
Spatial dependence issues for extremes

Gwladys Toulemonde

1

, Jean-Noel Bacro

1

, Carlo Gaetan

2

1

IMAG, University of Montpellier, France.

2

DAIS, Università Ca’ Foscari, Italy.

CIRM workshop
"Extremes, Copulas and Actuarial Science"

February 2016

This work was supported by the french national programme LEFE/INSU
and the Numev Labex.

Gwladys Toulemonde / CIRM / 2016 1/35



Outline

1 Introduction

2 Extreme spatial processes
Max-stable processes
Asymptotically independent processes

3 Proposition of a mixture model

4 An other approach (work in progress...)

Gwladys Toulemonde / CIRM / 2016 2/35



Outline

1 Introduction

2 Extreme spatial processes

3 Proposition of a mixture model

4 An other approach (work in progress...)

Gwladys Toulemonde / CIRM / 2016 3/35



Multivariate max-stable distributions : characterization

Theorem

Let (Xi,Yi) ª F be independent random vectors with w.l.g. unit Fréchet
margins K (x) = exp(°1/x), x > 0. A limit distribution for

°

Mx,n,My,n
¢

=
(maxi=1,...,n Xi,maxi=1,...,n Yi) is said to exist (F 2 D(G)) if

lim

n!1P
°

Mx,n ∑ nx,My,n ∑ ny
¢

= G(x,y)

with G a non degenerate distribution.

• Limit distributions G are max-stable : Gk(k x
1

,k x
2

)= G (x,y)

• If
G(x,y)= K (x)K (y)= exp

µ

°1

x

∂

exp

µ

°1

y

∂

,! ultimately, normalized maxima of X and Y are independent.

(X ,Y ) are said to be Asymptotically Independent (AI)

B (X ,Y ) AI 6) (X ,Y ) independent, only the converse is true . . .

B (X ,Y ) may exhibit non-negligible dependence at all observable levels even if
AI ! Example : the Gaussian case.
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Dependence measures ¬ and ¬

Let (X ,Y )ª F 2 D(G), with FX and FY margins.

The ¬ parameter

¬= limu!1

P(FY (Y )> u|FX (X)> u)

= limu!1

2° logP(FX (X)∑u,FY (Y )∑u)
logP(FX (X)∑u)

¥ limu!1

¬(u)

• For max-stable distributions, ¬(u)=¬
 same dependence structure 8u !

• ¬= 0 ) X and Y are AI.
• ¬> 0 ) X and Y are AD ; moreover
the value of ¬ quantifies the strength

of the extremal dependence.

,! ¬ unable to provide dependence

information for AI case !

The ¬ parameter

¬= limu!1

2logP(FX (X)>u)
logP(FX (X)>u,FY (Y )>u)

°1

¥ limu!1

¬(u)

• ¬= 1 ) X and Y are AD.
• °1 ∑¬< 1 ) X and Y are AI ;
moreover ¬ provides a measure that

increases with dependence strength.

 Example : Gaussian vectors with
correlation parameter Ω 6= 1 : ¬= Ω.
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Motivation : a spatial data set where daily precipitation data from an
observational network covering a region S of East-Australia, are analysed for
the period 1955-2003.

• 31 sites observed from East-Australia during 49 winters (April-September),
(Lavery, Joung and Nicholls 1996).
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Extremal dependencies for the Australian daily precipitations data set

Spatial context : strength of the dependence related to the distance h between
two points in R2 s and s+h
,! bivariate extremal dependence tools as a function of the distance :
¬h(u), ¬(h), ¬h(u), ¬(h), ¥(h) . . .
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Figure 1 : Smoothed values of the empirical estimates of the functions b¬(h,u) (left)
and b¬(h,u) (right) with u = 0.975.
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Extremal dependencies for the Australian daily precipitations data set

Spatial context : strength of the dependence related to the distance h between
two points in R2 s and s+h
,! ¬h ¥ limu!1

¬h(u) and ¬h ¥ limu!1

¬h(u)
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Figure 2 : Smoothed values of the empirical estimates of the functions b¬(h,u) (left)
and b¬(h,u) (right) at different values of the threshold u.
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Our Goal

Our goal is to propose an asymptotically justified model for spatial extremes
that is able to model a pairwise :

• extremal dependence for sites which are spatially close ;
• extremal independence for sites which are spatially distant ;
• asymptotic independence for sites which are at intermediate distances.

