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Multivariate max-stable distributions : characterization

Theorem

Let (X;Y;) ~ F be independent random vectors with w.l.g. unit Fréchet
margins K(x) = exp(-1/x), x > 0. A limit distribution for (Myn, My,n) =
(max;=;,  pX;max;=)  ,Y;) is said to exist (Fe D(G)) if

Jim P (M, < nx, My, < ny) = G(x,y)

with G a non degenerate distribution.

o Limit distributions G are max-stable : GF(kxy,kxp) = G(x,y)
o If

G(x,y) = K(x)K(y) =exp (_i) exp (_Jl/)

— ultimately, normalized maxima of X and Y are independent.
(X,Y) are said to be Asymptotically Independent (Al)
A (X,Y) Al % (X, V) independent, only the converse is true ...

A (X, Y) may exhibit non-negligible dependence at all observable levels even if
Al! Example : the Gaussian case.



Dependence measures y and y

Let (X,Y) ~ Fe D(G), with Fx and Fy margins.

=limy,_ 1 P(Fy(Y) > ulFx(X) > u)

s logP(Fx(X)=u,Fy(Y)<u)
=limy 12 = = B (0 =)
For ,x(w) =1

~» same dependence structure Yu !

¥=0= X and Y are Al

x>0 = X and Y are AD; moreover
the value of y quantifies the strength
of the extremal dependence.

—

¥ =lim;_; logP (Fx(X)>u,Fy(Y)>u)

2logP(Fx(X)>u)

il

X¥=1= Xand Y are AD.

—-1<sy<1= Xand Y are Al;
moreover ¥ provides a measure that
increases with dependence strength.

~~ Example : Gaussian vectors with
correlation parameter p #1 : ¥ = p.



Motivation : a spatial data set where daily precipitation data from an
observational network covering a region S of East-Australia, are analysed for
the period 1955-2003.

31 sites observed from East-Australia during 49 winters (April-September),
(Lavery, Joung and Nicholls 1996).
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Extremal dependencies for the Australian daily precipitations data set

strength of the dependence related to the distance h between
two points in R? s and s+ h
— bivariate extremal dependence tools as a function of the distance :

xn(w), x(h), 2p(w), X(R), n(h) ...
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Figure 1 : Smoothed values of the empirical estimates of the functions 7(h, u) (left)
and y(h,u) (right) with u=0.975.



Extremal dependencies for the Australian daily precipitations data set

strength of the dependence related to the distance h between
two points in R? s and s+ h

— yp=limy_ yp,(u) and 7, = limy— 7),()

distance distance

Figure 2 : Smoothed values of the empirical estimates of the functions J(h, u) (left)
and ¥(h,u) (right) at different values of the threshold w.



Our Goal

Our goal is to propose an asymptotically justified model for spatial extremes
that is able to model a pairwise :

extremal dependence for sites which are spatially close;
extremal independence for sites which are spatially distant;

asymptotic independence for sites which are at intermediate distances.

< any potential sub-asymptotic pairwise extremal dependence is taken into
account whatever the considered distance . ..
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Max-stable processes : the Truncated Extremal Gaussian (TEG) process

Representation of a max stable process with unit Fréchet margins

2(5) = maxéx W9

with {¢f, k= 1} points of a Poisson process on (0,00) with intensity measure E24¢
and Wy i.i.d. copies of a positive process {Wy(s)} such that E(W(s)) =1 for all
ses.

The TEG process (Schlather, 2002 ; Davison and Gholamrezaee, 2012) :

Wi (s) = ecmax(0,&4(s)) /5, (s— Up)

such that ey (-) a stationary standard Gaussian process with correlation function
p(+), Ip is the indicator function of a compact random set Bc ., of which
(Bg)k are independent replicates and (Uy)j are points of a homogeneous Poisson
process of unit rate on &, independent of the g (-).

We can compute yz(h) = a(h){l —272 [1 —p(h)]%} €1[0,1]
where a(h) =E{|Bn (h+ B)}/E(|Bl) with h=]ls] — s2ll.

