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Estimating Constants

I CRiSM Workshop on
Estimating Constants

I 20 - 22 April 2016, University of
Warwick

I Monte Carlo methods for
approximating normalising
constants

I 12 plenary speakers

I Call for posters

I cheap registration and loding

I “The Midlands in April, where
else...?!”



ABCruise: ABC in Helsinki

I New “ABC in...” workshop
between Helsinki and
Stockholm

I 16–18 May 2016, on Silja
Symphony of Tallink Silja Line

I recent advances in ABC theory
and methodology

I 10 plenary speakers

I call for posters

I very cheap registration and
loding and meals for 200EUR

I “The Baltic in May, where
else...?!”



The Metropolis-Hastings Algorithm

MCMC #1: The
Metropolis-Hastings Algorithm

Monte Carlo Methods based
on Markov Chains
The Metropolis–Hastings
algorithm
A collection of
Metropolis-Hastings
algorithms
Extensions

MCMC # 2: Gibbs Sampling

MCMC # 3: Sequential Monte
Carlo

MCMC # 4: New directions



Running Monte Carlo via Markov Chains

It is not necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

We can obtain X1, . . . , Xn ∼ f (approx) without directly
simulating from f , using an ergodic Markov chain with stationary
distribution f
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Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f

I Insures the convergence in distribution of (X(t)) to a random
variable from f .

I For a “large enough” T0, X(T0) can be considered as
distributed from f

I Produce a dependent sample X(T0), X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes.

Problem: How can one build a Markov chain with a given
stationary distribution?
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The Metropolis–Hastings algorithm

Basics
The algorithm uses the objective (target) density

f

and a conditional density
q(y|x)

called the instrumental (or proposal) distribution



The MH algorithm

Algorithm (Metropolis–Hastings)

Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1− ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.



Features

I Independent of normalizing constants for both f and q(·|x)
(ie, those constants independent of x)

I Never move to values with f(y) = 0

I The chain (x(t))t may take the same value several times in a
row, even though f is a density wrt Lebesgue measure

I The sequence (yt)t is usually not a Markov chain



Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)

2. As f is a probability measure, the chain is positive recurrent

3. If

Pr

[
f(Yt) q(X

(t)|Yt)
f(X(t)) q(Yt|X(t))

≥ 1

]
< 1. (1)

that is, the event {X(t+1) = X(t)} is possible, then the chain
is aperiodic
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Convergence properties (2)

4. If
q(y|x) > 0 for every (x, y), (2)

the chain is irreducible

5. For M-H, f -irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)

(i) For h, with Ef |h(X)| <∞,

lim
T→∞

1

T

T∑
t=1

h(X(t)) =

∫
h(x)df(x) a.e. f.

(ii) and

lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the
kernel for n transitions.
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The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.

Algorithm (Independent Metropolis-Hastings)

Given x(t),

a Generate Yt ∼ g(y)

b Take

X(t+1) =

Yt with prob. min

{
f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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Properties

The resulting sample is not iid but there exist strong convergence
properties:

Theorem (Ergodicity)

The algorithm produces a uniformly ergodic chain if there exists a
constant M such that

f(x) ≤Mg(x) , x ∈ supp f.

In this case,

‖Kn(x, ·)− f‖TV ≤
(

1− 1

M

)n
.

[Mengersen & Tweedie, 1996]
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Independent MH: illustration

Example (Noisy AR(1))

Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + εt+1 εt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2

t , σ
2)

The distribution of xt given xt−1, xt+1 and yt is

exp
−1

2τ2

{
(xt − ϕxt−1)2 + (xt+1 − ϕxt)2 +

τ2

σ2
(yt − x2

t )
2

}
.
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Independent MH: illustration

Example (Noisy AR(1))

Use for proposal the N (µt, ω
2
t ) distribution, with

µt = ϕ
xt−1 + xt+1

1 + ϕ2
and ω2

t =
τ2

1 + ϕ2
.

Ratio
π(x)/qind(x) = exp−(yt − x2

t )
2/2σ2

is bounded
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Independent MH: illustration

(top) Last 500 realisations of the chain {Xk}k out of 10, 000
iterations; (bottom) histogram of the chain, compared with
the target distribution.



Independent MH: counterexample

Example (Cauchy by normal)

go random W Given a Cauchy C (0, 1) distribution, consider a normal
N (0, 1) proposal
The Metropolis–Hastings acceptance ratio is

π(ξ′)/ν(ξ′)

π(ξ)/ν(ξ))
= exp

[{
ξ2 − (ξ′)2

}
/2
] 1 + (ξ′)2

(1 + ξ2)
.

Poor performances: the proposal distribution has lighter tails
than the target Cauchy and convergence to the stationary
distribution is not even geometric!

[Mengersen & Tweedie, 1996]
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Independent MH: counterexample
De

ns
ity
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distribution.



Random walk Metropolis–Hastings

Use of a local perturbation as proposal

Yt = X(t) + εt,

where εt ∼ g, independent of X(t).
The instrumental density is now of the form g(y − x) and the
Markov chain is a random walk if we take g to be symmetric
g(x) = g(−x)



Random walk Metropolis–Hastings

Algorithm (Random walk Metropolis)

Given x(t)

1. Generate Yt ∼ g(y − x(t))

2. Take

X(t+1) =

Yt with prob. min

{
1,

f(Yt)

f(x(t))

}
,

x(t) otherwise.



Illustration

Example (A toy example)

perturbed version of the normal N (0, 1) density, ϕ(·)

π̃(x) ∝ sin2(x)× sin2(2x)× ϕ(x) .