,! any potential sub-asymptotic pairwise extremal dependence is taken into

account whatever the considered distance . . .
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Max-stable processes : the Truncated Extremal Gaussian (TEG) process

Representation of a max stable process with unit Fréchet margins

Z(s)= max

k∏1

ªk Wk(s)

with {ªk,k ∏ 1} points of a Poisson process on (0,1) with intensity measure ª°2dª
and Wk i.i.d. copies of a positive process {Wk(s)} such that E(W(s)) = 1 for all
s 2S .
The TEG process (Schlather, 2002 ; Davison and Gholamrezaee, 2012) :

Wk(s)= c max(0,"k(s))IBk (s°Uk)

such that "k(·) a stationary standard Gaussian process with correlation function
Ω(·), IB is the indicator function of a compact random set B Ω S , of which
(Bk)k are independent replicates and (Uk)k are points of a homogeneous Poisson
process of unit rate on S , independent of the "k(·).

We can compute ¬Z(h)=Æ(h)
n

1°2

° 1

2 [1°Ω(h)]
1

2

o

2 [0,1]

where Æ(h)= E{|B\ (h+B)|}/E(|B|) with h = ||s
1

° s
2

||.

In the sequel, B will be a disc of fixed radius r :
Æ(h)º 1° h

2r if h < 2r (and 0 otherwise).
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A.I. processes (unit Fréchet margins) :

de Oliveira, 1962

A multivariate vector is AI iff all its pairs of components are AI.

As a consequence, if all the bivariate distributions of a stochastic process are
AI, the stochastic process is said to be AI.

Bivariate model (Ledford and Tawn, 1996, 1997)

P(X > x,Y > x)= F(x,x)ªL (x)x°1/¥ when x !1 where L is a slowly varying
function, i.e. satisfying L (t x)/L (x)! 1 when x !1 for all given t > 0.
The ¥ parameter, so-called tail dependence coefficient, determines the decay rate
of the joint survival function F(x,x) for high values of x.
Under Ledford-Tawn model ¬= 2¥°1. If 0 < ¥< 1, the variables are AI.

• Example 1 : Y (s)=°1/ log(©(Y 0(s)) with Y 0(s) a stationnary Gaussian
process with zero mean, unit variance and correlation function Ω(h).

• Example 2 : Y (s)=°1/ log(1°e°1/Z(s)) with Z(s) a max stable process.
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Mixture of a max-stable process and an A.I. process

From an original construction of Wadsworth and Tawn (2012) :
Bacro, Gaetan and Toulemonde, JSPI, 2016

X(s)= max(aZ(s),(1°a)Y (s)) , a 2 [0,1]

with Z a TEG process with unit Fréchet margins and Y an asymptotically
independent stationary process with unit Fréchet margins.

Only one condition is necessary for the A.I. process Y (·) : the bivariate
distribution function Fh

Y (·, ·)¥ FY (s
1

),Y (s
2

)(·, ·) for pairs of sites s
1

and s
2

which
are separated by a distance h verifies

P(Y (s
1

)> y,Y (s
2

)> y)ª y
° 1

¥(h) Lh(y) as y !1

where 0 ∑ ¥(h)< 1, Lh(·) a slowly varying function, that is Lh(·) satisfies
Lh(xt)/L (t)! 1 as t !1 for all fixed x > 0.

Gwladys Toulemonde / CIRM / 2016 14/35



Mixture of a TEG process and an A.I. process
β=0 β=0.25 β=0.5

β=0.75 β=1

−3

−2

−1

0

1

2

3

Figure 3 : Simulation of the max-mixture process with a 2 {0,0.25,0.50,0.75,1}. B is a
disc with a fixed radius r = 0.25. An exponential correlation function with parameter
Ω

1

= 0.2 is chosen for the underlying Gaussian process involved in the TEG process. For
the AI process, a Gaussian random field is considered with a spherical correlation
function with parameter Ω

2

= 0.8.
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Mixture of a max-stable process and an A.I. one

Joint probability of exceedances : information on dependence.

