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Outline

I ABC-EP: EP for likelihood-free problems

I MCMC-EP: speeding up MCMC for large datasets

I Average-EP and stochastic EP: simpler EP



Likelihood-free Bayesian inference

I A class of techniques that can be applied when

I Likelihood evaluation is impossible or very, very slow
I Sampling from the model is comparatively easy

I Most famous incarnation: the Approximate Bayesian
Computation alg. of Pritchard et al. (1999)
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Approximate Bayesian Computation

I There are many intractable-likelihood models in Population
Genetics, where researchers are interested for example in
reconstructing evolutionary trees from molecular data.

I Enter [?], with an algorithm now know as ABC, for
Approximate Bayesian Computation, now perhaps the hottest
topic in computational and applied statistics.

I Idea brilliantly simple if one thinks of Bayesian modelling as
de�ning a joint distribution p (y,θ) = p(θ)p(y|θ) over data
and parameters.
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ABC^2 (The ABC of ABC)

1. Sample θ ∼ p(θ)

2. Sample y ∼ p(y|θ)
3. Accept θ i� ||y − y?|| < ε

This algorithm produces samples from

pε (θ|y?) ∝ p (θ)

ˆ
p(y|θ)I (||y − y?|| < ε) dy

which tends to p(θ|y) with ε→ 0.
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A problem with basic ABC

1. Sample θ ∼ p(θ)

2. Sample y ∼ p(y|θ)
3. Accept θ i� ||y − y?|| < ε.

If there are many datapoints, then either ε is enormous or the
probability of acceptance is going to be impractically small (the
model will never reproduce exactly a large dataset).



Introducing summary statistics

I Solution found by [?]: reduce the dimension of y by computing
some summary statistics s (y), and modify the algorithm:

1. Sample θ ∼ p(θ)

2. Sample y ∼ p(y|θ)
3. Accept θ i� ||s (y)− s (y?)|| < ε.

I Provided that the choice of summary statistics is appropriate,
this behaves reasonably and is actually computationally
feasible.
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More advanced variants

I There are by now many, more e�cient, variants on the original
algorithm, based on MCMC, Sequential Monte Carlo, etc.
[ref.]

I All of them require the de�nition of summary statistics, and
are rather slow and di�cult to tune.

I Using EP you can get rid of summary statistics, and obtain
substantial speed-ups (10-100x, Barthelmé & Chopin, 2011,
Barthelmé & Chopin, 2014, Barthelmé, Chopin, Cottet, 2015).

I Caveat I: you can't get rid of summary statistics in all models
I Caveat II: implementation is a bit of work
I Caveat III: you get a Gaussian approximation (it's still EP)



How to get rid of summary statistics

I In the ABC-reject algorithm, we needed summary statistics
because we had more than one datapoint.

I In EP we only integrate one datapoint at a time, so

I No need for summary statistics!
I We can just compute all hybrid moments using ABC-reject
I Our objective is

pε(θ|y?) ∝ p(θ)
∏n

i=1

{´
fi (yi |θ)I{‖yi−y?

i ‖≤ε} dyi
}



ABC-EP in one slide

1. Initialise site parameters λ1 . . .λn. Global parameter:
λ =

∑
λi .

2. While not converged, loop over i :

2.1 Form cavity: λ−i = λ− λi , hybrid
hi (θ) ∝ li (θ) exp

(
s (θ)t λ−i

)
2.2 Compute moments: ηi = Ehi

(s (θ)) USING REJECTION
ABC, transform back to natural parameters λi = ν (ηi )− λ−i

2.3 Update global approximation: λ = λ−i + λi



First example: alpha-stable distributions

I Alpha-stable densities are a class of univariate densities with
potentially very heavy tails, that are popular in economics,
because...

(�g. from Brad DeLong's blog).
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Alpha-stable densities

I No closed-form for the density function.

I We take data: n = 1200 AUD/GBP log-returns computed
from daily exchange rates.

I Data assumed IID from alpha-stable distribution with
parameters θ

I θ is α (tail heaviness), β (skewness),δ (location),γ (scale)



Results from alpha-stable example
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MCMC-ABC: 50 times more alpha-stable simulations than EP.
�Exact� MCMC takes 60 hours.



Example II: race model for reaction times

I Hierarchical model with independent data (but not IID)

I Subject must choose between k alternatives. Evidence ej(t) in
favour of choice j follows a Brownian motion with drift:

τdej(t) = mjdt + dW
j
t .

Decision is taken when one evidence �wins the race�; see plot.

