On the recognition of neighborhood inclusion posets

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

IX LAGOS, Marseille, September 2017

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

(日) (同) (日) (日)

Posets

A poset is a pair (X, \leq) consisting of a set X and a partial order \leq defined on X.

Inclusion Poset

The elements of X are sets, ordered by inclusion.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Posets

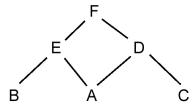
A poset is a pair (X, \leq) consisting of a set X and a partial order \leq defined on X.

Inclusion Poset

The elements of X are sets, ordered by inclusion.

Example

$$A = \{1, 2\}, B = \{2, 3, 4\}, C = \{1, 5\}, D = \{1, 2, 5\}, E = \{1, 2, 3, 4\}, F = \{1, 2, 3, 4, 5\}$$



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Every poset is an inclusion poset

Make every $x \in X$ correspond to the set $\{y \in X : y \leq x\}$

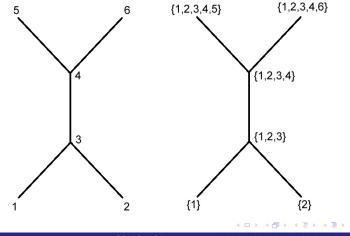
Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

(日) (同) (日) (日)

Every poset is an inclusion poset

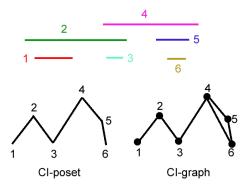
Make every $x \in X$ correspond to the set $\{y \in X : y \leq x\}$



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Interval inclusion posets

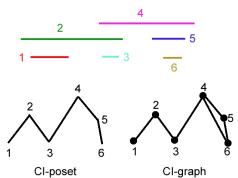


Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

- E - N

Interval inclusion posets



Theorem

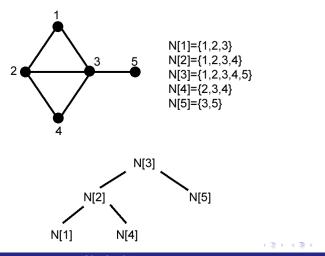
The following are equivalent:

- ▶ G is a CI-graph.
- G and its complement are comparability graphs.
- G is a permutation graph.

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Neighborhood inclusion posets

Its elements are the different closed neighborhoods of a graph.



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Neighborhood inclusion poset recognition problem

Given a poset P, is it the neighborhood inclusion poset of some graph?

Pablo De Caria

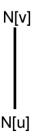
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

・ロト ・聞 ト ・ ヨト ・ ヨト

Neighborhood inclusion poset recognition problem

Given a poset P, is it the neighborhood inclusion poset of some graph?

Not always the answer is yes.



If a graph had this poset, then it would be complete. But the neighborhood inclusion poset of a complete graph has only one neighborhood.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Neighborhood Inclusion Poset Recognition is NP-complete Set basis problem

Given: a collection C of subsets of a set S and an integer $k \leq |C|$. **Question:** Is there a collection \mathcal{B} of subsets of S with $|\mathcal{B}| = k$ such that, for every $C \in C$, there is a subcollection of \mathcal{B} whose union is exactly C?

The problem was proved to be NP-complete by Stockmeyer in 1975.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

- 4 同 ト 4 ヨ ト 4 ヨ ト

Neighborhood Inclusion Poset Recognition is NP-complete Set basis problem

Given: a collection C of subsets of a set S and an integer $k \leq |C|$. **Question:** Is there a collection \mathcal{B} of subsets of S with $|\mathcal{B}| = k$ such that, for every $C \in C$, there is a subcollection of \mathcal{B} whose union is exactly C?

The problem was proved to be NP-complete by Stockmeyer in 1975.

Set basis, intersection version

Given: a collection C of subsets of a set S and an integer $k \leq |C|$. **Question:** Is there a collection \mathcal{B} of subsets of S with $|\mathcal{B}| = k$ such that, for every $C \in C$, there is a subcollection of \mathcal{B} whose intersection is exactly C?

