
Extremes of Time Series

Johan Segers

joint work with B. Basrak, A. Bücher, R. Davis, H. Drees, C.A.T. Ferro,
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Part I

Block maxima
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Extremes of Time Series

The annual maximum method for time series

Univariate maxima: maximum likelihood

Multivariate maxima: extreme-value copula

Luminy, 23 Feb 2016 4 / 60



Max-stability

A distribution is max-stable iff maxima of iid samples from it have the same
distribution up to location and scale.

Max-stability: cdf G solves functional equation

Gn(anx + bn) = G(x)

Solve for G?

Solution: generalized extreme-value distribution.
I univariate: three-parameter family
I multivariate: additionally, extreme-value copula

[Fisher and Tippett 1928; de Haan and Resnick 1977]
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Extremal types theorem(s)

Under weak dependence, limit laws (if any) of affinely normalized block
maxima are max-stable, hence GEV.

Idea:
I Write maximum as a maximum over maxima over (approximately)

independent smaller blocks.
I Maxima over the smaller blocks converge to the same distribution as the

global maximum (convergence of types theorem).
I Two different ways of obtaining the same limit.

[Gnedenko 1943; Leadbetter 1974; Hsing 1989; Hüsler 1990]
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Weak dependence heuristic: big blocks, small blocks
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Annual maximum method

Method: fit a GEV to a sample of block maxima.

Univariate:
I matching probabilities or quantiles
I matching (probability weighted) moments
I maximum likelihood

Multivariate:
I nonparametric techniques
I assume parametric model and do maximum likelihood
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Asymptotic frameworks

Data generating process?

iid random variables or vectors sampled from:
I the limiting GEV
I a distribution with an extreme-value copula

I margins partially (un)known

Triangular array of block maxima extracted from
I an iid time series
I a stationary time series
I a general, non-specified time series
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Extremes of Time Series

The annual maximum method for time series

Univariate maxima: maximum likelihood

Multivariate maxima: extreme-value copula
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Fréchet MLE

Given: Mn = (Mn,1, . . . ,Mn,kn), sample of ‘block maxima’, not all tied.

Think of Mn,i as approximately (i)id Fréchet(α0, σn)

Gα,σ(x) = exp{−(x/σ)−α}, x > 0

Estimate Fréchet parameters by maximum likelihood:

(α̂n, σ̂n)
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Fréchet MLE: consistency
Mn = (Mn,1, . . . ,Mn,kn), sample of ‘block maxima’, not all tied.

Assumption: there exists σn > 0 such that

1
kn

kn∑
i=1

f (Mn,i/σn)
p−→
∫ ∞

0
f (x) dGα0,1(x)

for all f of the form f (x) = x−α or f (x) = x−α log x, all α > 0

Then the Fréchet MLE (α̂n, σ̂n) exists, is unique, and

α̂n
p−→ α0,

σ̂n/σn
p−→ 1

Proof: investigate asymptotic properties of score equations.
[Bücher and S. 2015]
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Fréchet MLE: Asymptotic normality

Mn = (Mn,1, . . . ,Mn,kn), sample of ‘block maxima’, not all tied.

Assumption: convergence in probability or asymptotic normality of statistics
of the form

1
kn

kn∑
i=1

f (Mn,i/σn)

for functions f : (0,∞)→ R arising in the score equations

Then the Fréchet MLE (α̂n, σ̂n) exists, is unique, and

vn(α̂n − α0, σ̂n/σn − 1)
d−→ weak limit

Rate of convergence vn →∞ determined by assumption; typically vn =
√

kn

[Bücher and S. 2015]
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Special case: stationary time series
Specialize previous theorem to

Mn,i = max{Xt : t = (i− 1)rn + 1, . . . , irn}

(ith block of size rn, for block i = 1, . . . , kn, with kn = bn/rnc blocks)

Conditions on (Xt)t∈Z to ensure that the general theorem applies:
I rescaled maxima Mn/σn attracted by Fréchet distribution
I control on the rate of convergence
I moment conditions
I mixing

=⇒ Asymptotic normality of Fréchet MLE (α̂n, σ̂n)

I non-zero mean possible due to rate of convergence
I covariance matrix: inverse of Fisher information matrix as if iid Fréchet

random sample
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Finite-sample performance
Comparison of Fréchet MLE α̂n based on k block maxima with

Hill estimator based on k largest upper order statistics
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Extremes of Time Series

The annual maximum method for time series

Univariate maxima: maximum likelihood

Multivariate maxima: extreme-value copula
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Block maxima
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Copula extremal types theorem

Multivariate stationary time series, weakly dependent.
Vector of componentwise sample maxima.

