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1 Basics on Importance sampling




Importance sampling
Aim
Approximate a target distribution II(dz) = 7(x)dx with a weighted Monte
Carlo sample:

1 N

by sampling from an instrumental distribution Q(dz) = g(x) du:

35 I Q and w; =w(x;) = w(ml)/q(xz)




Importance sampling
Aim
Approximate a target distribution II(dz) = 7(x)dx with a weighted Monte

Carlo sample:
1 &
= 2wl

by sampling from an instrumental distribution Q(dz) = g(x) du:

35 I Q and w; =w(x;) = 71'(931)/‘1(%)

e Approximating the target means that, for a large class of function 1,

/w(x) (dzx) ~—sz x;)



Importance sampling
Aim
Approximate a target distribution II(dz) = 7(x)dx with a weighted Monte
Carlo sample:

1 N

by sampling from an instrumental distribution Q(dz) = g(x) du:

35 I Q and w; =w(x;) = 71'(931)/‘1(5”1)

e Approximating the target means that, for a large class of function 1,

N
1
[ wtaman) ~ > v(e)
o If TI(dz) < Q(dz), the approximation is unbiased:

/w(m)ﬂ(m) dx = /w(m)%q(aﬂ) dx
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Importance sampling (2)

Accuracy depends heavily on the spread of the w;'s:
1 ifwl :O( )and we < 1,...,wy K 1, then

sz i) N"/’(ml)

:> same accuracy as a Monte Carlo sample of size 1

2 ifQ=1II, thenwi =...=wny =1
= same accuracy as a Monte Carlo sample of size N

N 2 N
ESS = <Zwl> /wa
i=1 i=1

Effective Sample Size

v ifw =0O(N)and we € 1,...,wy < 1, then ESS ~ 1
2 fwi=...=wny =1, then ESS=N
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Multiple Importance Sampling

At our disposal: T instrumental distributions Q*(dx) = ¢*(z)dx, t =1,...,T

Several instrumental distributions

Qr = N1 + ...+ Nr simulations from T' instrumental distributions:

:ci, A »T}vl i q1 (z)dz and wi = ﬂ(:c%)/ql (:cll)

a:f, . ,x%T NIl qT(:L‘)dx and wl = ﬂ(xzﬂ)/qT(:czﬂ)
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Qr = N1 + ...+ Nr simulations from T instrumental distributions:
T1,...,xn, ~° ¢ (z)de and w; = 7(z})/q" (z})
z1,... ,x%T ~ T () da and wi =7 (z])/q" (x])
| LN
e Merge weighted samples: I =~ o Z wa(;mt_
T t=1 i=1 ’

e s still unbiased
e But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among J

QY ...,Q".
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& replace all weights with @} = 7(}) /qmixt (2})



Multiple Importance Sampling (2)

Several instrumental distributions

Qr = N1 + ...+ Np simulations from T instrumental distributions:

1,z ~ g (@)de and wi = (i) /¢! (7)
ol ahy ~ g (@)de and wi = m(2])/q" ()
N
o Interpret all ¢ as drawn from the mixture gmix(z Z Q—

& replace all weights with @} = 7(}) /qmixt (2})

o Stabilises the approximation by reducing the variance of the weights
& remains unbiased

[Veach and Guibas (1995); Owen and Zhou (2000)]
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Multiple Importance Sampling (3)

Why does the above trick stabilize the approximation?

o wi =7(xl)/q" (xh) is large when ¢'(x}) < m(zf)

e which means that z! is in the tail of ¢* and
1 either xf is not in the tail of the target II
2 or IT has larger tails than the instrumental Q*

T
Ny 4

e The mixture distribution Qmix: of density gmix(z) = q (z):

Q
t=1 T

1 has relatively high density as soon as one of the instrumentals has relatively
high density
2 has tails which decrease as the instrumental of largest tails.

The clever merging with “mixture” weights inherits properties of the best
instrumental distributions among @, ..., QT. J
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Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,x}vl from Q(61) where 6, is a first guess

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,x}vl from Q(61) where 6, is a first guess

Ny
PN 1 L

Adapt 0 with 0 = — “h(x;
. apt 6 wi o N igzl w; h(z;)

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,m}vl from Q(é\l) where 9\1 is a first guess
1 &
e Adapt 0 with 62 = A ;wllh(atzl)

e Draw a second sample z2, ... ,m?\,Z from Q(62)

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,m}vl from Q(é\l) where 9\1 is a first guess
1 &
e Adapt 0 with 62 = A Zwllh(atzl)
i=1
e Draw a second sample z2, ... ,m?\,Z from Q(éAb)

N2
o~ 1
o Adapt 0 with 05 = A ;w?h(az?)