And proposal uniform U(x− α, x+ α) kernel
Metropolis-Hastings step:

θ(t+1) =

{
θ(t) + αε(t) if u(t) < ρ(t)

θ(t) otherwise

where

ρ(t) =
π(θ(t) + αε(t)|x)

π(θ(t)|x)
∧ 1

and α scaled for good acceptance rate
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Illustration

R code

target=function(x){

sin(x)^2*sin(2*x)^2*dnorm(x)}

metropolis=function(x,alpha=1){

y=runif(1,x-alpha,x+alpha)

if (runif(1)>target(y)/target(x)) y=x

return(y)}

with arbitrary starting value

T=10^4

x=rep(3.14,T)

for (t in 2:T) x[t]=metropolis(x[t-1])
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Illustration

x
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Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

Theorem (Sufficient ergodicity)

For a symmetric density f , log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect
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Convergence properties

Example (Comparison of tail
effects)

Random-walk
Metropolis–Hastings algorithms
based on a N (0, 1) instrumental
for the generation of (a) a
N (0, 1) distribution and (b) a
distribution with density
ψ(x) ∝ (1 + |x|)−3
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Convergence properties

Example (Cauchy by normal continued)

Again, Cauchy C (0, 1) target and Gaussian random walk proposal,
ξ′ ∼ N (ξ, σ2), with acceptance probability

1 + ξ2

1 + (ξ′)2
∧ 1 ,

Overall fit of the Cauchy density by the histogram satisfactory, but
poor exploration of the tails: 99% quantile of C (0, 1) equal to 3,
but no simulation exceeds 14 out of 10, 000!

[Roberts & Tweedie, 2004]



Convergence properties

Again, lack of geometric ergodicity!
[Mengersen & Tweedie, 1996]

Slow convergence shown by the non-stable range after 10, 000
iterations.

Dens
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Histogram of the 10, 000 first steps of a random walk
Metropolis–Hastings algorithm using a N (ξ, 1) proposal



Convergence properties
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Further convergence properties

Under assumptions skip detailed convergence

I (A1) f is super-exponential, i.e. it is positive with positive
continuous first derivative such that
lim|x|→∞ n(x)′∇ log f(x) = −∞ where n(x) := x/|x|.
In words : exponential decay of f in every direction with rate
tending to ∞

I (A2) lim sup|x|→∞ n(x)′m(x) < 0, where
m(x) = ∇f(x)/|∇f(x)|.
In words: non degeneracy of the countour manifold
Cf(y) = {y : f(y) = f(x)}

Q is geometrically ergodic, and
V (x) ∝ f(x)−1/2 verifies the drift condition

[Jarner & Hansen, 2000]



Further [further] convergence properties

skip hyperdetailed convergence

If P ψ-irreducible and aperiodic, for r = (r(n))n∈N real-valued non
decreasing sequence, such that, for all n,m ∈ N,

r(n+m) ≤ r(n)r(m),

and r(0) = 1, for C a small set, τC = inf{n ≥ 1, Xn ∈ C}, and
h ≥ 1, assume

sup
x∈C

Ex

[
τC−1∑
k=0

r(k)h(Xk)

]
<∞,



Further [further] convergence properties

skip hyperdetailed convergence

then,

S(f, C, r) :=

{
x ∈ X,Ex

{
τC−1∑
k=0

r(k)h(Xk)

}
<∞

}

is full and absorbing and for x ∈ S(f, C, r),

lim
n→∞

r(n)‖Pn(x, .)− f‖h = 0.

[Tuominen & Tweedie, 1994]



Comments

I [CLT, Rosenthal’s inequality...] h-ergodicity implies CLT
for additive (possibly unbounded) functionals of the chain,
Rosenthal’s inequality and so on...

I [Control of the moments of the return-time] The
condition implies (because h ≥ 1) that

sup
x∈C

Ex[r0(τC)] ≤ sup
x∈C

Ex

{
τC−1∑
k=0

r(k)h(Xk)

}
<∞,

where r0(n) =
∑n

l=0 r(l) Can be used to derive bounds for
the coupling time, an essential step to determine computable
bounds, using coupling inequalities

[Roberts & Tweedie, 1998; Fort & Moulines, 2000]



Alternative conditions

The condition is not really easy to work with...
[Possible alternative conditions]

(a) [Tuominen, Tweedie, 1994] There exists a sequence
(Vn)n∈N, Vn ≥ r(n)h, such that

(i) supC V0 <∞,
(ii) {V0 =∞} ⊂ {V1 =∞} and
(iii) PVn+1 ≤ Vn − r(n)h+ br(n)IC .



Alternative conditions

(b) [Fort 2000] ∃V ≥ f ≥ 1 and b <∞, such that supC V <∞
and

PV (x) + Ex

{
σC∑
k=0

∆r(k)f(Xk)

}
≤ V (x) + bIC(x)

where σC is the hitting time on C and

∆r(k) = r(k)− r(k − 1), k ≥ 1 and ∆r(0) = r(0).

Result (a) ⇔ (b) ⇔ supx∈C Ex
{∑τC−1

k=0 r(k)f(Xk)
}
<∞.



Extensions

There are many other families of HM algorithms

◦ Adaptive Rejection Metropolis Sampling

◦ Reversible Jump

◦ Langevin algorithms

◦ Hamiltonian MC

to name just a few...



Langevin Algorithms

Proposal based on the Langevin diffusion Lt is defined by the
stochastic differential equation

dLt = dBt +
1

2
∇ log f(Lt)dt,

where Bt is the standard Brownian motion

Theorem

The Langevin diffusion is the only non-explosive diffusion which is
reversible with respect to f .