Copula extremal types theorem
Limit copula (if any) of a vector of componentwise sampl maxima is an
extreme-value copula, CE.

I This CE could be different from the extreme-value copula attractor of the
stationary distribution (multivariate extremal index).

[Hsing 1989; Hüsler 1990]
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Empirical copula
Sample of kn vectors of componentwise block maxima: estimate CE?

Empirical copula Ĉn: empirical cdf of vectors of normalized ranks.
[Deheuvels 1979]

Empirical copula process: √
kn(Ĉn − CE)

Converges weakly to the same limit as if Ĉn were the empirical copula from
an iid sample from CE, plus possible bias term.

Conditions:
I mixing conditions
I growth of block sizes
I rate of convergence in copula extremal type theorem
I smoothness of CE

[Bücher and S. 2014]
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Estimating the Pickands dependence function
Weak convergence of empirical copula process yields weak convergence of
estimators of other dependence objects, e.g., Pickands dependence function
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Part II

Clusters of extremes
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Extremes of Time Series

Extremal index

Cluster functionals and the cluster map

Approximate cluster distributions
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Maxima of stationary time series

Stationary, real-valued time series (Xt)t∈Z. Weakly dependent.

Sample of size n, divided in kn blocks of size rn.

Levels un such that nP[X0 > un]→ τ ∈ (0,∞).

P[Mn ≤ un] ≈ (P[X0 ≤ un])nθn

where

θn =
P[Mrn > un]

rnP[X0 > un]

≈ P[M1,rn ≤ un | X0 > un]

Limit, θ, of θn, if any, is the extremal index. [Leadbetter 1983; O’Brien 1987]

=⇒ ‘Blocks’ and ‘runs’ estimators.
[Hsing 1991, 1993; Smith & Weissman 1994; Weissman & Novak 1998; Robert, S., Ferro 2009]
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Other characterizations of the extremal index

Stationary cdf F(x) = P[X0 ≤ x].

Inter-exceedance times: T(un) = inf{k ≥ 1 : Xk > un} given X0 > un.

P[T(un) > t/F(un) | X0 > un]→ θ e−tθ, t > 0

[Ferro and S. 2003]

Distorted probability integral transform:

P[(F(Mn))n ≤ x]→ xθ, 0 < x < 1

[Northrop 2015]
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An informal view on clusters

For weakly dependent stationary sequences,
extremes arrive in clusters.

We are concerned with the asymptotic distribution of the ‘block’

(X1, . . . ,Xrn)

given that at least one ‘extreme value’ occurs

rn∑
i=1

1(Xi hits an exceptional set) ≥ 1 (C)

when the expected number of extremes is asymptotically negligible

rn P(X1 hits an exceptional set) = o(1)
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Extremes of Time Series

Extremal index

Cluster functionals and the cluster map

Approximate cluster distributions
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Cluster statistics

Ingredients
I Stationary process (Xn)n on R
I High threshold un

I Block size rn

Interest is in cluster statistics of the form

c(X1 − un, . . . ,Xrn − un) conditionally on Mrn > un

that only depend on the ‘cluster’:
the stretch between the first and the last exceedance over un.

We require that
rn →∞, rn P(X1 > un)→ 0
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Examples of cluster statistics
I Block maximum: maximal excess

c(y1, . . . , yrn) = max(y1, . . . , yrn)

I Aggregate excess: sum of excesses

c(y1, . . . , yrn) = max(y1, 0) + · · ·+ max(yrn , 0)

I Cluster size: number of excesses

c(y1, . . . , yrn) = 1(y1 > 0) + · · ·+ 1(yrn > 0)

I Cluster duration: time span between first and last excess

c(y1, . . . , yrn) = max{i : yi > 0} −min{i : yi > 0}+ 1

I Number of threshold upcrossings

c(y1, . . . , yrn) = 1(y1 > 0) + 1(y1 ≤ 0 < y2) + · · ·+ 1(yrn−1 ≤ 0 < yrn)
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Cluster functionals
Desirable properties of c( · ):

I Its domain is a vector of arbitrary length
with at least one non-zero component.

