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Extremes of Time Series

| Block maxima
[l Clusters

[II' Tail processes
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Part I

Block maxima
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Extremes of Time Series

The annual maximum method for time series
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Max-stability

A distribution is max-stable iff maxima of iid samples from it have the same

distribution up to location and scale.
Max-stability: cdf G solves functional equation

G"(anx + b,) = G(x)
Solve for G?

Solution: generalized extreme-value distribution.
» univariate: three-parameter family
» multivariate: additionally, extreme-value copula

[Fisher and Tippett 1928; de Haan and Resnick 1977]
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Extremal types theorem(s)

Under weak dependence, limit laws (if any) of affinely normalized block
maxima are max-stable, hence GEV.
Idea:

» Write maximum as a maximum over maxima over (approximately)
independent smaller blocks.

» Maxima over the smaller blocks converge to the same distribution as the
global maximum (convergence of types theorem).

» Two different ways of obtaining the same limit.

[Gnedenko 1943; Leadbetter 1974; Hsing 1989; Hiisler 1990]
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Weak dependence heuristic: big blocks, small blocks
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Annual maximum method

Method: fit a GEV to a sample of block maxima.

Univariate:
» matching probabilities or quantiles

» matching (probability weighted) moments
» maximum likelihood

Multivariate:
> nonparametric techniques

» assume parametric model and do maximum likelihood
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Asymptotic frameworks

Data generating process?

iid random variables or vectors sampled from:
> the limiting GEV
» a distribution with an extreme-value copula

» margins partially (un)known

Triangular array of block maxima extracted from
> an iid time series

> a stationary time series

> a general, non-specified time series
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Extremes of Time Series

Univariate maxima: maximum likelihood
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Fréchet MLE

Given: M,, = (M1, ..., M,,), sample of ‘block maxima’, not all tied.
Think of M, ; as approximately (i)id Fréchet(cy, )

Goo(x) =exp{—(x/o)"“}, x>0

Estimate Fréchet parameters by maximum likelihood:

(@n, )
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Fréchet MLE: consistency
M, = (M,;,...,M,y,), sample of ‘block maxima’, not all tied.

Assumption: there exists o, > 0 such that

LSS 0y fon) B / " F(1) dGag 1 ()
kn < ni/9n 0 ag,1

for all f of the form f(x) = x~® or f(x) = x “logx, all « > 0
Then the Fréchet MLE (&, 6,,) exists, is unique, and
b 2 a,
Gn/0on 2

Proof: investigate asymptotic properties of score equations.

[Biicher and S. 2015]
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Fréchet MLE: Asymptotic normality

M, = M,.,...,My,y,), sample of ‘block maxima’, not all tied.

Assumption: convergence in probability or asymptotic normality of statistics
of the form

kn
kln ;f(Mn,i/Un)
for functions f : (0,00) — R arising in the score equations
Then the Fréchet MLE (&, 6,,) exists, is unique, and
V(G — 00, G/ — 1) % weak limit
Rate of convergence v, — oo determined by assumption; typically v, = v/k,

[Biicher and S. 2015]
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Special case: stationary time series

Specialize previous theorem to
Myi=max{X,:t=(i—Ur,+1,...,ir,}
(ith block of size r,, for block i = 1, ..., k,, with k, = |n/r,] blocks)

Conditions on (X;),ez to ensure that the general theorem applies:
» rescaled maxima M, /o, attracted by Fréchet distribution
» control on the rate of convergence
» moment conditions

> mixing

= Asymptotic normality of Fréchet MLE (&, 6,)
» non-zero mean possible due to rate of convergence

» covariance matrix: inverse of Fisher information matrix as if iid Fréchet
random sample
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Finite-sample performance

Comparison of Fréchet MLE &,, based on k block maxima with
Hill estimator based on & largest upper order statistics

GARCH(1,1) with lambda = (0.5, 0.367, 0.367)
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Extremes of Time Series

Multivariate maxima: extreme-value copula
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Block maxima
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Copula extremal types theorem

Multivariate stationary time series, weakly dependent.
Vector of componentwise sample maxima.

Copula extremal types theorem

Limit copula (if any) of a vector of componentwise sampl maxima is an
extreme-value copula, Cg.