P(X(s
1

)> z,X(s
2

)> z) = a¬Z (h)
z +

° z
1°a

¢° 1

¥Y (h) Lh
° z

1°a

¢

+O( 1

z2

).

With the specific choice of the TEG process for Z(.) with fixed radius r, we
obtain

¬X (h)= a¬Z (h)= a

µ

1° h

2r

∂

n

1°2

° 1

2 [1°Ω
1

(h)]
1

2

o

if h < 2r (and 0 otherwise).

Summing up, pairs of sites separated by a distance h are asymptotically
dependent if h is smaller than 2r and asymptotically independent otherwise.

Computation of ¬X to go further...
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Mixture of a max-stable process and an A.I. one

• If h < 2r, ¬X (h)> 0, ¬
X
(h)= 1 A.D.

• If h ∏ 2r, ¬X (h)= 0, ¬
X
(h)=¬

Y
(h)< 1 A.I.

• If ¬
Y
(h) is such that ¬

Y
(h)= 0 for h > R0 > 2r, then

if h > R0 > 2r, ¬X (h)= 0, ¬
X
(h)=¬

Y
(h)= 0 Exact Independence

Here, it corresponds to the case of a process Y (·) with a correlation
function Ω

2

(·) such that Ω
2

(h)= 0 when h > R0 (spherical correlation function
for example).
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Simulation study

Bacro, Gaetan and Toulemonde, JSPI, 2016

X(s)= max(aZ(s),(1°a)Y (s)) , a 2 [0,1]

with Z a max-stable process with unit Fréchet margins and Y an asymptotically
independent stationary process with unit Fréchet margins.

• Parameter of the mixture a (a 2 {0,0.25,0.5,0.75,1}).
• Parameters of the TEG process.

• the radius r (r = 0.25).
• the correlation parameter Ω

1

(Ω
1

= 0.2). Here we have chosen the
exponential correlation function : exp(°h/Ω

1

).

• Parameter of the AI process Y where Y is a transformed Gaussian process
with unit Fréchet margins.

• the correlation parameter Ω
2

(Ω
2

= 0.8). Here we have chosen the spherical
correlation function : 1°(1.5h)/Ω

2

+(0.5h)/Ω3

2

if h < Ω
2

and 0 otherwise.
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Inference

Censored composite likelihood approach on pairwise sites separated by a
distance h < ±.

• Given a high threshold value u : the dependence model for an adequate
representation of the data.

For any (si,sj) such d(si,sj)< ±, pairwise contribution

L(xik,xjk;√)=
(

@2

@xi@xj
G(xi,xj;√) if max(xi,xj)> u

G(u,u;√) if max(xi,xj)∑ u

with G(·, ·) the bivariate distribution of the spatial model. The pairwise
log-likelihood is defined by

pl(√)=
M
X

k=1

N°1

X

i=1

N
X

j>1

!ij logL(xik,xjk;√).
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Simulation study
• 49 random sites.
• 1000 time observations of the process.

) Estimation of the four parameters by the method of composite
likelihood.

• 5 different values of a

• 500 simulations
• Discriminate between asymptotic independence, asymptotic dependence or

a mixture of this thanks to the CLIC ?

CLIC =°2

h

pl( b√)° tr{

bH°1

bJ}

i

.

Gaussian MM TEG
MM

0

(Gaussian) 346 154 0
MM

0.25

0 500 0
MM

0.50

0 500 0
MM

0.75

0 498 2
MM

1

(TEG) 0 100 400

Table 1 : Model selection based on the CLIC. The simulation study is based on 500
replications of 1000 independent copies of a MMa model with Ω

1

= 0.2, Ω
2

= 0.8,
r = 0.25 and a 2 {0,0.25,0.50,0.75,1}.
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Application : Coming back to the Australian rainfall data . . .