Discretization

Instead, consider the sequence

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt, εt ∼ Np(0, Ip)

where σ2 corresponds to the discretization step
Unfortunately, the discretized chain may be transient, for instance
when

lim
x→±∞

∣∣σ2∇ log f(x)|x|−1
∣∣ > 1
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MH correction (MALA)

Accept the new value Yt with probability

f(Yt)

f(x(t))
·

exp

{
−
∥∥∥Yt − x(t) − σ2

2 ∇ log f(x(t))
∥∥∥2
/

2σ2

}
exp

{
−
∥∥∥x(t) − Yt − σ2

2 ∇ log f(Yt)
∥∥∥2
/

2σ2

} ∧ 1 .

Choice of the scaling factor σ
Should lead to an acceptance rate of 0.574 to achieve optimal
convergence rates (when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]



Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of
view
Most common alternatives:

(a) a fully automated algorithm like ARMS;

(b) an instrumental density g which approximates f , such that
f/g is bounded for uniform ergodicity to apply;

(c) a random walk

In both cases (b) and (c), the choice of g is critical,



Case of the independent Metropolis–Hastings algorithm

Choice of g that maximizes the average acceptance rate

ρ = E
[
min

{
f(Y ) g(X)

f(X) g(Y )
, 1

}]
= 2P

(
f(Y )

g(Y )
≥ f(X)

g(X)

)
, X ∼ f, Y ∼ g,

Related to the speed of convergence of

1

T

T∑
t=1

h(X(t))

to Ef [h(X)] and to the ability of the algorithm to explore any
complexity of f



Case of the independent Metropolis–Hastings algorithm

Practical implementation
Choose a parameterized instrumental distribution g(·|θ) and
adjusting the corresponding parameters θ based on the evaluated
acceptance rate

ρ̂(θ) =
2

m

m∑
i=1

I{f(yi)g(xi)>f(xi)g(yi)} ,

where x1, . . . , xm sample from f and y1, . . . , ym iid sample from g.



Case of the random walk

Different approach to acceptance rates
A high acceptance rate does not indicate that the algorithm is
moving correctly since it indicates that the random walk is moving
too slowly on the surface of f .
If x(t) and yt are close, i.e. f(x(t)) ' f(yt) y is accepted with
probability

min

(
f(yt)

f(x(t))
, 1

)
' 1 .

For multimodal densities with well separated modes, the negative
effect of limited moves on the surface of f clearly shows.



Case of the random walk

Different approach to acceptance rates
If the average acceptance rate is low, the successive values of f(yt)
tend to be small compared with f(x(t)), which means that the
random walk moves quickly on the surface of f since it often
reaches the “borders” of the support of f



Rule of thumb (!)

In small dimensions, aim at an
average acceptance rate of 50%. In
large dimensions, at an average
acceptance rate of 25%.

[Gelman,Gilks and Roberts, 1995]
Remark: Equivalent goal for MALA
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Illustration

Example (Noisy AR(1) continued)

For a Gaussian random walk with scale ω small enough, the
random walk never jumps to the other mode. But if the scale ω is
sufficiently large, the Markov chain explores both modes and give a
satisfactory approximation of the target distribution.



Markov chain based on a random walk with scale ω = .1.



Markov chain based on a random walk with scale ω = .5.



The Gibbs Sampler

MCMC # 2: Gibbs Sampling
General Principles
Completion
Convergence
The Hammersley-Clifford
theorem
Improper Priors



General Principles

A very specific simulation algorithm based on the target
distribution f :

1. Uses the conditional densities f1, . . . , fp from f

2. Start with the random variable X = (X1, . . . , Xp)

3. Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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General Principles

Algorithm (Gibbs sampler)

Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

. . .

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

X(t+1) → X ∼ f



Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate
The Gibbs sampler is not reversible with respect to f . However,
each of its p components is. Besides, it can be turned into a
reversible sampler, either using the Random Scan Gibbs sampler

see section or running instead the (double) sequence

f1 · · · fp−1fpfp−1 · · · f1
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A Very Simple Example: Independent N (µ, σ2)
Observations

When Y1, . . . , Yn
iid∼ N (y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard familly

But...

µ|Y 0:n, σ
2 ∼ N

(
µ
∣∣∣ 1
n

∑n
i=1 Yi,

σ2

n )

σ2|Y 1:n, µ ∼ IG
(
σ2
∣∣n

2 − 1, 1
2

∑n
i=1(Yi − µ)2

)
assuming constant (improper) priors on both µ and σ2

I Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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A Very Simple Example: Independent N (µ, σ2)
Observations

R Gibbs Sampler for Gaussian posterior

n = length(Y);

S = sum(Y);

mu = S/n;

for (i in 1:500)

S2 = sum((Y-mu)^2);

sigma2 = 1/rgamma(1,n/2-1,S2/2);

mu = S/n + sqrt(sigma2/n)*rnorm(1);



Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500
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Limitations of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with
acceptance rate uniformly equal to 1.
The Gibbs sampler

1. limits the choice of instrumental distributions

2. requires some knowledge of f

3. is, by construction, multidimensional

4. does not apply to problems where the number of parameters
varies as the resulting chain is not irreducible.
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Latent variables to the rescue

The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if∫

Z
g(x, z) dz = f(x)

Note

The variable z may be meaningless for the problem
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Purpose

g should have full conditionals that are easy to simulate for a
Gibbs sampler to be implemented with g rather than f

For p > 1, write y = (x, z) and denote the conditional densities of
g(y) = g(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ g1(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ g2(y2|y1, y3, . . . , yp),

. . . ,

Yp|y1, . . . , yp−1 ∼ gp(yp|y1, . . . , yp−1).