In the sequel, B will be a disc of fixed radius r :
alh)=1- 2_hr if h<2r (and 0 otherwise).



A.l. processes (unit Fréchet margins) :

de Oliveira, 1962
A multivariate vector is Al iff all its pairs of components are Al.

As a consequence, if all the bivariate distributions of a stochastic process are
Al, the stochastic process is said to be Al.

Bivariate model (Ledford and Tawn, 1996, 1997)

P(X>xY>x)=F(x,x) ~ Z(x)x‘l/" when x — co where £ is a slowly varying
function, i.e. satisfying £(tx)/%£(x) — 1 when x— oo for all given > 0.

The 1 parameter, so-called tail dependence coefficient, determines the decay rate
of the joint survival function F(x,x) for high values of x.

Under Ledford-Tawn model ¥y =2n—1. If 0<7n <1, the variables are Al.

o Example 1 : Y(s)=-1/log(®(Y'(s)) with Y'(s) a stationnary Gaussian
process with zero mean, unit variance and correlation function p(h).

o Example 2 : Y(s)= —l/log(l—e_l/z(s)) with Z(s) a max stable process.
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Mixture of a max-stable process and an A.l. process

From an original construction of Wadsworth and Tawn (2012) :
Bacro, Gaetan and Toulemonde, JSPI, 2016

X(s) =max(aZ(s),(1-a)Y(s)), acl0,1]

with 7 a TEG process with unit Fréchet margins and v an asymptotically
independent stationary process with unit Fréchet margins.

Only one condition is necessary for the A.l. process V(-) : the bivariate
distribution function F{}(,) = FY(SI)_Y(SZ)(~,~) for pairs of sites s; and s which
are separated by a distance h verifies

__1_
P(Y(s1)>y,Y(s2)>y) ~y "0 Ly(y)asy— oo

where 0=1(h) <1, £y(-) a slowly varying function, that is &} (-) satisfies
Lp(xt)/£(t) =1 as t — oo for all fixed x> 0.



Mixture of a TEG process and an A.l. process

p=0 p=0.25

Figure 3 : Simulation of the max-mixture process with a€ {0,0.25,0.50,0.75,1}. B is a
disc with a fixed radius r=0.25. An exponential correlation function with parameter
p1=0.2 is chosen for the underlying Gaussian process involved in the TEG process. For
the Al process, a Gaussian random field is considered with a spherical correlation

function with parameter py =0.8.
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Mixture of a max-stable process and an A.l. one
Joint probability of exceedances : information on dependence.

PX(s1)> 2 X(2)>2) = B2y (iz) wm ro(k).

z

With the specific choice of the TEG process for Z(.) with fixed radius r, we
obtain

xx(h) =ay,(h) =a(1—2—hr){1—2_%[1—p1(h)]%} if h<2r (and 0 otherwise).

o.a - AL Al

n Computation of yyx to go further...



Mixture of a max-stable process and an A.l. one

o If h<2r xx(h)>0, ¥, (k) =1 AD.
o If h=z2r yy(h)=0,x, (W)=Y, () <1 Al

o If ¥, (h) is such that ¥ (k) =0 for h> R >2r, then
if >R >2r, xx(h) =0, ¥, (k) =%, (k) =0 Exact Independence

Here, it corresponds to the case of a process Y(-) with a correlation
function p2(-) such that p2(h) =0 when k>R (spherical correlation function
for example).
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Simulation study

Bacro, Gaetan and Toulemonde, JSPI, 2016

X(s) =max(aZ(s),(1-a)Y(s)), acl0,1]

with Z a max-stable process with unit Fréchet margins and v an asymptotically
independent stationary process with unit Fréchet margins.

o Parameter of the mixture a (a< {0,0.25,0.5,0.75,1}).
o Parameters of the TEG process.

o the radius r (r=0.25).
o the correlation parameter p; (p; =0.2). Here we have chosen the
exponential correlation function : exp(-h/p1).

o Parameter of the Al process Y where Y is a transformed Gaussian process
with unit Fréchet margins.

o the correlation parameter py (p»> =0.8). Here we have chosen the spherical
correlation function : 1- (1,5h)/p2+(0.5h)/p3 if h<p2 and 0 otherwise.



