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Bayesian inference is hard

• Bayesian inference is a powerful statistical methodology

• But for most generative models, it's also computationally

intractable

p (x |O1 . . .On) = p (x)
∏
i

p (Oi |x)

• What can we do ?

• Point estimates ! (maximum likelihood, MAP)
• Sampling methods ! Generate X ∼ p (x |O1 . . .On)
• Approximate inference ! Find q ≈ p
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Expectation Propagation

• It's used to match players in skill level in Halo (Microsoft

True Skill, XBox)
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EP is powerful . . .

• EP has great potential:

• It's powerful (Kuss et al, 05; Nickish et al, 08):

• Empirically, it gives high-quality approximations at

minimal cost

• It's universal:

• it can be applied to any p (x) with a simple factor

structure

• Can perform the computation in parallel
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but poorly understood !!

• But EP is also very poorly known !!

• Open questions:

• How good are the approximations ?
• Does it always terminate ?

• We've been able to tackle those questions in the large-data

limit:

• We prove it gives good approximations
• We prove that it has a simple limit behavior
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Notations
We will approximate a 1D probability distribution p (x) that
has a simple factor structure

p (x |O1 . . .On) = p (x)
n∏

i=1

p (Oi |x)

p (x) =
n∏

i=1

fi (x)

We will approximate p with a Gaussian g that also factorizes:

g (x) =
n∏

i=1

gi (x) ≈ p (x)

∀i gi (x) ≈ fi (x)

We will often work with negative logs:

ψ (x) = − log [p (x)]

φi (x) = − log [fi (x)]
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The EP loop

• EP aims to �nd a factorized approximation of p (x):

g (x) =
n∏

i=1

gi (x) ≈
n∏

i=1

fi (x) = p (x)

• EP proceeds iteratively

• The basic idea: How do we improve a current

approximation [g t
i (x)] ??
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The EP loop

• Select i for updating

• Compute

hi (x) = fi (x)
∏
j 6=i

gj (x)

• Compute a Gaussian approximation:

g t+1 (x) ≈ hi (x)

• update the approximation of fi :

g t+1

i =
g t+1∏

j 6=i gj (x)

• Terminology:

• g−i =
∏

gj is the cavity distribution
• hi is the hybrid
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Approximating the hybrid

• How do we compute g t+1 ≈ hi ?

• Minimize the Kullback-Leibler divergence

g t+1 = argmingKL (hi , g)

• Gives a good approximation

• Is simple to compute
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Minimizing KL

• Inside exponential families, minimizing KL is easy

• Gaussians are an exponential family:

g (x |r , β) ∝ exp

(
rx − β x

2

2

)

• Relation between r , β and the moments:

µ =
r

β

var = β−1
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Minimizing KL

To �nd argmingKL (hi , g)

• Compute the mean and variance of hi

• Compute the Gaussian with that mean and variance:

r = var−1µ

β = var−1
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Working in natural parameters

• Working in the space of Gaussians: gi ∈ G: impossible to

visualize

• Working in moments:

µi = Egi (x)

vi = vargi (x)

Better, but hard to multiply and divide Gaussians

• Working in natural parameters:

gi (x) ∝ exp

(
rix − βi

x2

2

)
Multiplication and division of Gaussians = sums and

di�erences of natural parameters !
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EP in natural parameters

Sequential algorithm, operating on (2n) dimensional space

[ri , βi ]

• For i in 1 . . . n

1 Compute �cavity� parameters: r−i =
∑

j 6=i rj , β−i
∑

j 6=i βj

1 Compute hybrid distribution hi (x) = fi (x)N (x |r−i , β−i )

2 Compute Ehi (x) and varhi (x)

3 Update ri and βi from the moments of the hybrid

ri =
Ehi (x)

varhi
− r−i

βi =
1

varhi
− β−i
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An example !

• 3 factors fi (x):

• 2 logistic (likelihoods)
• 1 Gaussian (prior)
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EP variants

• We presented the base algorithm which is sequential:

• Pick i , then update gi , . . .

• We can also:

• Update all approximations at once (parallel EP)
• Update 10% (batch EP)
• Update asynchronously

• We can also �slow-down� the updates

• All of those don't modify the �xed-points !
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EP summary

• EP approximates each factor fi as a Gaussian gi , and
re�nes these approximations iteratively

• hi = fig−i is a better approximation than g

• The parameter space is the natural parameters: (ri , βi )

• Variants of EP modify the updating schedule, or change

the updating rule
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When to use EP

• EP apparently works well if all hi are almost Gaussian

• EP is dangerous to use on multimodal distributions. Like

VB, EP sometimes �ts a single mode of p (x), missing

most of the probability mass

• The EP iteration can be frustrating:

• slow it down or do it sequentially
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The large-data limit

• Large-data limit: number of observations tends to ∞
• Frequentist result: Central Limit Theorem: the

distribution of empirical means become Gaussian

• Bayesian result: Bernstein-von Mises: posteriors

converge to Gaussian distributions

• And the variance quickly goes to 0:

varp (x) ∝ n−1
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The large-data limit and EP

• If approximate inference methods aren't exact in the

large-data limit, they shouldn't be used

• The large-data limit makes theoretical analysis simple

• The in�uence of a single factor fi becomes negligible
• In the hybrid distribution, hi = fig−i , the cavity dominates



Expectation
Propagation
in the large
data limit

Guillaume
Dehaene,
Simon

Barthelmé

Background

How does EP
work ?