Purpose

The move from Y (t) to Y (t+1) is defined as follows:

Algorithm (Completion Gibbs sampler)

Given (y
(t)
1 , . . . , y

(t)
p ), simulate

1. Y
(t+1)

1 ∼ g1(y1|y(t)
2 , . . . , y

(t)
p ),

2. Y
(t+1)

2 ∼ g2(y2|y(t+1)
1 , y

(t)
3 , . . . , y

(t)
p ),

. . .

p. Y
(t+1)
p ∼ gp(yp|y(t+1)

1 , . . . , y
(t+1)
p−1 ).



A wee problem

−1 0 1 2 3 4

−
1

0
1

2
3

4

µ1

µ
2

Gibbs started at random

Gibbs stuck at the wrong model

−1 0 1 2 3

−
1

0
1

2
3

µ1

µ
2



Random Scan Gibbs sampler

back to basics don’t do random

Modification of the above Gibbs sampler where, with probability
1/p, the i-th component is drawn from fi(xi|X−i), ie when the
components are chosen at random

Motivation

The Random Scan Gibbs sampler is reversible.



Slice sampler as generic Gibbs

If f(θ) can be written as a product

k∏
i=1

fi(θ),

it can be completed as

k∏
i=1

I0≤ωi≤fi(θ),

leading to the following Gibbs algorithm:
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Slice sampler

Algorithm (Slice sampler)

Simulate

1. ω
(t+1)
1 ∼ U[0,f1(θ(t))];

. . .

k. ω
(t+1)
k ∼ U[0,fk(θ(t))];

k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω(t+1)
i , i = 1, . . . , k}.



Example of results with a truncated N (−3, 1) distribution
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Good slices

The slice sampler usually enjoys good theoretical properties (like
geometric ergodicity and even uniform ergodicity under bounded f
and bounded X ).
As k increases, the determination of the set A(t+1) may get
increasingly complex.



Slice sampler: illustration

Example (Stochastic volatility core distribution)

Difficult part of the stochastic volatility model

π(x) ∝ exp−
{
σ2(x− µ)2 + β2 exp(−x)y2 + x

}
/2 ,

simplified in exp−
{
x2 + α exp(−x)

}
Slice sampling means simulation from a uniform distribution on

A =
{
x; exp−

{
x2 + α exp(−x)

}
/2 ≥ u

}
=

{
x;x2 + α exp(−x) ≤ ω

}
if we set ω = −2 log u.
Note Inversion of x2 + α exp(−x) = ω needs to be done by
trial-and-error.
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Slice sampler: illustration
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Properties of the Gibbs sampler

Theorem (Convergence)

For
(Y1, Y2, · · · , Yp) ∼ g(y1, . . . , yp),

if either
[Positivity condition]

(i) g(i)(yi) > 0 for every i = 1, · · · , p, implies that
g(y1, . . . , yp) > 0, where g(i) denotes the marginal distribution
of Yi, or

(ii) the transition kernel is absolutely continuous with respect to g,

then the chain is irreducible and positive Harris recurrent.



Properties of the Gibbs sampler (2)

Consequences

(i) If
∫
h(y)g(y)dy <∞, then

lim
nT→∞

1

T

T∑
t=1

h1(Y (t)) =

∫
h(y)g(y)dy a.e. g.

(ii) If, in addition, (Y (t)) is aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(y, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ.



Slice sampler

fast on that slice

For convergence, the properties of Xt and of f(Xt) are identical

Theorem (Uniform ergodicity)

If f is bounded and suppf is bounded, the simple slice sampler is
uniformly ergodic.

[Mira & Tierney, 1997]



A small set for a slice sampler

no slice detail

For ε? > ε?,
C = {x ∈ X ; ε? < f(x) < ε?}

is a small set:
Pr(x, ·) ≥ ε?

ε?
µ(·)

where

µ(A) =
1

ε?

∫ ε?

0

λ(A ∩ L(ε))

λ(L(ε))
dε

if L(ε) = {x ∈ X ; f(x) > ε}‘
[Roberts & Rosenthal, 1998]



Slice sampler: drift

Under differentiability and monotonicity conditions, the slice
sampler also verifies a drift condition with V (x) = f(x)−β, is
geometrically ergodic, and there even exist explicit bounds on the
total variation distance

[Roberts & Rosenthal, 1998]

Example (Exponential Exp(1))
For n > 23,

||Kn(x, ·)− f(·)||TV ≤ .054865 (0.985015)n (n− 15.7043)
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Slice sampler: convergence

no more slice detail

Theorem

For any density such that

ε
∂

∂ε
λ ({x ∈ X ; f(x) > ε}) is non-increasing

then
||K523(x, ·)− f(·)||TV ≤ .0095

[Roberts & Rosenthal, 1998]



A poor slice sampler

Example

Consider

f(x) = exp {−||x||} x ∈ Rd

Slice sampler equivalent to
one-dimensional slice sampler on

π(z) = zd−1 e−z z > 0

or on

π(u) = e−u
1/d

u > 0

Poor performances when d large
(heavy tails)
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Hammersley-Clifford theorem

An illustration that conditionals determine the joint distribution

Theorem

If the joint density g(y1, y2) have conditional distributions
g1(y1|y2) and g2(y2|y1), then

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

[Hammersley & Clifford, circa 1970]



General HC decomposition

Under the positivity condition, the joint distribution g satisfies

g(y1, . . . , yp) ∝
p∏
j=1

g`j (y`j |y`1 , . . . , y`j−1
, y′`j+1

, . . . , y′`p)

g`j (y
′
`j
|y`1 , . . . , y`j−1

, y′`j+1
, . . . , y′`p)

for every permutation ` on {1, 2, . . . , p} and every y′ ∈ Y .



