarrow y$ avoiding z; \exists path $x \rightsquigarrow z$ avoiding y; and \exists path $y \rightsquigarrow z$ avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian \iff there does not exist a weighted asteroidal triple.

• Can find a weighted asteroidal triple in $O(n^3)$: this certifies A is **not** Robinsonian.

• This implies the characterization of **unit interval graphs**: no asteroidal triple, no induced cycle of length at least 4, no induced claw $K_{1,3}$

[Roberts 69]

Tight example where n-1 sweeps are needed

Example by S. Tanigawa: Robinson matrix $A \in S^n$: $A_{1n} = 0, \ A_{1i} = 1, \ A_{2n} = 1, \ A_{in} = 2, \ A_{ij} = A_{i-1,j+1} + 1.$

		1	2	3	4	5	6	7	8	9	10	11
A =	1	(*	1	1	1	1	1	1	1	1	1	0)
	2		*	2	2	2	2	2	2	2	1	1
	3			*	3	3	3	3	3	2	2	2
	4				*	4	4	4	3	3	3	2
	5					*	5	4	4	4	3	2
	6						*	5	5	4	3	2
	7							*	5	4	3	2
	8								*	4	3	2
	9									*	3	2
	10										*	2
	11											* /

With SFS $\sigma_0 = (2, 3, ..., n, 1)$, the first Robinson sweep is σ_{n-2} .

Computational experiments

by Matteo

Instances generation

(c) Generation 3

(d) Generation 4

Performance table ($n \leq 1000$)

	# distinct values	$low (\le 50)$			medium (> 50 and \leq 200)			high (≥ 200)		
	algorithms									
# nonzero entries		spectral	SFS	LBFS	spectral	SFS	LBFS	spectral	SFS	LBFS
	n									
	100	2,98	1,78	10,57	3,68	1,97	58,85	4,24	2,20	-
	200	8,48	8,22	36,99	8,38	8,08	211,08	9,62	8,93	-
	300	16,69	17,58	83,08	18,00	16,55	513,76	18,18	16,58	-
	400	27,68	29,91	153,23	30,06	31,92	953, 13	30,30	32,10	-
sparse	500	38,78	44,35	209,87	47,77	47,33	1382,98	45,60	41,20	-
$(\leq 30 \%)$	600	50,28	53,66	277,90	59,06	55,47	1771,93	54,10	57,10	-
	700	67,02	73,45	383, 13	72,54	75,64	2437,52	76,55	78,96	-
	800	98,54	98,29	526,48	94,76	98,96	3236,95	104,52	102,09	-
	900	114,36	124,67	616,90	121,75	122, 12	4103,76	136,70	130,02	-
	1000	152,63	161, 15	904,72	153,52	148,28	5047,28	189,63	184, 12	-
	100	3,16	4,65	26,25	3,46	5,20	196, 26	3,41	5,04	-
	200	11,04	18,58	108,28	12,96	19,92	942,65	14,43	20,08	-
	300	25,62	40,91	252,98	29,46	44,37	2098,60	30,71	45,09	-
	400	49,50	76,23	459,03	55,82	74,65	3833,16	56,85	79,34	-
normal	500	73,35	$108,\!69$	645,23	84,66	113,71	5659,31	84,77	110,84	-
$(> 30 \% \text{ and } \le 70\%)$	600	108,05	139,40	893,37	126,33	153, 15	7437,49	126,89	148,99	-
	700	143,32	186, 48	1247, 81	164,40	196,33	10402,90	172,27	195,22	-
	800	193,45	253, 49	1646, 54	232,95	246, 19	13920, 20	253,77	255,05	-
	900	254,46	307, 13	2131,64	317,26	309,65	17909, 20	310,84	326,79	-
	1000	331,47	408,70	2856,86	383,54	376, 66	22601,10	442,26	499,45	-
	100	3,87	6,81	66,58	3,89	7,72	493,64	3,89	7,78	-
	200	16,37	27,38	285,67	16,08	30,01	2126, 32	16,95	31,57	-
	300	38,64	61,59	633,54	40,14	65,96	4904,51	38,32	69,41	-
	400	77,00	112,23	1165, 52	76,81	114,90	9114,09	77,66	121,97	-
dense (> 70 %)	500	122,27	158, 87	1691,87	122,57	163, 62	13693,00	114,96	161,89	-
	600	174,42	211,88	2349, 12	173,31	210, 19	18455, 80	171,59	225,39	-
	700	273,01	291,58	3364,06	248,08	286,44	25932,80	245,26	299,84	-
	800	359,28	379,78	4493,35	339,09	$373,\!69$	34891,70	344,47	397,55	-
	900	489,78	487,85	5854,02	450,70	466, 22	45060, 20	450,22	519,41	-
	1000	663,46	642,58	8046,78	588,68	579, 59	58410, 50	707,10	775,99	-

Figure 1: (Average) Time performance of the algorithms (in milliseconds)

Performance chart ($n \le 1000$)

Performance table (large instances)