The
large-data
limit

Why does
EP give
accurate ap-
proximations

The EP
iteration
behaves like
Newton's
algorithm

The large-data limit and EP

• If approximate inference methods aren't exact in the

large-data limit, they shouldn't be used

• The large-data limit makes theoretical analysis simple

• The in�uence of a single factor fi becomes negligible

• In the hybrid distribution, hi = fig−i , the cavity dominates



Expectation
Propagation
in the large
data limit

Guillaume
Dehaene,
Simon

Barthelmé

Background

How does EP
work ?

The
large-data
limit

Why does
EP give
accurate ap-
proximations

The EP
iteration
behaves like
Newton's
algorithm

The large-data limit and EP

• If approximate inference methods aren't exact in the

large-data limit, they shouldn't be used

• The large-data limit makes theoretical analysis simple

• The in�uence of a single factor fi becomes negligible
• In the hybrid distribution, hi = fig−i , the cavity dominates



Expectation
Propagation
in the large
data limit

Guillaume
Dehaene,
Simon

Barthelmé

Background

How does EP
work ?

The
large-data
limit

Why does
EP give
accurate ap-
proximations

The EP
iteration
behaves like
Newton's
algorithm

Contents

1 Background
How does EP work ?
The large-data limit

2 Why does EP give accurate approximations

3 The EP iteration behaves like Newton's algorithm



Expectation
Propagation
in the large
data limit

Guillaume
Dehaene,
Simon

Barthelmé

Background

How does EP
work ?

The
large-data
limit

Why does
EP give
accurate ap-
proximations

The EP
iteration
behaves like
Newton's
algorithm

EP gives very good approximations

• We know empirically that �xed-points of EP give very

good approximations of p (x):

• can we prove it ?



Expectation
Propagation
in the large
data limit

Guillaume
Dehaene,
Simon

Barthelmé

Background

How does EP
work ?

The
large-data
limit

Why does
EP give
accurate ap-
proximations

The EP
iteration
behaves like
Newton's
algorithm

Assumptions

• We will constrain the factors fi (x)

• We will assume that all fi ∝ exp (−φi ) are strongly
log-concave:

φ
′′
i (x) ≥ βm

• This is an unrealistic assumption

• We will assume that the higher-derivatives are bounded:∣∣∣φ(d)i (x)
∣∣∣ ≤ Kd

• These assumptions transfer from the fi to p =
∏

fi
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The �Laplace� approximation

• We will compare EP �xed-points to the �Laplace�

approximation (LA):

• Find the mode x? of p (x)

• At x?, compute ψ
′′
(x?)

p (x) ≈ exp

(
−ψ′′ (x?) (x − x?)2

2

)
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Why LA is good

• The Bernstein-von Mises theorem justi�es the LA:

• In the large-data limit, pn (x)→ gLA (x)

• But that doesn't mean it's perfect:

• it looks at point estimates
• it ignores higher derivatives
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• The Bernstein-von Mises theorem justi�es the LA:

• In the large-data limit, pn (x)→ gLA (x)

• But that doesn't mean it's perfect:

• it looks at point estimates
• it ignores higher derivatives
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Why LA is good

• We can derive the expression of the bias:

x? − µ = −ψ
(3) (x?)

ψ′′ (x?)2
+ O

(
n−2
)

ψ
′′
(x?)− v = O

(
n−2
)

• Since LA misses the mean consistently, there is room for

improvement

• If EP is able to always correct this miss, it will improve on

LA
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Why EP is better !!

• Consider an EP �xed-point g (x) =
∏

gi (x) ≈ p (x)

• EP captures the ψ(3) (x?) deviation
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Why EP is better !!

• With a similar proof as for the LA result, we prove:

µEP − µ = O
(
n−2
)

vEP − v = O
(
n−2
)
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Comparing LA and EP

Theorem (Quality of the LA and EP approximations)

• LA:

µ− x? = O
(
n−1
)

v −
[
ψ
′′
(x?)