I It depends only on the ‘extreme’ part of the vector

Definition
A cluster functional is a map c : A→ R with

A = A1 ∪ A2 ∪ . . .
Ar = Rr \ (−∞, 0]r = {(y1, . . . , yr) ∈ Rr : max(y1, . . . , yr) > 0}

and neglecting everything that happened
before or after the first or last positive value:

c(y1, . . . , yr) = c(yα, . . . , yω)

α = min{i : yi > 0}
ω = max{i : yi > 0}

[Yun 2000; S. 2003; Drees & Rootzén 2010]
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Cluster map
Definition
Recall A =

⋃
r≥1 Ar and Ar = Rr \ (−∞, 0]r. Define the cluster map

C : A→ A : (y1, . . . , yr) 7→ (yα, . . . , yω)

α = min{i : yi > 0}
ω = max{i : yi > 0}

[Segers 2005]

Then c : A→ R is a cluster functional if and only if

c = f ◦ C for some f : A→ R

Hence, to know the asymptotic distribution of cluster statistics,
it is sufficient to know the asymptotic distribution of the ‘cluster’ itself

C(X1 − un, . . . ,Xrn − un) conditionally on Mrn > un
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Extremes of Time Series

Extremal index

Cluster functionals and the cluster map

Approximate cluster distributions
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Aim: switch to a simpler conditioning event

We are interested in the cluster distribution

P[C(X1 − un, . . . ,Xrn − un) ∈ · | Mrn > un]

Recall rn →∞ and rnP(X1 > un)→ 0.

The conditioning event {Mrn > un} is awkward to work with:
when exactly did the exceedances occur?

We’d rather prefer expressions in terms of the law of

(X1, . . . ,Xk) | X1 > un

This would be particularly convenient in the case of Markov chains.
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Expected cluster size

Expected number of exceedances given that there is at least one:

E
[ rn∑

i=1

1(Xi > un)

∣∣∣∣Mrn > un

]
=

rn P(X1 > un)

P(Mrn > un)
=:

1
θn

so

θn =
P(Mrn > un)

rn P(X1 > un)
∈ (0, 1]

Example
In the iid case, since rn F(un)→ 0, we have

θn =
1− (1− F(un))rn

rnF(un)
→ 1
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Finite-cluster condition
Suppose that the impact of a shock is somehow limited in time:

X1︸︷︷︸
>un

,X2, . . . ,Xm,Xm+1, . . . ,Xrn︸ ︷︷ ︸
>un?

X1, . . . ,Xrn−m︸ ︷︷ ︸
>un?

,Xrn−m+1, . . . ,Xrn−1, Xrn︸︷︷︸
>un

Formally, put Mi,j = max(Xi, . . . ,Xj) and suppose

lim
m→∞

lim sup
n→∞

P(Mm+1,rn > un | X1 > un) = 0 (FiCl1)

lim
m→∞

lim sup
n→∞

P(M1,rn−m > un | Xrn > un) = 0 (FiCl2)

Sufficient condition:

lim
m→∞

lim sup
n→∞

rn∑
i=m+1

P(Xi > un | X1 > un) = 0 (FiCl)
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Bounded expected cluster sizes

If (FiCl), the expected cluster size remains bounded:

lim sup
n→∞

rn P(X1 > un)

P(Mrn > un)
<∞

i.e. lim inf
n→∞

θn > 0.