Inference

Given a high threshold value u : the dependence model for an adequate
representation of the data.
For any (s;,s;) such d(s;,sj) <8, pairwise contribution
0% . i -
Lz 5 ¥) = 0% G(xpxjw)  if max(x;,xj) > u
G(u, u;y) if max(x; x;) <u

with G(-,-) the bivariate distribution of the spatial model. The pairwise
log-likelihood is defined by

M N-1 N
=X ) Zw,]logL Xiko Xjk; V)
k=1 i=1 j>

1

—



Simulation study

49 random sites.

1000 time observations of the process.
Estimation of the four parameters by the method of composite

likelihood.
5 different values of a
500 simulations

Discriminate between asymptotic independence, asymptotic dependence or
a mixture of this thanks to the CLIC?

CLIC =2 pl(§) - trl )]

Gaussian MM TEG
MMy (Gaussian) 346 154 0
MM o5 0 500 0
MM, 50 0 500 0
MMy 75 0 498 2
MM, (TEG) 0 100 400

Table 1 : Model selection based on the CLIC. The simulation study is based on 500
replications of 1000 independent copies of a MM, model with p; =0.2, p2 =0.8,

r=0.25 and a€ {0,0.25,0.50,0.75,1}.



Application : Coming back to the Australian rainfall data ...

Motivation : a spatial data set where daily rainfall totals 24h data from an
observational network covering a region S of East-Australia, are analysed for
the period 1955-2003.

31 sites observed from East-Australia during 49 winters (April-September),
(Lavery, Joung and Nicholls 1996).
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Application : Coming back to the Australian rainfall data ...
: the MM model X(.)
=max(a  :,(1-a)Y(s)), ac|0,1]

with
e a the max-mixture proportion;
. a TEG process based on a gaussian process with an exponential

correlation function exp(—h/p1) and compact random set B choosen as a
disc with a fixed radius r;
e Y(-) a Gaussian random field with unit Fréchet margins and a spherical
3
hoo1 ( h

correlation function 1-— %p—z +3 E) Linspy)

: the X(.) process specified in A but with exponential
correlation function exp(—h/p2).

: a max-mixture model as in A but in which Y(.) is an inverse
max-stable process.

: the Z(.) process specified in A;, i=1,2.
o Model C; : the Y(.) process specified in A;
o Model G, : the Y(.) process specified in Ay

* Model C; : the Y(.) process specified in A3



Application : Coming back to the Australian rainfall data ...

l Model ‘ 01 1 02 T a CLIC ‘
7871  833.76 144852 - 038 5755183
(9.80)  (77.70)  (57.72) (0.02)
101.03  658.94  841.08 . 038  575515.9
(13.93)  (54.26)  (51.23) (0.02)
210.07 211.15 216457 1400.11 0 575183.7
(10713)  (10713)  (140.85) (95.08) (10713)
147.09  1706.55 = g g 580455
(6.17)  (213.31)
G g g 814.81 = g 580351.3
(19.34)
%) - - 429.68 ) - 578445.3
12.38
G . . 2084.84  1447.33 = 575188.3
(139.76)  (106.76)

Table 2 : Summary of the fitted models based on the daily exceedances from the

Australian data. Standard errors are reported in parentheses.



Application : Coming back to the Australian rainfall data ...

l Model ‘ 01 1 02 T a CLIC ‘
7871  833.76  1448.52 = 0.38 330
(9.80)  (77.70)  (57.72) (0.02)
101.03  658.94  841.08 = 0.38
(13.93) (54.26)  (51.23) (0.02)
A3 210.07  211.15 216457 1400.11 0
(10713)  (10713)  (140.85) (95.08) (10713)
147.09  1706.55 = = =
(6.17)  (213.31)
C s = 814.81 = = 5163
(19.34)
G = E 429.68 = = 3257
12.38
G = = 2084.84  1447.33 = 0
(139.76)  (106.76)

Table 3 : Summary of the fitted models based on the daily exceedances from the
Australian data. Standard errors are reported in parentheses.
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Figure 4 : Empirical and fitted values for §(h,u) and ¥ (h,u). Empirical values are
computed using the validation data set and models are fitted using the g, quantile
exceedances. Top row : u=0.9; bottom row : u=0.95.