» This Cg could be different from the extreme-value copula attractor of the
stationary distribution (multivariate extremal index).

[Hsing 1989; Hiisler 1990]
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Empirical copula

Sample of k, vectors of componentwise block maxima: estimate Cg?

Empirical copula Cy: empirical cdf of vectors of normalized ranks.

[Deheuvels 1979]

Empirical copula process:
V kn(cn - CE)

Converges weakly to the same limit as if C, were the empirical copula from
an iid sample from Cg, plus possible bias term.

Conditions:

» mixing conditions

v

growth of block sizes

v

rate of convergence in copula extremal type theorem
» smoothness of Cg

[Biicher and S. 2014]
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Estimating the Pickands dependence function

Weak convergence of empirical copula process yields weak convergence of
estimators of other dependence objects, e.g., Pickands dependence function

outerpowerclayton, tdc=0.25, a=0.25, b=0.5
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Part 11

Clusters of extremes
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Extremes of Time Series

Extremal index
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Maxima of stationary time series

Stationary, real-valued time series (X;);cz. Weakly dependent.
Sample of size n, divided in &, blocks of size r,,.

Levels u, such that nP[Xo > u,| — 7 € (0, 00).

P[M,, < u,] = (P[Xo < ”n])nan

where

P[M,, > uy]
rnP[XO > un]

~PM ., <u, | Xo> up)

n —

Limit, 8, of 8,,, if any, 1s the extremal index. [Leadbetter 1983; 0’Brien 1987]
— ‘Blocks’ and ‘runs’ estimators.

[Hsing 1991, 1993; Smith & Weissman 1994; Weissman & Novak 1998; Robert, S., Ferro 2009]
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Other characterizations of the extremal index

Stationary cdf F(x) = P[Xp < x|.
Inter-exceedance times: 7'(u,) = inf{k > 1 : X; > u,} given Xy > u,.

P[T(u,) > t/F(up) | Xo > u,) = 0", t>0

[Ferro and S. 2003]
Distorted probability integral transform:

P[((F(M,))"<x]—x", 0O<x<l1

[Northrop 2015]
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An informal view on clusters

For weakly dependent stationary sequences,
extremes arrive in clusters.

We are concerned with the asymptotic distribution of the ‘block’

(le" . 7Xrn)

given that at least one ‘extreme value’ occurs

n
Z 1(X; hits an exceptional set) > 1
i=1

when the expected number of extremes is asymptotically negligible

r, P(X; hits an exceptional set) = o(1)
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Extremes of Time Series

Cluster functionals and the cluster map
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Cluster statistics

Ingredients
» Stationary process (X,), on R
» High threshold u,
» Block size r,

Interest is in cluster statistics of the form
(X1 — up,...,X,, —u,) conditionallyon M, > u,

that only depend on the ‘cluster’:
the stretch between the first and the last exceedance over u,,.

We require that
Fn — 00, mP(X1 > u,) -0

Luminy, 23 Feb 2016
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Examples of cluster statistics

» Block maximum: maximal excess
c(Viye- vy Yr,) =max(yi, ..., )
> Aggregate excess: sum of excesses
c(y1y--+,Yr,) = max(y;,0) + --- + max(y,,,0)

Cluster size: number of excesses

v

ciy-veyyr) =1y >0)+---+1(y,, >0)

v

Cluster duration: time span between first and last excess

c(yi,---,yr,) =max{i:y; >0} —min{i: y; > 0} + 1

v

Number of threshold upcrossings
e yn) =101 >0) + 11 S0 <y2) + -+ 11 <0 < yp,)
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Cluster functionals

Desirable properties of ¢( - ):

» Its domain is a vector of arbitrary length
with at least one non-zero component.