Motivation : a spatial data set where daily rainfall totals 24h data from an
observational network covering a region S of East-Australia, are analysed for
the period 1955-2003.

• 31 sites observed from East-Australia during 49 winters (April-September),
(Lavery, Joung and Nicholls 1996).
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Application : Coming back to the Australian rainfall data . . .

• Model A
1

: the MM model X(.)

X(s)= max(aZ(s),(1°a)Y (s)) , a 2 [0,1]

with
• a the max-mixture proportion ;
• Z(·) a TEG process based on a gaussian process with an exponential

correlation function exp(°h/Ω
1

) and compact random set B choosen as a
disc with a fixed radius r ;

• Y (·) a Gaussian random field with unit Fréchet margins and a spherical

correlation function 1° 1

2

h
Ω

2

+ 1

2

≥

h
Ω

2

¥

3

I
{h∑Ω

2

}

• Model A
2

: the X(.) process specified in A
1

but with exponential
correlation function exp(°h/Ω

2

).

• Model A
3

: a max-mixture model as in A
1

but in which Y (.) is an inverse
max-stable process.

• Model B : the Z(.) process specified in Ai, i = 1,2.

• Model C
1

: the Y (.) process specified in A
1

• Model C
2

: the Y (.) process specified in A
2

• Model C
3

: the Y (.) process specified in A
3
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Application : Coming back to the Australian rainfall data . . .

Model bΩ
1

br
1

bΩ
2

br
2

ba CLIC

A
1

78.71 833.76 1448.52 - 0.38 575518.3
(9.80) (77.70) (57.72) (0.02)

A
2

101.03 658.94 841.08 - 0.38 575515.9
(13.93) (54.26) (51.23) (0.02)

A
3

210.07 211.15 2164.57 1400.11 0 575183.7

(10

°13) (10

°13) (140.85) (95.08) (10

°13)
B 147.09 1706.55 - - - 580455

(6.17) (213.31)
C

1

- - 814.81 - - 580351.3
(19.34)

C
2

- - 429.68 - - 578445.3
12.38

C
3

- - 2084.84 1447.33 - 575188.3

(139.76) (106.76)

Table 2 : Summary of the fitted models based on the daily exceedances from the
Australian data. Standard errors are reported in parentheses.
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Application : Coming back to the Australian rainfall data . . .

Model bΩ
1

br
1

bΩ
2

br
2

ba CLIC

A
1

78.71 833.76 1448.52 - 0.38 330
(9.80) (77.70) (57.72) (0.02)

A
2

101.03 658.94 841.08 - 0.38 328

(13.93) (54.26) (51.23) (0.02)
A

3

210.07 211.15 2164.57 1400.11 0
(10

°13) (10

°13) (140.85) (95.08) (10

°13)
B 147.09 1706.55 - - - 5267

(6.17) (213.31)
C

1

- - 814.81 - - 5163
(19.34)

C
2

- - 429.68 - - 3257
12.38

C
3

- - 2084.84 1447.33 - 0

(139.76) (106.76)

Table 3 : Summary of the fitted models based on the daily exceedances from the
Australian data. Standard errors are reported in parentheses.
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Figure 4 : Empirical and fitted values for b¬(h,u) and b¬(h,u). Empirical values are
computed using the validation data set and models are fitted using the qu quantile
exceedances. Top row : u = 0.9 ; bottom row : u = 0.95.
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Empirical and fitted values for the conditional probabilities

Conditional probabilities Pr(Z(s)> z,s 2S | Z(s
1

)> z) with z such that
Pr(Z(s

1

)> z)= 1°p for different values of p.