]−1
= O

(
n−2
)

• EP:

µ− µEP = O
(
n−2
)

v − vEP = O
(
n−2
)

• The �rst term of the error for the variance is slightly

smaller for EP than for the LA
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The log-concavity assumption

• The strongly log-concave sites assumption is unrealistic

• However, simple log-concavity should be enough

• proof ?
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Summary

• Both EP and LA give asymptotically correct

approximations of p (x)

• But LA fails slightly on asymmetric distributions whereas

EP doesn't

• Important result for credible intervals from EP

approximations

• But problematic assumptions
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Understanding the EP iteration

• The EP iteration has one complicated step: the

site-approximation update

1 Compute hybrid distribution hi = fig−i

2 Compute Ehi (x) and varhi

3 Compute the Gaussian with same mean and variance:
N (x |Ehi (x); varhi )

4 update gi

• This is the step we need to understand
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Assumptions

• Much looser assumptions

• We bound the range of the second derivatives

∀i , max
(
φ
′′
i

)
−min

(
φ
′′
i

)
≤ B

• Still uniform bound on the higher derivatives∣∣∣φ(d)i (x)
∣∣∣ ≤ Kd

• Applies to any GLM, can be extended so that B and Kd

depend on n
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Intuitive understanding

• Rewrite KL minization:

gi = [g−i ]
−1 argmingKL (hi , g)

≈ argming

ˆ
hi [log (fi )− log (gi )]

• hi tells us where gi needs to �t fi

• If g−i has very small variance (ie: β−i is big):

• g−i is almost Dirac
• hi ≈ g−i and is also Dirac

• The best approximation is the Taylor expansion of log (fi ).
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Limit behavior of the approximation

Theorem (Limit behavior of the factor approximation)

When β−i →∞ , the limit of the EP approximation of

fi ∝ exp (−φi ) is:

g∞i ∝ exp

(
−φ′i (µ−i ) (x − µ−i )−

φ
′′
(µ−i )

2
(x − µ−i )2

)

• Many important details in the error term: non-uniform

convergence in µ−i , . . .
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Limit behavior of EP iterations

• The limit behavior of parallel EP = the sum of the limit

behaviors

Theorem (Limit behavior of EP)

When β−i →∞ for all i , the limit of the next EP

approximation of p (x) ∝ exp (−ψ (x)) is:

q∞t+1 ∝ exp

(
−ψ′ (µt) (x − µt)−

ψ
′′
(µt)

2
(x − µt)2

)

• Did you recognize Newton's algorithm ?
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Newton's algorithm

• Objective of Newton's algorithm:

• �nd the mode x? (in order to compute the LA)

ψ
′
(x?) = 0

• Iterative algorithm:

• At µt , compute the tangent to ψ
′

• Solve tangent = 0: this is µt+1
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• Objective of Newton's algorithm:

• �nd the mode x? (in order to compute the LA)

ψ
′
(x?) = 0

• Iterative algorithm:

• At µt , compute the tangent to ψ
′

• Solve tangent = 0: this is µt+1
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Newton and EP

• At each step, we approximate

ψ
′ ≈ ax + b

ψ ≈ a
x2

2
+ b

p (x) ≈ exp

(
−ax

2

2
− b

)
• Newton is iterating over Gaussian approximations of p (x)
!!!

• The EP limit approximation is:

p (x) ≈ exp

(
−ψ′ (µt) (x − µt)−

ψ
′′
(µt)

2
(x − µt)2

)
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ψ
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ψ ≈ a
x2

2
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(
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2

2
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)
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• The EP limit approximation is:

p (x) ≈ exp

(
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ψ
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Reaching the high-precision limit

• High-precision limit 6= large-data limit

• Approximation quality result:

varpn ∝ n−1

vEP ≈ varpn

• Around �xed-points (where it matters), EP is close to

Newton

• We can derive other links

• We can always check
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Intuitions from EP ≈ Newton

• Intuitively, if EP behaves like Newton in some limit, even

away from that limit, it should have similar properties

• Newton is very well-known

• It converges extremely fast once it gets close to its
�xed-point

• But it can fail to converge
• We have to supplement it with line-search algorithms
• If we don't, it can �bounce� around its �xed-point

• EP probably has similar properties !
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Intuitions from EP ≈ Newton

• On a multi-modal p (x), Newton has multiple �xed-points

• We can prove that su�ciently peaked modes have an EP

�xed-point

• EP can be �captured� by a mode and miss most of the
probability mass

• Avoid multi-modal distributions like the plague
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Summary of our results

• EP is a better approximation than LA (with some caveats)

• EP behaves like Newton's algorithm in the high-precision

limit

• The high-precision limit is reached in the large-data regime

• This sheds new light on the dynamical behavior of EP:

• It can bounce around it's �xed-point
• We might need to supplement EP with line-search
algorithms

• EP can be captured by modes
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