Empirical and fitted values for the conditional probabilities

Conditional probabilities Pr(Z(s) > z,s€ & | Z(s1) > z) with z such that
Pr(Z(s1) > z) =1- p for different values of p.

Three sites sets :
o S =1{s2,3,5 58,510} (near sites data set);
o & ={s11,513,514, 515,518} (medium sites data set);
o F ={s25,56,527, 528,529} (far sites data set).
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Figure 5 : Empirical and fitted values for the conditional probabilities

Pr(Z(s) > z,s€ 1 Z(s1) >z). Top row : &% ={s2,53,5,58,510} (near sites data set);
middle row .% = {s11, 513, 514, S15, $18} (medium sites data set) ; bottom row :

& = {825,526, 527, 28, 29} (far sites data set).



To sum up this first part

Difficulty to detect the kind of extremal dependence in data
The kind of extremal dependence may evolve with distances

We propose a

Inference by censored composite likelihood

Good results on simulation data and on the real data set

Pursuing the same goal...
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Wadsworth and Tawn (2013)

P(XP > nY, Yp> nﬁ) = L(n’}/,ﬁ) n_K(Y'ﬂ)

where L is a univariate slowly varying function in n, n— oo, for all (8,y) €
R21{(0,0)}, and the function x(f,y) >0 maps the different marginal growth rates
to the joint tail decay rate.

Using a = ’ny, under the assumption that « is differentiable and that
lim L(n;a +logx/logn,1-a+logy/logn) .
n—co L(na,1-a) o

they deduced the tail representation :

P(Xp > n%x, Yp> nl—ay) = px(@l-a) —x (a)y—Kz(a’)

~log(x) log(y)
L( log(n)’" ~** Tog(n)

where {x1(a),x2(a)} = {g—g, g—;} |(a,1—a)-



Advantages and weaknesses of the WT model

Allowing the components to grow at different rates

Permiting extrapolation into regions where not all components are
simultaneously extreme

Ray independence

Non parametric approach.



Intented improvements

Allowing the components to grow at different rates

Permiting extrapolation into regions where not all components are
simultaneously extreme

Ray independence

Non parametric approach



Proposed tail model - Joint work with Bacro and Dalhoumi

Let (Xp, Yp) be a random vector with standard Pareto marginal distributions
and assume that for (B,y) € R2\{0} and (x,y) € [1,00)? :

where « is the function from the Wadsworth-Tawn model and & is a bivariate
slowly varying function,i.e for (x,y) € [1,00)2
for any (B,y) € R2\{0} we have

. LPxnry) 4 nPx,nly)
~lim = lim =8(py) (%)
min(nf,n)—co L(nP,n¥)  n=00 L(nf,nl)

with &py) verifies a non-standard zero-order homogeneity : for any ¢>0 and

(%,7) € (0,000, g(p)(Px.Ty) = gy (%),



Connections to existing theory for asymptotic independence and sum up

o Assuming the ray independence condition, and setting x=y=1, our model
corresponds to the Wadsworth and Tawn model (2013).

e For (B,y)=(1,1), as x(1,1) = 11—7 we recognize the Ledford and Tawn (1996,
1997) model and the Ramos and Ledford model (2009).

To sum up this work in progress

o Allowing the components to grow at different rates

o Permiting extrapolation into regions where not all components are
simultaneously extreme

o Ray independence and ray dependence

o Non parametric approach and semi parametric approach.

To a spatial approach ? With different kinds of dependence according to
distances ?



THANK YOU FOR YOUR ATTENTION!
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