Note:
$$B_1 \cap B_2 \cap ... \cap B_n = C \Longrightarrow \overline{B_1} \cup \overline{B_2} \cup ... \cup \overline{B_n} = \overline{C}$$

(日) (同) (三) (三)

$$S = \{1, 2, 3, 4, 5\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$S = \{1, 2, 3, 4, 5\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

$$S = \{1, 2, 3, 4, 5\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

 $S = \{1, 2, 3, 4, 5\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5\}, C_4 = \{2, 3, 4, 5\}, k = 2$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

(日) (同) (三) (三)

$$\begin{split} & S = \{1,2,3,4,5,x_1,x_2,x_3,x_4\}, \ C_1 = \{1,3,x_1\}, \ C_2 = \{2,3,x_2\}, \\ & C_3 = \{1,2,3,5,x_1,x_2,x_3\}, \ C_4 = \{2,3,4,5,x_2,x_4\}, \ k = 2 \end{split}$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$\begin{split} & S = \{1,2,3,4,5,x_1,x_2,x_3,x_4\}, \ C_1 = \{1,3,x_1\}, \ C_2 = \{2,3,x_2\}, \\ & C_3 = \{1,2,3,5,x_1,x_2,x_3\}, \ C_4 = \{2,3,4,5,x_2,x_4\}, \ k = 2 \end{split}$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

If there are elements that appear in exactly the same sets, leave only one of them.

周 ト イ ヨ ト イ ヨ

$$S = \{1, 2, 3, 4, 5, x_1, x_2, x_3, x_4\}, C_1 = \{1, 3, x_1\}, C_2 = \{2, 3, x_2\}, C_3 = \{1, 2, 3, 5, x_1, x_2, x_3\}, C_4 = \{2, 3, 4, 5, x_2, x_4\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

If there are elements that appear in exactly the same sets, leave only one of them.

周 ト イ ヨ ト イ ヨ

$$S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

If there are elements that appear in exactly the same sets, leave only one of them.

周 ト イ ヨ ト イ ヨ

$$S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

If there are elements that appear in exactly the same sets, leave only one of them.

The solution to the question is still the same.

$$S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$$

Check whether there is an element that is in all the sets. If not, add it.

Add new elements x_1, x_2, x_3, x_4 (as many as sets the collection has) and, for every *i*, add to C_i the elements x_i such that $C_i \subseteq C_i$.

If there are elements that appear in exactly the same sets, leave only one of them.

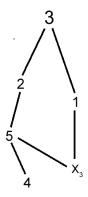
The solution to the question is still the same.

Consider the partial order on *S* where $a \le b$ when every set of the collection that has *a* also has *b*.

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

- 4 同 ト - 4 ヨ ト - 4 ヨ

$$S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\}, C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$$



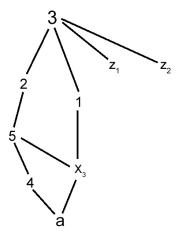
Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

メロト メロト メヨト メヨト

E

 $S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\},$ $C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$

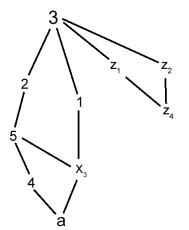


<u>Reason</u>: In case the poset corresponds to a graph, the sets $N[z_1]$ and $N[z_2]$ will tell us about the solution to the set basis problem.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

 $S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\},$ $C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$

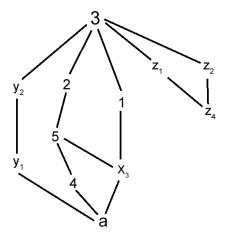


<u>Reason</u>: to facilitate that the neighborhood of no z₁ is contained in the neighborhood of a vertex in S different from 3.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

 $S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\},$ $C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$

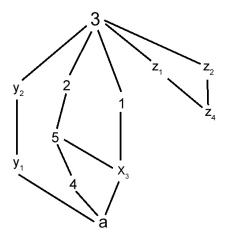


<u>Reason</u>: to avoid that the neighborhood of z_1 is contained in the neighborhood of z_2

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

 $S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\},$ $C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$



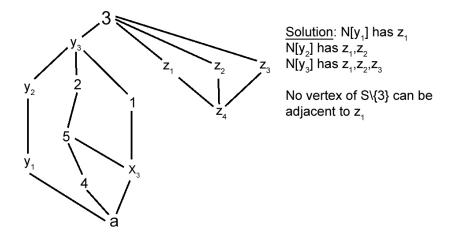
<u>Reason</u>: to avoid that the neighborhood of z_1 is contained in the neighborhood of z_2

<u>Problem</u>: If z_1 is a neighbor of y_1 and z_1, z_2 are neighbors of y_2 , then any vertex in S\{3} adjacent to z_1 can contain the neighborhood of y_1 .