0 50 100 150

time (ms)

Threshold for A

Threshold for B

Evidence for A

Evidence for B



Data

1860 Observations (courtesy of M Maertens, TU Berlin), from a
single human being, who must choose between �signal absent�, and
�signal present�.
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The hierarchical model

I The relative speed of the two racing di�usions changes
according to experimental condition (≈random e�ect).

I Global parameters: boundaries, noise variance.

I 33 parameters in total (3 shared, 30 condition-speci�c).

I 1860 observations, 30 subgroups.

I CPU time ~ 40 min



Reaction times: results
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Predictive densityReal data
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Reaction times: results

I Hierarchical model with ~ 30 parameters would be very
challenging for standard ABC

I ABC-EP makes it do-able.

I Has actually been used again in an actual neuroscience paper
(Park et al. 2016)



Example III: ABC-EP with summary statistics

I Sometimes we can't get rid of summary statistics entirely:

I Spatial extremes: each observation is a set of extreme rainfall
values over di�erent weather stations

I IID over years but not over stations (because of spatial
dependencies)

I We want to infer spatial dependencies



Swiss rainfall
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ABC-EP in spatial extremes

I In recent work (Barthelmé, Chopin, Cottet, 2015) we suggest
using ABC-EP with �local� summary statistics: summarise the
observations over stations, but keep the successive years as IID
sites

I Summary statistics is a robust estimate of spatial dependence:
estimated value of a, b in following regression

log |F (yi (xj))− F (yi (xk))| = a+b log ‖xj − xk‖+εjk , 1 ≤ j < k ≤ d

(F is the Fréchet CDF).



ABC-EP in spatial extremes

I We used the Swiss rainfall dataset (79 sites, 1962-2008).

I MCMC-ABC approach by Ehrardt & Smith (2012) essentially
returns the prior after running for a week

I ABC-EP gives you something in about 3 hours

I Posterior is over the parameters of the covariance function
(length-scale, height)



ABC-EP in spatial extremes
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ABC-EP with summary statistics

I Even if you can't get rid of summary statistics entirely, you can
get still choose summary statistics that are �local� and
low-dimensional.

I Because you're still integrating the data bit-by-bit, the
acceptance rate is high and you get considerable speed-ups
over MCMC

I Caveat: in this example, it took us a while to �nd the right set
of local summary statistics



ABC-EP in practice

I We are taking a deterministic algorithm and making it
stochastic: have to be careful about Monte Carlo variance.

I In the paper we highlight a set of tricks, among which:

I Ways to �recycle� previous model simulations or exploit
Markov structure

I Quasi-Monte Carlo
I Rao-Blackwellisation A.K.A. Conditional Monte Carlo

I A lot of these tricks are model-speci�c and require a bit of
work.



ABC-EP in practice

I We are taking a deterministic algorithm and making it
stochastic: have to be careful about Monte Carlo variance.

I In the paper we highlight a set of tricks, among which:

I Ways to �recycle� previous model simulations or exploit
Markov structure

I Quasi-Monte Carlo
I Rao-Blackwellisation A.K.A. Conditional Monte Carlo

I A lot of these tricks are model-speci�c and require a bit of
work.



ABC-EP in practice

I We are taking a deterministic algorithm and making it
stochastic: have to be careful about Monte Carlo variance.

I In the paper we highlight a set of tricks, among which:

I Ways to �recycle� previous model simulations or exploit
Markov structure

I Quasi-Monte Carlo

I Rao-Blackwellisation A.K.A. Conditional Monte Carlo

I A lot of these tricks are model-speci�c and require a bit of
work.



ABC-EP in practice

I We are taking a deterministic algorithm and making it
stochastic: have to be careful about Monte Carlo variance.

I In the paper we highlight a set of tricks, among which:

I Ways to �recycle� previous model simulations or exploit
Markov structure

I Quasi-Monte Carlo
I Rao-Blackwellisation A.K.A. Conditional Monte Carlo

I A lot of these tricks are model-speci�c and require a bit of
work.



ABC-EP in practice

I We are taking a deterministic algorithm and making it
stochastic: have to be careful about Monte Carlo variance.

I In the paper we highlight a set of tricks, among which:

I Ways to �recycle� previous model simulations or exploit
Markov structure

I Quasi-Monte Carlo
I Rao-Blackwellisation A.K.A. Conditional Monte Carlo

I A lot of these tricks are model-speci�c and require a bit of
work.