Rao-Blackwellization

If (y1, y2, . . . , yp)
(t), t = 1, 2, . . . T is the output from a Gibbs

sampler

δ0 =
1

T

T∑
t=1

h
(
y

(t)
1

)
→
∫
h(y1)g(y1)dy1

and is unbiased.
The Rao-Blackwellization replaces δ0 with its conditional
expectation

δrb =
1

T

T∑
t=1

E
[
h(Y1)|y(t)

2 , . . . , y(t)
p

]
.
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Rao-Blackwellization (2)

Then

◦ Both estimators converge to E[h(Y1)]

◦ Both are unbiased,

◦ and
var
(
E
[
h(Y1)|Y (t)

2 , . . . , Y (t)
p

])
≤ var(h(Y1)),

so δrb is uniformly better (for Data Augmentation)
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Examples of Rao-Blackwellization

Example

Bivariate normal Gibbs sampler

X | y ∼ N (ρy, 1− ρ2)

Y | x ∼ N (ρx, 1− ρ2).

Then

δ0 =
1

T

T∑
i=1

X(i) and δ1 =
1

T

T∑
i=1

E[X(i)|Y (i)] =
1

T

T∑
i=1

%Y (i),

estimate E[X] and σ2
δ0
/σ2

δ1
= 1

ρ2
> 1.



Examples of Rao-Blackwellization (2)

Example (Poisson-Gamma Gibbs cont’d)

Näıve estimate

δ0 =
1

T

T∑
t=1

λ(t)

and Rao-Blackwellized version

δπ =
1

T

T∑
t=1

E[λ(t)|x1, x2, . . . , x5, y
(i)
1 , y

(i)
2 , . . . , y

(i)
13 ]

=
1

360T

T∑
t=1

(
313 +

13∑
i=1

y
(t)
i

)
,

back to graph



NP Rao-Blackwellization & Rao-Blackwellized NP

Another substantial benefit of Rao-Blackwellization is in the
approximation of densities of different components of y without
nonparametric density estimation methods.

Lemma

The estimator

1

T

T∑
t=1

gi(yi|y(t)
j , j 6= i) −→ gi(yi),

is unbiased.



NP Rao-Blackwellization & Rao-Blackwellized NP

Another substantial benefit of Rao-Blackwellization is in the
approximation of densities of different components of y without
nonparametric density estimation methods.

Lemma

The estimator

1

T

T∑
t=1

gi(yi|y(t)
j , j 6= i) −→ gi(yi),

is unbiased.



Improper priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated



Improper priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated



Improper priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated



Improper priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution
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Improper posteriors

Example (Conditional exponential distributions)

For the model

X1|x2 ∼ E xp(x2) , X2|x1 ∼ E xp(x1)

the only candidate f(x1, x2) for the joint density is

f(x1, x2) ∝ exp(−x1x2),

but ∫
f(x1, x2)dx1dx2 =∞

c© These conditionals do not correspond to a joint
probability distribution



Improper posteriors

Example (Improper random effects)

Consider

Yij = µ+ αi + εij , i = 1, . . . , I, j = 1, . . . , J,

where
αi ∼ N (0, σ2) and εij ∼ N (0, τ2),

the Jeffreys (improper) prior for the parameters µ, σ and τ is

π(µ, σ2, τ2) =
1

σ2τ2
.



Improper posteriors

Example (Improper random effects 2)

The conditional distributions

αi|y, µ, σ2, τ2 ∼ N
(
J(ȳi − µ)

J + τ2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ2 ∼ N (ȳ − ᾱ, τ2/JI) ,

σ2|α, µ, y, τ2 ∼ IG

(
I/2, (1/2)

∑
i

α2
i

)
,

τ2|α, µ, y, σ2 ∼ IG

IJ/2, (1/2)
∑
i,j

(yij − αi − µ)2

 ,

are well-defined and a Gibbs sampler can be easily implemented in
this setting.



Improper posteriors
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Example (Improper random
effects 2)

The figure shows the sequence of
µ(t)’s and its histogram over
1, 000 iterations. They both fail
to indicate that the
corresponding “joint distribution”
does not exist



Final notes on impropriety

The improper posterior Markov chain
cannot be positive recurrent

The major task in such settings is to find indicators that flag that
something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.

Example

The random effects model was initially treated in Gelfand & al
(1990) as a legitimate model
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Sequential importance sampling

MCMC # 3: Sequential Monte Carlo
Adaptive MCMC
Importance sampling revisited
Population Monte Carlo
pseudo-marginal extension



Adaptive MCMC may be hazardous to your ergodicity!

 Algorithms trained on-line usually invalid:
using the whole past of the “chain” implies that this is no longer a
Markov chain! !
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Illustration

Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑
i=1

θ(i) and σ2
t =

1

t

t∑
i=1

(θ(i) − µt)2 ,

Metropolis–Hastings algorithm with acceptance probability

n∏
j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ ∼ N (µt, σ
2
t ).
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Illustration

Example (Poly t distribution (2))

Invalid scheme:

I when range of initial values too small, the θ(i)’s cannot
converge to the target distribution and concentrates on too
small a support.

I long-range dependence on past values modifies the
distribution of the sequence.

I using past simulations to create a non-parametric
approximation to the target distribution does not work either



Illustration
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Adaptive scheme for a sample of 10 xj ∼ T3 and initial
variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5.



Illustration
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Comparison of the distribution of an adaptive scheme sample
of 25, 000 points with initial variance of 2.5 and of the target
distribution.