» It depends only on the ‘extreme’ part of the vector
Definition
A cluster functional is a map ¢ : A — R with
A=A UAU...
A, =R\ (—0,0" = {(y1,.--,y) € R": max(yy,...,y,) >0}
and neglecting everything that happened

before or after the first or last positive value:

C(yla v 7yr) = C(yom oo 7yw)
a = min{i : y; > 0}
w=max{i:y; > 0}
[Yun 2000; S. 2003; Drees & Rootzén 2010]
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Cluster map

Definition
Recall A = J,5,Arand A, = R\ (—o0, 0]". Define the cluster map

C:A—=A:1, 'y ¥r) = Daye s Yw)
a =min{i:y; > 0}
w=max{i:y >0}

[Segers 2005]

Then ¢ : A — R is a cluster functional if and only if
c=foCforsomef:A — R

Hence, to know the asymptotic distribution of cluster statistics,
it is sufficient to know the asymptotic distribution of the ‘cluster’ itself

C(X1 — un,...,X,, —uy) conditionally on M,, > u,

Luminy, 23 Feb 2016
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Extremes of Time Series

Approximate cluster distributions

Luminy, 23 Feb 2016 31/60



Aim: switch to a simpler conditioning event

We are interested in the cluster distribution
P[C(X| —up, ..., X, —up) € - | My, > uy)
Recall r, — oo and r,P(X; > u,) — 0.

The conditioning event {M,, > u,} is awkward to work with:
when exactly did the exceedances occur?

We’d rather prefer expressions in terms of the law of
(Xla"' 7Xk) |X1 > Uy

This would be particularly convenient in the case of Markov chains.

Luminy, 23 Feb 2016
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Expected cluster size

Expected number of exceedances given that there is at least one:

i r, P(X1 > u, 1
[t o> ] = ) 205 =5
" P(M,, > u,)
O P > ) © O
Example

In the iid case, since r,, F(u,) — 0, we have

g — 1= (1= Flu))"

roF (uy)

—1
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Finite-cluster condition

Suppose that the impact of a shock is somehow limited in time:

X1, X0 oo Xy Xt -3 Xy,
~ N————
>ip >uy?
Xiy... ./X,-”,,ﬂ,X,-”,,,,v] yoe 'X/',,fla Xr,l
———— ~—~
>up? >uy

Formally, put M; ; = max(X;, . .., X;) and suppose

lim limsupP(M,, 11, > u, | X1 > u,) =0 (FiCl11)
m—o0 p_so0
lim UimsupP(M ,, . > uy | X, > uy) =0 (FiCl2)
m—0o0  p_so0
Sufficient condition:
n
Jim_tim sup 2;1 P(X; > uy | X1 > ty) =0 (FiCl)
=m
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Bounded expected cluster sizes

If (FiCl), the expected cluster size remains bounded:

lim su [n 2321 =~ Hn) PX) > )
n—>oop P(Mr,, > un)

ie. liminfd, > 0.
n—oo

Proof: observe that M,, > max (X, X1, Xomt1s - -« s Ximt1) With k ~ r,/m.
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The approximant

Consider a bounded, measurable cluster functional ¢ : A — R.
Apply c to different stretches of the process:

cn(i,j) = ¢(Xi — un, ..., Xj — up,) on the event M; j > uy,

Consider the approximation error

E[cn(l’r”) ’ M, > l/ln] - a’;’m<c)

quantity of interest

approximant
where
anm(c) =E[c,(1,m) | X; > uy]
—Elca(2,m), My > uy | X1 > up)

917.111 - P[M2,m < u, ‘ X > Mn] ‘runs’

Luminy, 23 Feb 2016

36 /60



The cluster approximation

Theorem
If (FiCl), then
lim limsup|6,,, — 6, |=0
~ =~

m—o0  p_so0
uns’  ‘blocks’
as well as
: : Qpm(C
lim limsup sup |E[c,(1,7,) | My, > u,] — —* (€) =0
m—oo  p_y~o CZ‘C|§1 em,n

[S. 2005]

Proof: elementary calculations, based on careful use of

v

partitionings of the event {M,, > u,} and similar ones

v

stationarity

v

the cluster property
(FiC1)

v
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Part III

Tail processes
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Extremes of Time Series

Probabilistic background
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Regular variation: a convenient hypothesis
Regularly varying tails:
P(X >u)=u “L(u)

with L ‘slowly varying’ (think of it as constant)

Student t density

Both positive and negative spikes:

P(IX| > u) =u“L(u)

P(X > u) ~ ps P(X| > u)
P(X < —u) ~p_ P(|X| > u)

000 005 010 015 020 025 030 035

Example: Student t (p. = p_ = 1/2)
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Far far away

P
r=vX2+Y? how big
“ rsing (X, Y) —
f ¢ = arctan(Y,X) in which direction
o X

I COSQ

Multivariate regular variation:

Plr>u]l =u “L(u)

Ploe- |r>u%SH()
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Stability at infinity

As the radius grows larger, it becomes independent of the angle:

Plr>uy, p€- ]r>u]i>y7°‘H(-)

(X,Y) ~ iid bivariate Student t

d2,h0=03
.
. e
vies p
..
o LN
.
.
T T T T ; i T
-15 -10 -5 0 5 10 15

radius

(X,Y) ~ iid bivariate Student t

df=2, tho=03
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Time is just another form of space

» Stationary time series Xo, X1, X, . . ..