Proof: observe that Mrn ≥ max(X1,Xm+1,X2m+1, . . . ,Xkm+1) with k ∼ rn/m.
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The approximant
Consider a bounded, measurable cluster functional c : A→ R.
Apply c to different stretches of the process:

cn(i, j) = c(Xi − un, . . . ,Xj − un) on the event Mi,j > un

Consider the approximation error∣∣∣∣E[cn(1, rn) | Mrn > un]︸ ︷︷ ︸
quantity of interest

− αn,m(c)

θn,m︸ ︷︷ ︸
approximant

∣∣∣∣
where

αn,m(c) = E[cn(1,m) | X1 > un]

− E[cn(2,m), M2,m > un | X1 > un]

θn,m = P[M2,m ≤ un | X1 > un] ‘runs’
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The cluster approximation

Theorem
If (FiCl), then

lim
m→∞

lim sup
n→∞

| θn,m︸︷︷︸
‘runs’

− θn︸︷︷︸
‘blocks’

| = 0

as well as

lim
m→∞

lim sup
n→∞

sup
c:|c|≤1

∣∣∣∣E[cn(1, rn) | Mrn > un]− αn,m(c)

θm,n

∣∣∣∣ = 0

[S. 2005]

Proof: elementary calculations, based on careful use of

I partitionings of the event {Mrn > un} and similar ones

I stationarity

I the cluster property

I (FiCl)
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Part III

Tail processes
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Extremes of Time Series

Probabilistic background

Estimation
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Regular variation: a convenient hypothesis

Regularly varying tails:

P(X > u) = u−αL(u)

with L ‘slowly varying’ (think of it as constant)

Both positive and negative spikes:

P(|X| > u) = u−α L(u)

P(X > u) ∼ p+ P(|X| > u)

P(X < −u) ∼ p− P(|X| > u)

Example: Student t (p+ = p− = 1/2)
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Far far away

(X,Y)→

r =
√

X2 + Y2 how big

ϕ = arctan(Y,X) in which direction

Multivariate regular variation:

P[r > u] = u−α L(u)

P[ϕ ∈ · | r > u]
d−→ H( · )
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Stability at infinity

As the radius grows larger, it becomes independent of the angle:

P[r > uy , ϕ ∈ · | r > u]
d−→ y−α H( · )
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Time is just another form of space
I Stationary time series X0,X1,X2, . . ..
I Impact of a shock on the future?

Assumption
(Xt,Xt+1, . . . ,Xt+h) is regularly varying ∀t, h
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Troubles ahead

Regular variation is equivalent to the existence of an ‘extreme regime’:

L
(
(Xh/u)h | |X0| > u

) d−→ (Yh)h tail process

L
(
(Xh/|X0|)h | |X0| > u

) d−→ (Θh)h spectral tail process

[Basrak & S. 2009, 2011]

I What are Yh and Θh for usual time series models?
I How can we estimate them?
I What can we learn from them?
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Independence: isolated spikes
X0,X1,X2, . . . iid F regularly varying:

X0/|X0| | |X0| > u d−→

{
+1 wp p+

−1 wp p−
and Xh/|X0| | |X0| > u d−→ 0

0 20 40 60 80 100

−
10

−
5

0
5

10

Iid Student t series with df=2
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Spill-overs: a bunch of spikes
Moving average Xt with iid heavy-tailed innovations Zt:

Xt = Zt−1 + Zt

{
+1 wp p+

−1 wp p−

0 20 40 60 80 100

−
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−
5

0
5

10

Moving avarage with iid heavy−tailed innovations
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Tail processes of more involved processes

Linear process:
Xt =

∑
j∈Z

ajZt−j

=⇒ Tail process dominated by biggest-shock heuristic
[Davis & Resnick 1985; Meinguet & S. 2010]

Markov process, e.g. stochastic recurrence equation:

Xt = AtXt−1 + Bt

=⇒ Tail process is multiplicative random walk
[Smith 1992; Perfekt 1994; Yun 1998; S. 2007; Janßen & S. 2014]

Luminy, 23 Feb 2016 47 / 60



Change of measure due to a time-shift
Recall L

(
(Xh/ |X0|)h | |X0| > u

) d−→ (Θh)h

For all integer s ≤ 0 ≤ t, all k ∈ Z, all measurable f such that
f (ys, . . . , yt) = 0 whenever y0 = 0:

E[f (Θs−k, . . . ,Θt−k)] = E
[

f
(

Θs

|Θk|
, . . . ,

Θt

|Θk|

)
|Θk|α

]
Consequence of stationarity of (Xt)t∈Z and polar decomposition.