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,m}vl from Q(61) where 6, is a first guess

Ny
PN 1 L

Adapt 0 with 0 = — “h(x;
apt 6 wi o N igzl w; h(z;)

e Draw a second sample z2, ... ,m?\,Z from Q(62)

N2
o~ 1
Adapt 0 with 05 = A ;w?h(az?)

Draw a third sample ...

10/21



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from zi, ... ,m}vl from Q(61) where 6, is a first guess

Ny
PN 1 L

Adapt 0 with 0 = — “h(x;
apt 6 wi > N igzl w; h(z;)

e Draw a second sample z2, ... ’m?\fz from Q(62)

N2
o~ 1
Adapt 0 with 05 = A ;w?h(azf)

Draw a third sample .

)

Return the last sample —_— ZwZT5 T



Adaptive Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) w(z)dz, where h is known.

o Draw a first sample from z3, ..., m}vl from Q(61) where 6, is a first guess

Ny
PN 1 L

Adapt 0 with 0 = — “h(x;
apt 6 wi > N igzl w; h(z;)

e Draw a second sample z2, ... ’m?\fz from Q(62)

N2
o~ 1
Adapt 0 with 05 = A ;w?h(azf)

Draw a third sample .

)

Return the last sample —_— ZwZT5 T

Can we do better with merging?



Adaptive Multiple Importance Sampling
Adaptive
A parametrized family of distributions: {Q(6), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0° = [ h(z) 7(z)dz, where h is known.

o Draw a first sample from zi, ... ,m}vl from Q(61) where 6, is a first guess

Ny
PN 1 L

Adapt 0 with 0 = — “h(x;
apt 6 wi > A igzl w; h(z;)

e Draw a second sample m%, .. ,gc?VZ from Q(éAb)
o Adapt 0 with 03 = w , with “mixture” weights
e Draw a third sample . ..
T N
- Return the whole sample — ZZ Wy, 6 £ with “mixture” weights
t=1 1=1

[Cornuet, Marin, Mira, Robert (2012)]
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Adaptive Multiple Importance Sampling (2)

e AMIS uses a clever recycling strategy (“mixture” weights)
1 at the end of the t-iteration to adapting 6:

Ory1 = Z th(x where @ = ﬂ(xf)/ > %q(a}f,@
t

s=1i=1 r=1
2 at the end of the algorithm to compute the final weights of the output

T N,

o ZZLU by where @] = /Z —q(wl,&

s=11i=1 r=1
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Adaptive Multiple Importance Sampling (2)

e AMIS uses a clever recycling strategy (“mixture” weights)
1 at the end of the t-iteration to adapting 6:

- Z Z?Z”h(x where w$ = n(xé)/ Z (x$,0,)

s=14=1 r=1

2 at the end of the algorithm to compute the final weights of the output

T N
Z Z w; 6 s where W] = /Z —q(wl,&
QT s=114=1 r=1

e AMIS has good numerical properties, see, e.g.,
Cornuet, Marin, Mira and Robert (2012)
Sirén, Marttinen and Corander (2011)

Smidl and Hofman (2013)

Bugallo, Martino and Corander (2015)
Martino, Elvira, Luengo and Corander (2015)

e But no proof of AMIS’ consistency



A strange dependency
Why is it difficult?

e At time t, 0 is adapted with

t Ng t
o 1 ~5 s ~5 s NT s 1
0111 = &% E E w; h(z7) where @; = ﬂ(xi)/1§:1 qu(xi,@r)

s=11i=1
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A strange dependency
Why is it difficult?

e At time t, 0 is adapted with

N 1< N . . . . t A . A
Orr1 = o quuih(xi) where w; = n(ml)/; Q—tq(m’i,&)

s=11i=1
- @+1 depends on the whole set of simulations
> the weight @1 of the first x1 in §t+1 depends on the whole set of
simulations via 05, s =1,...,¢

- cannot even compute E<§f4> and study the bias E<§f4> — 0"

e Same issues with the output

- cannot even study the bias between

T Nr

QLTZ w7 p(z5)  and /w(w)w(w)dw

s=11=1

on test functions ¥

13/21
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Joint work with

(U. Paris Sud)

& Mohammed Sedki

Jean-Michel Marin (U. Montpellier)

i _

E |

=
P

Consistency of Adaptive Importance Sampling and Recycling Schemes,
http://arxiv.org/abs/1211.2548
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Modified Adaptive Multiple Importance Sampling
Adaptive
A parametrized family of distributions: {Q(0), 6 € ©}
& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution 0* = [ h(z)w(z) dz, where h is known.

o Draw a first sample from i, ... ,m}vl from Q(@) where 0, is a first guess

Ny
. o~ 1 1 1
Adapt 0 with 0; = — E ; h(x;
ap wi 2 N, v w; (271)

o Draw a second sample z2, ... ,m?vz from Q(6-2)