Illustration
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Sample produced by 50, 000 iterations of a nonparametric
adaptive MCMC scheme and comparison of its distribution
with the target distribution.



Simply forget about it!

Warning:
One should not constantly adapt the proposal on past
performances

Either adaptation ceases after a period of burnin
or the adaptive scheme must be theoretically assessed on its own
right.



Importance sampling revisited

Approximation of integrals back to basic importance

I =

∫
h(x)π(x)dx

by unbiased estimators

Î =
1

n

n∑
i=1

%ih(xi)

when

x1, . . . , xn
iid∼ q(x) and %i

def
=

π(xi)

q(xi)



Pros and cons of importance sampling vs. MCMC

I Production of a weighted sample (IS) vs. of a Markov chain
(MCMC)

I Dependence on importance function (IS) vs. on previous value
(MCMC)

I Unbiasedness (IS) vs. convergence to the true distribution
(MCMC)

I Variance control (IS) vs. learning costs (MCMC)

I Recycling of past simulations (IS) vs. progressive adaptability
(MCMC)

I Processing of moving targets (IS) vs. handling large
dimensional problems (MCMC)

I curse of dimensionality (IS) vs. tall and big data (MCMC)



Population Monte Carlo

Idea

Simulate from the product distribution

π
⊗
n(x1, . . . , xn) =

n∏
i=1

π(xi)

and apply dynamic importance sampling to the sample
(a.k.a. population)

x(t) = (x
(t)
1 , . . . , x(t)

n )



Iterated importance sampling

As in Markov Chain Monte Carlo (MCMC) algorithms,
introduction of a temporal dimension :

x
(t)
i ∼ qt(x|x

(t−1)
i ) i = 1, . . . , n, t = 1, . . .

and

Ît =
1

n

n∑
i=1

%
(t)
i h(x

(t)
i )

is still unbiased for

%
(t)
i =

πt(x
(t)
i )

qt(x
(t)
i |x

(t−1)
i )

, i = 1, . . . , n



Fundamental importance equality

Preservation of unbiasedness

E
[
h(X(t))

π(X(t))

qt(X(t)|X(t−1))

]

=

∫
h(x)

π(x)

qt(x|y)
qt(x|y) g(y) dx dy

=

∫
h(x)π(x) dx

for any distribution g on X(t−1)



Sequential variance decomposition

Furthermore,

var
(
Ît

)
=

1

n2

n∑
i=1

var
(
%

(t)
i h(x

(t)
i )
)
,

if var
(
%

(t)
i

)
exists, because the x

(t)
i ’s are conditionally uncorrelated

Note

This decomposition is still valid for correlated [in i] x
(t)
i ’s when

incorporating weights %
(t)
i



Simulation of a population

The importance distribution of the sample (a.k.a. particles) x(t)

qt(x
(t)|x(t−1))

can depend on the previous sample x(t−1) in any possible way as
long as marginal distributions

qit(x) =

∫
qt(x

(t)) dx
(t)
−i

can be expressed to build importance weights

%it =
π(x

(t)
i )

qit(x
(t)
i )



Special case of the product proposal

If

qt(x
(t)|x(t−1)) =

n∏
i=1

qit(x
(t)
i |x

(t−1))

[Independent proposals]
then

var
(
Ît

)
=

1

n2

n∑
i=1

var
(
%

(t)
i h(x

(t)
i )
)
,



Validation

skip validation

E
[
%

(t)
i h(X

(t)
i ) %

(t)
j h(X

(t)
j )
]

=

∫
h(xi)

π(xi)

qit(xi|x(t−1))

π(xj)

qjt(xj |x(t−1))
h(xj)

qit(xi|x(t−1)) qjt(xj |x(t−1)) dxi dxj g(x(t−1))dx(t−1)

= Eπ [h(X)]2

whatever the distribution g on x(t−1)



Self-normalised version

In general, π is unscaled and the weight

%
(t)
i ∝

π(x
(t)
i )

qit(x
(t)
i )

, i = 1, . . . , n ,

is scaled so that ∑
i

%
(t)
i = 1



Self-normalised version properties

I Loss of the unbiasedness property and the variance
decomposition

I Normalising constant can be estimated by

$t =
1

tn

t∑
τ=1

n∑
i=1

π(x
(τ)
i )

qiτ (x
(τ)
i )

I Variance decomposition (approximately) recovered if $t−1 is
used instead



Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]

Theorem (Bootstraped importance sampling)

If a sample (x?i )1≤i≤m is derived from the weighted sample
(xi, %i)1≤i≤n by multinomial sampling with weights %i, then

x?i ∼ π(x)

Note

Obviously, the x?i ’s are not iid
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Iterated sampling importance resampling

This principle can be extended to iterated importance sampling:
After each iteration, resampling produces a sample from π

[Again, not iid!]

Incentive

Use previous sample(s) to learn about π and q



Iterated sampling importance resampling

This principle can be extended to iterated importance sampling:
After each iteration, resampling produces a sample from π

[Again, not iid!]

Incentive

Use previous sample(s) to learn about π and q



Generic Population Monte Carlo

Algorithm (Population Monte Carlo Algorithm)

For t = 1, . . . , T

For i = 1, . . . , n,

1. Select the generating distribution qit(·)
2. Generate x̃

(t)
i ∼ qit(x)

3. Compute %
(t)
i = π(x̃

(t)
i )/qit(x̃

(t)
i )

Normalise the %
(t)
i ’s into %̄

(t)
i ’s

Generate Ji,t ∼M((%̄
(t)
i )1≤i≤N ) and set xi,t = x̃

(t)
Ji,t



D-kernels in competition

A general adaptive construction:

Construct qi,t as a mixture of D different transition kernels

depending on x
(t−1)
i

qi,t =

D∑
`=1

pt,`K`(x
(t−1)
i , x),

D∑
`=1

pt,` = 1 ,

and adapt the weights pt,`.