Special case:

P[Θh > x] = E[|Θ−h|α 1(Θ0/ |Θ−h| > x)], x > 0.

‘forward’ versus ‘backward’ estimators of law of Θh.

Extends to abstract metric spaces endowed with scalar multiplication and a norm-like
functional. Perhaps even for more general index sets endowed with a group action.
[Hult & Lindskog 2006; Meinguet, S. & Zhao 2016]
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Extremes of Time Series

Probabilistic background

Estimation
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Estimating Θ0

X0/|X0| | |X0| > x d−→ Θ0 =

{
+1 wp p+

−1 wp p−

p̂+n =

∑n
i=1 1 (Xi > un)∑n

i=1 1 (|Xi| > un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

2006 2008 2010 2012 2014
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Estimating Θ0

X0/|X0| | |X0| > x d−→ Θ0 =

{
+1 wp p+

−1 wp p−

p̂+n =

∑n
i=1 1 (Xi > un)∑n

i=1 1 (|Xi| > un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

I Example: un is a 95%
quantile of |Xt|. 2006 2008 2010 2012 2014
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Estimating Θh

Xh/ |X0| | |X0| > u d−→ Θh

F̂Θh
n (x) =

∑n
t=1 1 (Xt+h/ |Xt| ≤ x, |Xt| > un)∑n

t=1 1 (|Xt| > un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

I Example: h = 1, x = 1...
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Estimating Θh

Xh/ |X0| | |X0| > u d−→ Θh

F̂Θh
n (x) =

∑n
t=1 1 (Xt+h/ |Xt| ≤ x, |Xt| > un)∑n

t=1 1 (|Xt| > un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

I Example: h = 1, x = 1,
and un is a 95% quantile
of |Xt|.
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Estimating Θh

Xh/ |X0| | X0 > u d−→ Θh | Θ0 = +1

F̂Θh|Θ0=1
n (x) =

∑n
t=1 1 (Xt+h/ |Xt| ≤ x, Xt > un)∑n

t=1 1 (Xt > un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

I Example: h = 1, x = 1,
and un is a 95% quantile
of |Xt|.
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Estimating Θh

Xh/ |X0| | X0 < −u d−→ Θh | Θ0 = −1

F̂Θh|Θ0=−1
n (x) =

∑n
t=1 1 (Xt+h/ |Xt| ≤ x, Xt < −un)∑n

t=1 1 (Xt < −un)

I For suitable sequence
un →∞ such that
nP[|X0| > un]→∞.

I Example: h = 1, x = 1,
and un is a 95% quantile
of |Xt|.
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Enhancements

Possibly better estimation by exploiting time-change formula:
backward estimator [Drees, S. and Warchoł 2015]

Confidence intervals:
I by stationary bootstrap [Politis & Romano 1994]

I or by multiplier block bootstrap.

Better coverage via lower thresholds and ‘upscaling’ [Drees 2015].

Asymptotic justification: empirical processes of cluster functionals
[Drees & Rootzén 2010; Drees 2015; Davis, Drees, S. & Warchoł 2016].
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Estimators and resampling
pseudo-random samples from GARCH(1,1) with t4 innovations

Coverage probabilities of confidence intervals for P[|Θt| > 1]
threshold at 98% empirical quantile
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Leverage effect: empirical evidence

S&P500 daily returns (1995–2004)

positive shock negative shock
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Leverage effect: model fit
S&P500 daily returns: GARCH(1,1) versus APARCH(1,1) X = σtZt with

σ2
t = ω + α1X2

t−1 + β1σ
2
t−1 GARCH

σδt = ω + α1(|Xt−1| − γ1Xt−1)δ + β1σ
δ
t−1 APARCH [Ding, Granger, Engle 1993]
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Conclusion: Time series extremes

I Interesting probabilistic structures
I generalized extreme-value distributions
I point processes
I clusters of extremes
I tail processes

I Challenging statistical questions:
I Methods: (non/semi-)parametric estimators, resampling
I Asymptotic justification: empirical processes

Thank you!
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