N2
. ~ 1 2 2 .
Adapt 0 with 03 = — “h(x; | h
apt 6 with 03 ~ igzl wih(z;) (no recycling here)

e Draw a third sample ...
;| I
Return the whole sample o Z Zﬁv’:&z: with “mixture” weights

t=1 i=1

2

16
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Modified Adaptive Multiple Importance Sampling (2)

o MAMIS uses a clever recycling strategy (“mixture” weights)
only at the end of the algorithm to compute the weights of the output:

T Ns

QTZszss where w; = 7(xf /Z—q(wz,é‘

s=11i=1 r=1

e But adapt 0 naively:

N
N 1 t t t t t
Ory1 = A ;: w;h(z;)  where w; = m(x;)/q(;, ;).
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Modified Adaptive Multiple Importance Sampling (2)

MAMIS uses a clever recycling strategy (“mixture” weights)
only at the end of the algorithm to compute the weights of the output:

T Ns

ZZwtss where w; = 7(xf /Z—q(xz,é‘

s=11i=1 r=1

But adapt 6 naively:

N
N 1 t t t t t
Ory1 = A ;: w;h(z;)  where w; = m(x;)/q(;, ;).

MAMIS has almost the same good numerical properties, see references
below

MAMIS is much simple to study
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The asymptotic framework

o A first asymptotic framework we do not use is

Ni=Ny=---=Nr=N, Tfixed N — oo
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o A first asymptotic framework we do not use is

Ni=Ny=---=Nr=N, Tfixed N — oo

e Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency

e The proof is sequential: if 6; — 6* at time ¢, does 6;11 — 0*7
e Does not indicate how Monte Carlo errors accumulate (or not) over time

e |nstead we assume that

Ni,Nao, ... fixed7 T —

e Models the situation where we add iterations over time until being happy

with the output
o Is more difficult to study because, at time ¢, we have a value 6; that comes
from a finite sample (of fixed size)

e We also assume that Ny — co when ¢t — oo.
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Consistency of the learning scheme

oo

(H1) > 1/Ny is finite

(H2) /||h(:c)\|2q’(r£”;) m(z)dx is finite for all 6 and

depends continuously on 6
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Consistency of the learning scheme

N

v

(H1) i I/Nt is finite

.

(H2) / ||h(w)||2q7(rg§‘:”;) (x)daz is finite for all 0 and

depends continuously on 6

.
i

Theorem 1
Under (H1) and (H2), when T' — oo, lim #7 = 6* almost surely J

Do
20/21
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Consistency of the learning scheme

2
1
in

(H1) ) " 1/Ny is finite
t=1

L
[}

(H2) /||h(x)||2q7(rf;) 7(2)dz is finite for all 6 and

depends continuously on 6

Theorem 1
Under (H1) and (H2), when T" — oo, lim Or = 6 almost surely J

Remark 1. Almost sure convergence is needed to deal with

T
qmlxt Z

because it depends on the path é}, ceey Or

@‘2
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Consistency of the learning scheme

. . /W
(H1) Y " 1/Ny is finite . —-ﬁm
v

t=1 %
H2 / h(@) 2 ") ()da is finite for all 6 and - s
() [ In@)* 25 w(a) - .
depends continuously on 6 o e
Theorem 1
Under (H1) and (H2), when T" — oo, lim @7 = 6 almost surely J

Remark 2. 0,1 is an average over a new sample when compared to 6

= A price to pay to get almost sure convergence.
Here L? instead of L', see (H2)

20/21



Consistency of MAMIS output

Theorem 2

Assume that ) 1/Ny is finite, and that Or — 6" almost surely.
Let

T Ns

TR TB = ZZ”w ;) where w; = w(z;] /Z o q(x3,0,).

s=1 i=1

Then, when T" — oo, over a large class of functions v,

lim ITYAMS () = /z/)(x)ﬂ(x)dx almost surely.
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Consistency of MAMIS output

Theorem 2

Assume that ) 1/Ny is finite, and that Or — 6" almost surely.
Let

T Ns

ﬁ%AMIS ZZ witp(z;) where w; = w(x} /Z —q 37179 )-

s=1 i=1

Then, when T" — oo, over a large class of functions v,

lim ITYAMS () = /z/z(x)ﬂ(x)dx almost surely.

of
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Consistency of MAMIS output

Theorem 2

Assume that ) 1/Ny is finite, and that Or — 6" almost surely.

Let
T N
AMAMIS ~s
IIr = o ZZ ;Y (xf)  where w; = m(xF) ZQ xz,
o s=1 i=1 =il @

Then, when T'— oo, over a large class™ of functions ),

lim TTYAMS () :/w(x)ﬂ(x)dx almost surely.

.\ ' *The class depends on the tails of the instrumentals and the target

: E.g., if II(dz) has Gaussian tails or exponentially decreasing tails,
< and Q(dz, 6) has polynomials tails in a neighborhood of 6%,
then every polynomials ¢ (z) are in this class.
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