» Impact of a shock on the future?

Assumption

(Xf7 Xl‘—‘r]? ..

Google stock prices daily returns
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., X¢+n) is regularly varying V¢, h

Google stock prices daily returns
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Troubles ahead

Regular variation is equivalent to the existence of an ‘extreme regime’:

L((Xn/u)n | 1Xo0| > u) = (Ya)n tail process

d
_>
L((Xn/1Xo0|)n | |Xo| > u) 4 (®n)n spectral tail process

[Basrak & S. 2009, 2011]
» What are Y, and Oy, for usual time series models?

» How can we estimate them?
» What can we learn from them?

Luminy, 23 Feb 2016
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Independence: isolated spikes
X0, X1,X>, ... 1id F regularly varying:

d |+1 wppy d
X0/|X0| | |X()| >u— { and Xh/|X()| ’ |X()| >u—0
-1 wpp_
lid Student t series with df=2
[T [T
] |.‘|, i ||I|" ' ,J,.‘,I‘ I"" l‘ o ,||“.||,| ||I |||,..|..|,,,.,‘ "
| T T | |\ T T T
0 20 40 60 80 100
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Spill-overs: a bunch of spikes

Moving average X, with iid heavy-tailed innovations Z;:

Xi=2,1+72

Moving avarage with iid heavy~tailed innovations

il |“ “ Ll
o 4 Iu‘llll I"I'l IHII U" "|| II||||u"|||| I‘ |||II “I'

0 20 40 60 80 100

Luminy, 23 Feb 2016 46/60



Tail processes of more involved processes

Linear process:

X; = Z ajZ,,j

JEZ
= Tail process dominated by biggest-shock heuristic

[Davis & Resnick 1985; Meinguet & S. 2010]
Markov process, e.g. stochastic recurrence equation:
X; = AlXi—1 + B,

= Tail process is multiplicative random walk

[Smith 1992; Perfekt 1994; Yun 1998; S. 2007; JanBen & S. 2014]
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Change of measure due to a time-shift
Recall £ ((Xi/ |Xo)n | 1Xo| > 1) % (©4)

For all integer s < 0 < ¢, all k € Z, all measurable f such that
f(y57 e ayt) - 0 Wheneveryo = 0:

O O o
B (©c-ive 80 =B |7 (Girovvig ) 104l

Consequence of stationarity of (X;);cz and polar decomposition.
Special case:
P[0, > x] = E[|0_4| 1(00/|0_4| >x)], x> 0.
‘forward’ versus ‘backward’ estimators of law of ©,.
Extends to abstract metric spaces endowed with scalar multiplication and a norm-like

functional. Perhaps even for more general index sets endowed with a group action.

[Hult & Lindskog 2006; Meinguet, S. & Zhao 2016]
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Extremes of Time Series

Estimation
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Estimating O

d
X0/|X0| | |Xo| >x— 0y = {

f)+ B Z?:l 1 (Xl' > Mn)
=
er'lzl L(|Xi| > un)

» For suitable sequence
u, — oo such that
nP[|Xo| > un] — oo.

Wp P+
wp p—

Google stock prices daily returns

T T T
2006 2008 2010 2012 2014

t
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Estimating O

d +1 wpp
Xo/|Xo| | [Xo| > xS 0y = *
-1 wpp—
Google stock prices daily returns
ngrﬂmn T T L T
by = Doy 1(Xi > uy)
n —
S (X > w) | ]l |
TR " o

» For suitable sequence ! ' ‘
u, — oo such that ) I ”HW T
nP[|Xo| > un] — oo.