Example

Take pt,` proportional to the survival rate of the points

(a.k.a. particles) x
(t)
i generated from K`
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Implementation

Algorithm (D-kernel PMC)

For t = 1, . . . , T

generate (Ki,t)1≤i≤N ∼M ((pt,k)1≤k≤D)

for 1 ≤ i ≤ N , generate

x̃i,t ∼ KKi,t(x)

compute and renormalize the importance weights ωi,t

generate (Ji,t)1≤i≤N ∼M ((ωi,t)1≤i≤N )

take xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tId(Ki,t)



Links with particle filters

I Usually setting where π = πt changes with t: Population
Monte Carlo also adapts to this case

I Can be traced back all the way to Hammersley and Morton
(1954) and the self-avoiding random walk problem

I Gilks and Berzuini (2001) produce iterated samples with (SIR)
resampling steps, and add an MCMC step: this step must use
a πt invariant kernel

I Chopin (2001) uses iterated importance sampling to handle
large datasets: this is a special case of PMC where the qit’s
are the posterior distributions associated with a portion kt of
the observed dataset



Links with particle filters (2)

I Rubinstein and Kroese’s (2004) cross-entropy method is
parameterised importance sampling targeted at rare events

I Stavropoulos and Titterington’s (1999) smooth bootstrap and
Warnes’ (2001) kernel coupler use nonparametric kernels on
the previous importance sample to build an improved
proposal: this is a special case of PMC

I West (1992) mixture approximation is a precursor of smooth
bootstrap

I Mengersen and Robert (2002) “pinball sampler” is an MCMC
attempt at population sampling

I Del Moral and Doucet (2003) sequential Monte Carlo
samplers also relates to PMC, with a Markovian dependence
on the past sample x(t) but (limited) stationarity constraints



Things can go wrong

Unexpected behaviour of the mixture weights when the number of
particles increases

N∑
i=1

ω̄i,tIKi,t=d−→P
1

D

Conclusion

At each iteration, every weight converges to 1/D:
the algorithm fails to learn from experience!!
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Saved by Rao-Blackwell!!

Modification: Rao-Blackwellisation (=conditioning)

Use the whole mixture in the importance weight:

ωi,t = π(x̃i,t)
/ D∑
d=1

pt,dKd(xi,t−1, x̃i,t)

instead of

ωi,t =
π(x̃i,t)

KKi,t(xi,t−1, x̃i,t)
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Adapted algorithm

Algorithm (Rao-Blackwellised D-kernel PMC)

At time t (t = 1, . . . , T ),

Generate
(Ki,t)1≤i≤N

iid∼ M((pt,d)1≤d≤D);

Generate
(x̃i,t)1≤i≤N

ind∼ KKi,t(xi,t−1, x)

and set ωi,t = π(x̃i,t)

/∑D
d=1 pt,dKd(xi,t−1, x̃i,t);

Generate
(Ji,t)1≤i≤N

iid∼ M((ω̄i,t)1≤i≤N )

and set xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tpt,d.



Convergence properties

Theorem (LLN)

Under regularity assumptions, for h ∈ L1
Π and for every t ≥ 1,

1

N

N∑
k=1

ω̄i,th(xi,t)
N→∞−→P Π(h)

and
pt,d

N→∞−→P α
t
d

The limiting coefficients (αtd)1≤d≤D are defined recursively as

αtd = αt−1
d

∫ (
Kd(x, x

′)∑D
j=1 α

t−1
j Kj(x, x′)

)
Π⊗Π(dx, dx′).



Recursion on the weights

Set F as

F (α) =

(
αd

∫ [
Kd(x, x

′)∑D
j=1 αjKj(x, x

′)

]
Π⊗Π(dx, dx′)

)
1≤d≤D

on the simplex

S =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑
d=1

αd = 1

}
.

and define the sequence

αt+1 = F (αt)



Kullback divergence

Definition (Kullback divergence)

For α ∈ S,

KL(α) =

∫ [
log

(
π(x)π(x′)

π(x)
∑D

d=1 αdKd(x, x
′)

)]
Π⊗Π(dx, dx′).

Kullback divergence between Π and the mixture.

Goal: Obtain the mixture closest to Π, i.e., that minimises KL(α)



Connection with RBDPMCA ??

Theorem

Under the assumption

∀d ∈ {1, . . . , D},−∞ <

∫
log(Kd(x, x

′))Π⊗Π(dx, dx′) <∞

for every α ∈ SD,

KL(F (α)) ≤ KL(α).

Conclusion

The Kullback divergence decreases at every iteration of RBDPMCA
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Illustration

Example (A toy example)

Take the target

1/4N (−1, 0.3)(x) + 1/4N (0, 1)(x) + 1/2N (3, 2)(x)

and use 3 proposals: N (−1, 0.3), N (0, 1) and N (3, 2)
[Surprise!!!]