45
7

9

12
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212223
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Three sites sets :
• S = {s

2

,s
3

,s
6

,s
8

,s
10

} (near sites data set) ;
• S = {s

11

,s
13

,s
14

,s
15

,s
18

} (medium sites data set) ;
• S = {s

25

,s
26

,s
27

,s
28

,s
29

} (far sites data set).
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Figure 5 : Empirical and fitted values for the conditional probabilities
Pr(Z(s)> z,s 2S | Z(s

1

)> z). Top row : S = {s
2

,s
3

,s
6

,s
8

,s
10

} (near sites data set) ;
middle row S = {s

11

,s
13

,s
14

,s
15

,s
18

} (medium sites data set) ; bottom row :
S = {s

25

,s
26

,s
27

,s
28

,s
29

} (far sites data set).
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To sum up this first part

• Difficulty to detect the kind of extremal dependence in data
• The kind of extremal dependence may evolve with distances
• We propose a flexible model for spatial extreme analysis (AD, AI according

to distances)
• Inference by censored composite likelihood
• Good results on simulation data and on the real data set

Pursuing the same goal...
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Outline

1 Introduction

2 Extreme spatial processes

3 Proposition of a mixture model

4 An other approach (work in progress...)
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Wadsworth and Tawn (2013)

Model

P(XP > n∞,YP > nØ)= L(n;∞,Ø)n°∑(∞,Ø)

where L is a univariate slowly varying function in n, n ! 1, for all (Ø,∞) 2
R2

+\{(0,0)}, and the function ∑(Ø,∞)> 0 maps the different marginal growth rates
to the joint tail decay rate.

Using Æ= Ø

Ø+∞ , under the assumption that ∑ is differentiable and that

lim

n!1
L(n;Æ+ logx/ logn,1°Æ+ logy/ logn)

L(n;Æ,1°Æ) = 1,

they deduced the tail representation :

P(XP > nÆx,YP > n1°Æy)= n°∑(Æ,1°Æ)x°∑1

(Æ)y°∑2

(Æ)

L

µ

n;Æ+
log(x)

log(n)
,1°Æ+

log(y)

log(n)

∂

where
©

∑
1

(Æ),∑
2

(Æ)
™

=
n

@∑
@Ø ,

@∑
@∞

o

|(Æ,1°Æ).
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Advantages and weaknesses of the WT model

• Allowing the components to grow at different rates
• Permiting extrapolation into regions where not all components are

simultaneously extreme
• Ray independence
• Non parametric approach.

Gwladys Toulemonde / CIRM / 2016 31/35



Intented improvements

• Allowing the components to grow at different rates
• Permiting extrapolation into regions where not all components are

simultaneously extreme
• Ray independence and ray dependence
• Non parametric approach and semi parametric approach.
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Proposed tail model - Joint work with Bacro and Dalhoumi

Let (XP ,YP) be a random vector with standard Pareto marginal distributions
and assume that for (Ø,∞) 2R2

+\{0} and (x,y) 2 [1,1)2 :

Pr(XP > nØx,YP > n∞y)=L (nØx,n∞y)n°∑(Ø,∞)x
°∑(Ø,∞)

2Ø y
°∑(Ø,∞)

2∞

where ∑ is the function from the Wadsworth-Tawn model and L is a bivariate
slowly varying function,i.e for (x,y) 2 [1,1)2

for any (Ø,∞) 2R2

+\{0} we have

lim

min(nØ,n∞)!1

L (nØx,n∞y)

L (nØ,n∞)
= lim

n!1

L(nØx,n∞y)

L (nØ,n∞)
= g(Ø,∞)(x,y)

with g(Ø,∞) verifies a non-standard zero-order homogeneity : for any c > 0 and
(x,y) 2 (0,1)2, g(Ø,∞)(cØx,c∞y)= g(Ø,∞)(x,y).
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Connections to existing theory for asymptotic independence and sum up

• Assuming the ray independence condition, and setting x = y = 1, our model
corresponds to the Wadsworth and Tawn model (2013).

• For (Ø,∞)= (1,1), as ∑(1,1)= 1

¥ we recognize the Ledford and Tawn (1996,
1997) model and the Ramos and Ledford model (2009).

To sum up this work in progress

• Allowing the components to grow at different rates
• Permiting extrapolation into regions where not all components are

simultaneously extreme
• Ray independence and ray dependence
• Non parametric approach and semi parametric approach.

To a spatial approach ? With different kinds of dependence according to
distances ?
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THANK YOU FOR YOUR ATTENTION !
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