» Example: u, is a 95% 51y m
quantile Of ‘Xt ’ . 2006 2008 2010 2012 2014

t
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Estimating 0,

d
Xh/ ‘X()‘ ’ ’X()’ >u— @h

FOn (x) = Z:l:l 1 (Xen/ 1Xe] < x, |Xi| > un)
' 2t 11X > un)

Google stock prices daily returns : scatterplot

» For suitable sequence
u, — oo such that
nP[|Xo| > un] — oo.

Xt+h
0

» Example: h=1,x=1... 3

T
-0.2

T
-0.1

T
00
Xt
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Estimating 0,

d
Xh/ ‘X()‘ ’ ’X()’ >u— @h

FOn (x) = Z:’:l 1 (Xen/ 1Xe] < x, |Xi| > un)
' 2t 11X > un)

Google stock prices daily returns: @,

0.2
|

» For suitable sequence
u, — oo such that
nP[|Xo| > un] — oo.

0.1

Xt+h

» Example: h = 1,x =1,
and uy, is a 95% quantile 3
of ’X;|

T T T T T
-0.2 -0.1 00 01 02
Xt
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Estimating 0,

X/ [Xol | Xo > u 0, | O = +1

ﬁ@h\e)ozl . Z:lzl 1(Xeyn/ 1Xe| < x, Xi > uy)
n ('x) - n
Zt:l 1(X; > uy)

Google stock prices daily returns: ©, |9 = +1

» For suitable sequence
u, — oo such that
nP[|Xo| > un] — oo.

Xt+h
0

» Example: h = 1,x =1,
and uy, is a 95% quantile 1
of ’X;|

T T T T T
-0.2 -0.1 00 01 02
Xt
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Estimating 0,

d
Xh/‘XOHXO<_u_>@h‘@0:_]

20,|Op=—1 ZL] 1 (Xt+h/ ‘Xt| <x X < _un)
Fy (X> = n
Zt:l 1(X; < —up)

Google stock prices daily returns: ©, |9 =-1

0.2
|

» For suitable sequence
u, — oo such that
nP[|Xo| > un] — oo.

0.1

Xt+h

» Example: h = 1,x =1,
and uy, is a 95% quantile 3
of ’X;|

T T T T T
-0.2 -0.1 00 01 02
Xt
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Enhancements

Possibly better estimation by exploiting time-change formula:
backward estimator [prees, s. and Warchot 2015]

Confidence intervals:
> by stationary bootstrap poliis & Romano 1994]
» or by multiplier block bootstrap.

Better coverage via lower thresholds and “upscaling’ mrees 20151.

Asymptotic justification: empirical processes of cluster functionals

[Drees & Rootzén 2010; Drees 2015; Davis, Drees, S. & Warchot 2016].
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Estimators and resampling

1.0

0.9

0.7 08

03 04 05 06

pseudo-random samples from GARCH(1,1) with ¢4 innovations

Coverage probabilities of confidence intervals for P[|0,| > 1]
threshold at 98% empirical quantile

Coverage - backward - GARCH

S o - = ==e==

S

- = multiplier - rescaled
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— multiplier
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T
-10 0 10 20
t

T
-20

forward estimator
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stationary stationary - rescaled
T T T T T
-20 -10 0 10 20
t
backward estimator
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Leverage effect: empirical evidence

S&P500 daily returns (1995-2004)

positive shock negative shock

A A
Pl >1]0=1) P >1]60=-1)

— S&P
- = independence

— S&P
- = independence

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L
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Leverage effect: model fit

S&P500 daily returns: GARCH(1,1) versus APARCH(1,1) X = ¢,Z, with

2

2 2
o =w+ a1 X, + fio;_,

ol = w4 ar(|Xe—1| — mX—1)® + Bio?,

positive shock

Plor>119=1)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L

S&P

GARCH

= = APARCH
independence

GARCH
APARCH [Ding, Granger, Engle 1993]

negative shock

A
P(le>1]0=-1)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L

— S&P
+ GARCH
= = APARCH
independence
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Conclusion: Time series extremes

> Interesting probabilistic structures
» generalized extreme-value distributions
> point processes
> clusters of extremes
» tail processes
» Challenging statistical questions:

» Methods: (non/semi-)parametric estimators, resampling
» Asymptotic justification: empirical processes

Thank you!
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