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

 $S = \{1, 2, 3, 4, 5, x_3\}, C_1 = \{1, 3\}, C_2 = \{2, 3\},$ $C_3 = \{1, 2, 3, 5, x_3\}, C_4 = \{2, 3, 4, 5\}, k = 2$



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Chordal graphs and the clique tree

The vertices of a clique tree of a graph G are all its maximal cliques and, for every $v \in V(G)$, the set C_v of maximal cliques of G that contain v induces a subtree.

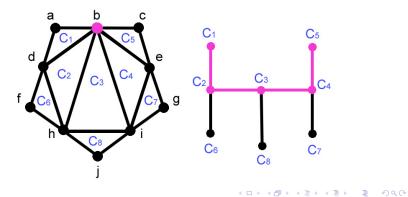
Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

▲ □ ► ▲ □ ► ▲

Chordal graphs and the clique tree

The vertices of a clique tree of a graph G are all its maximal cliques and, for every $v \in V(G)$, the set C_v of maximal cliques of G that contain v induces a subtree.



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

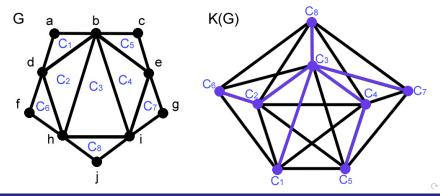
Dually chordal graphs and the compatible tree The vertices of a compatible tree are those of the graph G and every maximal clique C induces a subtree.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

イロト イポト イヨト イヨ

Dually chordal graphs and the compatible tree The vertices of a compatible tree are those of the graph G and every maximal clique C induces a subtree.



Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

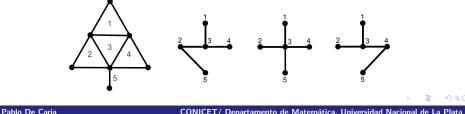
Recognizing families of clique trees and compatible trees Fact 1: It can be decided in polynomial time whether a family of trees is the family of all the clique trees of some chordal graph. **Fact 2:** If *G* is a dually chordal and \mathcal{F} is the family that has all the maximal cliques of *G* and the sets of the form $\{v\}$, where $v \in V(G)$, then the intersection graph of \mathcal{F} is chordal and its clique trees are exactly the compatible trees of *G*. Therefore, a family of compatible trees is always a family of clique trees.

Fact 3:Not every family of clique trees of a chordal graph is the family of compatible trees of a dually chordal graph.

伺い イヨト イヨト

Recognizing families of clique trees and compatible trees **Fact 1:** It can be decided in polynomial time whether a family of trees is the family of all the clique trees of some chordal graph. **Fact 2:** If G is a dually chordal and \mathcal{F} is the family that has all the maximal cliques of G and the sets of the form $\{v\}$, where $v \in V(G)$, then the intersection graph of \mathcal{F} is chordal and its clique trees are exactly the compatible trees of G. Therefore, a family of compatible trees is always a family of clique trees.

Fact 3:Not every family of clique trees of a chordal graph is the family of compatible trees of a dually chordal graph.



CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Proposition

Let G be a dually chordal graph with universal vertex u. Then a spanning tree T of G is a compatible tree if and only if, for every $v \in V(G)$, the set $\{w \in V(G) : N[v] \subseteq N[w]\}$ induces a subtree of T.

Idea of proof:

For every maximal clique C, $C = \bigcup_{v \in C} \{w \in V(G) : N[v] \subseteq N[w]\}$ For every $v \in V(G)$, $\{w \in V(G) : N[v] \subseteq N[w]\} = \bigcap_{v \in C} C$

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

過 ト イヨト イヨト

Proposition

Let G be a dually chordal graph with universal vertex u. Then a spanning tree T of G is a compatible tree if and only if, for every $v \in V(G)$, the set $\{w \in V(G) : N[v] \subseteq N[w]\}$ induces a subtree of T.