	# distinct values	$low (\le 50)$			medium (> 50 and ≤ 200)			high (≥ 200)		
	algorithms									
# nonzero entries		spectral	SFS	LBFS	spectral	SFS	LBFS	spectral	SFS	LBFS
	n									
	1000	0,16	0,19	-	0,16	0,16	-	0,17	0,18	-
	2000	0,68	0,62	-	0,72	0,7	-	0,76	0,62	-
	3000	1,56	1,5	-	1,95	1,58	-	1,95	1,48	-
	4000	2,94	2,92	-	3,6	2,57	-	3,58	2,81	-
sparse	5000	4,41	4,61	-	5,56	4,03	-	6,09	4,38	-
$(\leq 30 \%)$	6000	6,94	6,23	-	9,93	6,52	-	10,87	6,72	-
	7000	10,56	10,48	-	20,98	10,32	-	20,73	8,75	-
	8000	14,86	13,5	-	18,24	10,67	-	21,03	11,63	-
	9000	17,58	16,83	-	26,38	13,75	-	31,66	13,97	-
	10000	22,46	21,28	-	45,32	18,11	-	32,87	16,18	-
	1000	0,32	0,4	-	0,45	0,41	-	0,45	0,46	-
	2000	1,53	1,8	-	2,2	1,67	-	1,99	1,71	-
	3000	4,42	4,77	-	5,49	3,77	-	5,74	3,64	-
	4000	9,13	9,46	-	13,04	6,33	-	14,22	6,54	-
normal	5000	17,08	16,45	-	26,85	10,55	-	26,33	10,77	-
$(> 30 \% \text{ and } \le 70\%)$	6000	29,09	27,48	-	44,08	16,76	-	43,07	18,11	-
	7000	43,05	45,63	-	85,31	24,65	-	68,86	21,71	-
	8000	72,48	58,42	-	88,91	31,54	-	86,72	30,49	-
	9000	92,18	95,53	-	151,81	36,85	-	116,02	36,87	-
	10000	111,08	$116,\!67$	-	190,55	48,09	-	155,1	43,41	-
	1000	0,62	0,67	-	0,62	0,6	-	0,6	0,63	-
	2000	3,3	2,95	-	3,59	2,26	-	3,62	2,38	-
	3000	10,46	8,43	-	11,65	4,99	-	11,61	5,51	-
	4000	25,64	16,75	-	27,53	9,38	-	26,62	9,92	-
dense	5000	43,85	29,4	-	51,63	15,22	-	51,03	15,89	-
(> 70 %)	6000	104,47	59,28	-	101,14	22,69	-	92,41	26,09	-
	7000	121,14	91,75	-	166,53	38,52	-	142,65	31,19	-
	8000	220,08	129,7	-	219,71	40,28	-	216,43	43,31	-
	9000	284,63	175,07	-	331,37	52,81	-	293,18	52,44	-
	10000	383,98	248,97	-	423,32	65,31	-	411,29	64,93	-

Figure 2: (Average) Time performance of the algorithms (in seconds)

Performance chart (large instances)

• Lex-BFS is used to recognize unit interval graphs (3 sweeps, Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs (5* sweeps, Corneil & al.'09), cocomparability graphs (*n* sweeps, Dusart-Habib'17),...

- Lex-BFS is used to recognize unit interval graphs (3 sweeps, Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs (5* sweeps, Corneil & al.'09), cocomparability graphs (*n* sweeps, Dusart-Habib'17),...
- New weighted graph search algorithm: SFS (Similarity-First Search).

Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices. Other applications?

- Lex-BFS is used to recognize unit interval graphs (3 sweeps, Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs (5* sweeps, Corneil & al.'09), cocomparability graphs (*n* sweeps, Dusart-Habib'17),...
- New weighted graph search algorithm: SFS (Similarity-First Search).
 Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices. Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs. Investigate other matrix analogues, e.g., for interval graphs.

• Lex-BFS is used to recognize unit interval graphs (3 sweeps, Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs (5* sweeps, Corneil & al.'09), cocomparability graphs (*n* sweeps, Dusart-Habib'17),...

 New weighted graph search algorithm: SFS (Similarity-First Search).
 Very simple algorithm: conceptually and to implement: *CRAN Package SFS* available at the *R* platform.
 SFS permits to recognize Robinsonian matrices. Other applications?

- Robinsonian matrices are matrix analogues of unit interval graphs. Investigate other matrix analogues, e.g., for interval graphs.
- Chordal' matrices: defined by existence of a perfect elimination ordering π: A_{yz} ≥ min{A_{xy}, A_{xz}} if x <_π y <_π z
 Characterization by excluded 'weighted chordless cycles'.

Based on papers

M. Laurent and M. Seminaroti.

The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure.

Operations Research Letters, 2015.

M. Laurent and M. Seminaroti.

A Lex-BFS-based recognition algorithm for Robinsonian matrices. Proceedings of CIAC 2015 & Discrete Applied Mathematics, 2017.

M. Laurent and M. Seminaroti.

Similarity-First Search: a new algorithm with application to Robinsonian matrix recognition.

SIAM Journal on Discrete Mathematics, 2017.

M. Seminaroti.

Combinatorial Algorithms for the Seriation Problem. PhD thesis, Tilburg University, December 2016.