Conclusion on ABC-EP

I ABC-EP can bring tremendous speed improvements, but:

I It is not trivial to implement
I If your likelihood leads to a multi-modal posterior, the best you

can do is recover one mode (hard to know in advance in ABC
settings)

I When you switch from deterministic moment computations to
Monte Carlo ones, stability becomes a problem

I We'll see that matters a lot for the algorithms in the next part
of this tutorial



MCMC in large datasets

I A lot of attention currently on how to scale MCMC to large
datasets (Angelino, Johnson, Adams, 2016)

I As everybody knows, we need to parallelise

I In 2014 two groups came up with the same idea

I Split datasets, run independent MCMC chains
I Use EP to synchronise

I Xu, M., Lakshminarayanan, B., Teh, Y. W., Zhu, J., and
Zhang, B. (2014). Distributed Bayesian posterior sampling via
moment sharing. In Advances in Neural Information
Processing Systems

I Gelman, A., Vehtari, A., Jylanki, P., Robert, C., Chopin, N.,
and Cunningham, J. P. (2014). Expectation propagation as a
way of life. ArXiv:1412.4869



Parallel EP

I EP parallelises trivially

I All we need to do is compute all site updates in parallel rather
than sequentially



Parallel EP in one slide

1. Initialise site parameters λ1 . . .λn. Global parameter:
λ =

∑
λi .

2. While not converged:

2.1 Split: For all i 's , do:

2.1.1 Form cavity: λ−i = λ− λi , hybrid

hi (θ) ∝ li (θ) exp
(
s (θ)t λ−i

)
2.1.2 Compute moments: ηi = Ehi

(s (θ)), transform back to

natural parameters λi ← ν (ηi )− λ−i

2.2 Combine: Update global approximation: λ←
∑

λi



MCMC-EP

I In our logistic regression application, a site was just a single
datapoint and we could compute moments almost exactly
using 1d quadrature

I What if we had sites with k datapoints?

I We could maybe still do k = 3 using quadrature but it gets
expensive

I There's no hope of doing k = 500
I Use MCMC!



MCMC-EP

I There's an additional insight: in hierarchical models, you only
need to synchronise global, shared parameters using EP.

I The parameters that are private to each batch can just be
integrated over



MCMC-EP

I Strategy is very simple: you have m workers and n datapoints.

I Split dataset into m batches of k ≈ n/m datapoints.
I Each hybrid is now a Gaussian pseudo-prior times k likelihood

terms
I Compute moments using m parallel MCMC chains over your

workers
I Update global approximation once everybody's done



Does it work?

From Gelman et al. Logistic regression example, k = 50, n = 2500



Does it work?

Teh et al. (2016). Fully connected neural net on MNIST dataset.



Conclusion on combining EP and MCMC

I The results so far are proof-of-concept

I Either good results on toy models
I Or so-so results on non-toy models

I Stability is a problem, just like in ABC-EP, which required
model-speci�c work

I Need better theory, right now we have a collection of hacks

I It's potentially very promising, but we are still quite far from
e�ective black-box EP (The Stan team is working on it,
though, pers. communication)

I Extension to sequential settings: De Freitas et al. (2015)
(haven't had time to look at it yet)



aEP, sEP: Even more approximate EP

I aEP is a simpler version of EP we originally introduced to study
asymptotic properties of EP (Dehaene & Barthelmé, 2015)

I Forget about individual site parameters, use an average cavity
parameter

I Average cavity λc = n−1

n
λ

I It has a nice interpretation as an approximate projection
algorithm:

I Form hybrids, approximate all hybrids as Gaussians
I Average hybrids

I Same asymptotic properties as EP



Is aEP practical?

I We originally didn't make much of it, but noted

I aEP is easier to implement
I It cuts on the linear algebra by half

I Hernandez-Lobato et al. (2015) introduced stochastic EP
(sEP)

I essentially aEP with a random update schedule
I obtained good results on neural networks
I claim reduction in memory footprint (true but of limited

consequence)



Is aEP practical?

I M. Beaumont (talk at NIPS) found aEP more stable in ABC
setting

I We also found that generic �xed-point acceleration schemes
(SQUAREM, Varadhan, 2014) worked well on aEP

I Easier in aEP than EP because there are far fewer parameters

I Potentially promising



General conclusions

I The original EP algorithm is extremely successful in GLMs,
GAMs, etc., everybody should be using it

I (still need quality implementation comparable to INLA or
mgcv)

I EP is very promising as a generic black-box inference scheme

I in ABC settings
I for large hierarchical models

I Early days

I Either a lot of model-speci�c work (ABC-EP)
I Or proof-of-concept
I aEP, sEP interesting direction



Things I wish I had time to mention

I Corrections to EP

I �nd EP approximation and improve it using expansions
I Reviewed in Opper's lecture notes

I Marginal likelihood approximation

I Double-loop algorithms

I EP for bilinear models

I EP for Gibbs distributions

I e.g. Ising model, see Opper's lecture notes
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