Idea of proof:

For every maximal clique C, $C = \bigcup_{v \in C} \{w \in V(G) : N[v] \subseteq N[w]\}$ For every $v \in V(G)$, $\{w \in V(G) : N[v] \subseteq N[w]\} = \bigcap_{v \in C} C$

Proposition

Let (X, \leq) be a poset with unique maximal element. Let \mathcal{F} be the family that contains, for every $x \in X$, the sets $\{x\}$ and $\{y : x \leq y\}$. Then the intersection graph of \mathcal{F} is chordal and every tree T whose vertices are the maximal cliques of this graph is a clique tree if and only if all the sets of the form $\{y : x \leq y\}$ induce a subtree of T.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Theorem

Given a chordal graph G, the problem of deciding whether the family of clique trees of G is also the family of compatible trees of some dually chordal graph is NP-complete.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

A (10) F (10) F (10)

Theorem

Given a chordal graph G, the problem of deciding whether the family of clique trees of G is also the family of compatible trees of some dually chordal graph is NP-complete.

Proof: We find a polynomial reduction of Neighborhood Inclusion Poset Recognition to this problem.

Let $P = (X, \leq)$ be a poset. Let P' be another poset such that P' = P if P has a unique maximal element u. Otherwise, let $P' = (X \cup \{u\}, \preceq)$ where \preceq is an extension of \leq such that $x \preceq u$ for every $x \in X$.

Theorem

Given a chordal graph G, the problem of deciding whether the family of clique trees of G is also the family of compatible trees of some dually chordal graph is NP-complete.

Proof: We find a polynomial reduction of Neighborhood Inclusion Poset Recognition to this problem.

Let $P = (X, \leq)$ be a poset. Let P' be another poset such that P' = P if P has a unique maximal element u. Otherwise, let $P' = (X \cup \{u\}, \leq)$ where \leq is an extension of \leq such that $x \leq u$ for every $x \in X$.

P is a neighborhood inclusion poset if and only if P' is a neighborhood inclusion poset.

Let \mathcal{F} be the family that has for every $x \in X \cup \{u\}$ the sets $\{x\}$ and $\{y : x \leq y\}$.

Let G be the intersection graph of \mathcal{F} , which is chordal.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

소리가 소문가 소문가 소문가 ...

Let \mathcal{F} be the family that has for every $x \in X \cup \{u\}$ the sets $\{x\}$ and $\{y : x \leq y\}$.

Let G be the intersection graph of \mathcal{F} , which is chordal.

Let us see that P' is a neighborhood inclusion poset if and only if the family of clique trees of G is also the family of compatible trees of a dually chordal graph.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Let \mathcal{F} be the family that has for every $x \in X \cup \{u\}$ the sets $\{x\}$ and $\{y : x \leq y\}$.

Let G be the intersection graph of \mathcal{F} , which is chordal.

Let us see that P' is a neighborhood inclusion poset if and only if the family of clique trees of G is also the family of compatible trees of a dually chordal graph.

If P' is the Neighborhood inclusion poset of a graph H, then H is dually chordal because it has a universal vertex.

Both the clique trees of G and the compatible trees of H are those for which every set of the form $\{y : x \leq y\}$ induce a subtree, so they are the same.

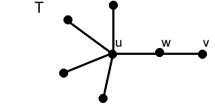
Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

- 4 @ > 4 @ > 4 @ >

Conversely, let the family of clique trees of G be the family of compatible trees of a dually chordal graph H.

Given two elements v and w, different from u, and the following tree T

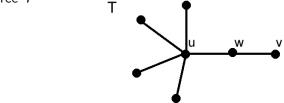


Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Conversely, let the family of clique trees of G be the family of compatible trees of a dually chordal graph H.

Given two elements v and w, different from u, and the following tree T



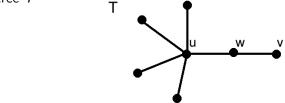
- T is a clique tree of G if and only if $v \leq w$.
- T is a compatible tree of H if and only $N_H[v] \subseteq N_H[w]$.

Pablo De Caria

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Conversely, let the family of clique trees of G be the family of compatible trees of a dually chordal graph H.

Given two elements v and w, different from u, and the following tree T



T is a clique tree of G if and only if $v \leq w$.

T is a compatible tree of H if and only $N_H[v] \subseteq N_H[w]$.

Hence $v \leq w$ if and only if $N_H[v] \subseteq N_H[w]$.

We conclude that P' is the neighborhood inclusion poset of H.