Then

1 0.0500000 0.05000000 0.9000000
2 0.2605712 0.09970292 0.6397259
6 0.2740816 0.19160178 0.5343166
10 0.2989651 0.19200904 0.5090259
16 0.2651511 0.24129039 0.4935585

Weight evolution
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Illustration

Target and mixture evolution



intractable and doubly-intractable likelihoods

Many settings where numerically computing target density π(·) is
impossible, even up a normalising constant
Example of doubly intractable likelihoods, when likelihood function
contains intractable non-constant term

`(θ|x) ∝ g(x|θ)

and intractable normalising constant

Z(θ) =

∫
X
g(x|θ) dx

See for instance Ising model



pseudo-marginal extension

Approach based on unbiased estimator of π(·|x) and retaining
Metropolis–Hastings validity
If π̂(θ|z) is unbiased estimator of π(θ) when z ∼ q(·|θ)

∫
Z

same θ︷ ︸︸ ︷
π̂(θ|z)q(·|θ) dz = π(θ)

then acceptance ratio

π̂(θ∗|z∗)q(z∗|θ∗)
π̂(θ|z)q(z|θ)

q(θ∗, θ)q(z|θ)
q(θ, θ∗)q(z∗|θ∗)

c© preserves stationarity wrt extended target
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pseudo-marginal extension

Approach based on unbiased estimator of π(·|x) and retaining
Metropolis–Hastings validity
If π̂(θ|z) is unbiased estimator of π(θ) when z ∼ q(·|θ)

∫
Z

same θ︷ ︸︸ ︷
π̂(θ|z)q(·|θ) dz = π(θ)

then acceptance ratio

π̂(θ∗|z∗)q(z∗|θ∗)
π̂(θ|z)q(z|θ)

q(θ∗, θ)q(z|θ)
q(θ, θ∗)q(z∗|θ∗)

c© preserves stationarity wrt extended target
Reason: auxiliary variable z makes simulation of joint (θ, z) a
regular Metropolis-Hastings move

[Beaumont & al, 2003; Andrieu & Roberts, 2009]



pseudo-marginal extension

Approach based on unbiased estimator of π(·|x) and retaining
Metropolis–Hastings validity
If π̂(θ|z) is unbiased estimator of π(θ) when z ∼ q(·|θ)

∫
Z

same θ︷ ︸︸ ︷
π̂(θ|z)q(·|θ) dz = π(θ)

then acceptance ratio

π̂(θ∗|z∗)q(z∗|θ∗)
π̂(θ|z)q(z|θ)

q(θ∗, θ)q(z|θ)
q(θ, θ∗)q(z∗|θ∗)

c© preserves stationarity wrt extended target
Performances depend on quality of estimators π̂ but always poorer
than when using the exact target π

[Andrieu & Vihola, 2012]



Alternative explanation

Take importance weight

w = π̂(θ|z)
/
π(θ)

as auxiliary variable with constant conditional expectation c and
distribution p(w|θ)
Corresponding joint proposal q(θ, θ∗)p(w∗|θ∗) and associated
acceptance proposal

w∗π(θ∗)p(w∗|θ∗)× q(θ∗, θ)p(w|θ)
wπ(θ)p(w|θ)× q(θ, θ∗)p(w∗|θ∗)

leads to joint target (proportional to)

π(θ)w p(w|x)

with marginal π(θ)
[Andrieu & Roberts, 2009; Wilkinson, 2010]



Illustration: particle MCMC

Hidden Markov model, where latent Markov chain x0:T with
density

p0(x0|θ)p1(x1|x0, θ) · · · pT (xT |xT−1, θ) ,

associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼
T∏
i=1

qi(yi|xi, θ) ,

pMCMC

At iteration t

I propose value θ′ ∼ h(θ|θ(t))

[Andrieu, Doucet & Holenstein, 2010]



Illustration: particle MCMC

Hidden Markov model, where latent Markov chain x0:T with
density

p0(x0|θ)p1(x1|x0, θ) · · · pT (xT |xT−1, θ) ,

associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼
T∏
i=1

qi(yi|xi, θ) ,

pMCMC

At iteration t

I propose value of latent series x′0:T via particle filter
approximation of p(x0:T |θ′, y1:T )

[Andrieu, Doucet & Holenstein, 2010]



Illustration: particle MCMC

Hidden Markov model, where latent Markov chain x0:T with
density

p0(x0|θ)p1(x1|x0, θ) · · · pT (xT |xT−1, θ) ,

associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼
T∏
i=1

qi(yi|xi, θ) ,

pMCMC

At iteration t

I derive unbiased estimator of marginal posterior of y1:T ,
q̂(y1:T |θ′)

[Andrieu, Doucet & Holenstein, 2010]



Illustration: particle MCMC

Hidden Markov model, where latent Markov chain x0:T with
density

p0(x0|θ)p1(x1|x0, θ) · · · pT (xT |xT−1, θ) ,

associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼
T∏
i=1

qi(yi|xi, θ) ,

pMCMC

At iteration t

I use estimator in Metropolis–Hastings ratio

q̂(y1:T |θ′)π(θ′)h(θ(t)|θ′)
q̂(y1:T |θ)π(θ(t))h(θ′|θ(t))

∧ 1 .

[Andrieu, Doucet & Holenstein, 2010]



Illustration: particle MCMC

Hidden Markov model, where latent Markov chain x0:T with
density

p0(x0|θ)p1(x1|x0, θ) · · · pT (xT |xT−1, θ) ,

associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼
T∏
i=1

qi(yi|xi, θ) ,

[Andrieu, Doucet & Holenstein, 2010]

Extension of pMCMC called SMC2 that approximates sequential
filtering distribution proposed in Chopin et al (2013)



Next iterations for MCMC?

I intractability or double intractability of the target: is ABC the
only solution?

I non reversible versions of MCMC like NUTS and Hamiltonian
Monte Carlo (STAN)

I scalable MCMC (divide-and-conquer)

I approximate and noisy MCMC

I asynchronous Gibbs samplers

I zero variance MCMC
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