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Outline

Outline

@ Quantiles, expectiles & expected-shortfall.

@ Tail behaviour, application to inference:
o Intermediate vs extreme levels,

o Asymptotic results,
o lllustration on simulations.

@ Application on a real data example.
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Quantiles, expectiles & expected-shortfall

Quantiles

If X is a real-valued random variable, its univariate 7th quantile
gr =inf{teR st.P(X <t)>r7}

can be obtained by solving the optimisation problem (Koenker & Bassett,
1978)

gr = argminE(p, (X — q) — ¢, (X))
qeR

where ¢, is the “check function” defined by
or(x) = (1 —7)|x|I{x < 0} + 7|x|[I{x > 0}.
Remarks:

@ Subtracting E(¢(X)) makes the cost function well-defined even when
E|X]| = 0.

@ In particular, the median gy, of X is obtained by minimising E[X — g|
with respect to g.

@ g, is also referred to as the Value-at-Risk (VaR) of level 7.
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Quantiles, expectiles & expected-shortfall

Expectiles

If X is a real-valued random variable, its univariate 7th expectile is defined
by the optimisation problem (Newey & Powell, 1987)

& = argminE(n. (X — 0) — n-(X))
0cR

where 7, is the function defined by
n-(x) = (1 — 7)x°I{x < 0} + 7x°I{x > 0}.

Remarks:

@ Subtracting E(n, (X)) makes the cost function well-defined provided
that E|X]| < 0.

@ In particular, the mean &/, of X is obtained by minimising E(X — 0)?
with respect to 6.
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Quantiles, expectiles & expected-shortfall

Comparison of cost functions

Red: expectiles 7),, blue: quantiles ¢, with 7 =1/3.
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Quantiles, expectiles & expected-shortfall

Expectiles vs quantiles

Theoretical point of view

@ Both families of quantiles and expectiles are embedded in the more
general class of M-quantiles (Breckling & Chambers (1988)) as the
minimizers of an asymmetric convex loss function.

@ The only M-quantiles that are coherent risk measures are the
expectiles, for 7 > 1/2 (Bellini et al. (2014)).

Practical point of view

@ Expectiles are more sensitive to the magnitude of extremes than
quantiles are.

@ Sample expectiles provide a class of smooth curves as functions of the
level 7, which is not the case for sample quantiles.

@ Expectiles do not have an intuitive interpretation as direct as quantiles.
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Quantiles, expectiles & expected-shortfall

Expected shortfall

@ The (quantile-based) expected shortfall, also known under the names
Conditional Value at Risk or Average Value at Risk, is defined as the
average of the quantile function above a given confidence level 7:

1 1

When X is continuous, QES(7) = E(X|X > g;).

@ Similarly, one may define an alternative expectile-based
expected-shortfall as

XES(r 77/ Eadar.
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Quantiles, expectiles & expected-shortfall

Contributions

Let Xi,..., X, be an i.i.d. sample from F. Our aim is to estimate expectiles
&, and the associated expectile-based expected-shortfall XES(7,) when
Tn, — 1 as n — oo when F is an heavy-tailed distribution. Two situations

are investigated:
@ Intermediate levels, n(1 — 7,) — oo,

@ Extreme levels, n(1 — 7,) — ¢ > 0 (extrapolation needed).
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Quantiles, expectiles & expected-shortfall

Inference (for intermediate levels)

We assume 7, — 1 and n(1 — 7,) — oo as n — oo (intermediate level). Let
k = [n(1 — 7,)] be an intermediate sequence.

@ Intermediate quantile (Thm 2.4.1, de Haan & Ferreira (2006)):
a-r,, = An—k,n

@ Intermediate quantile-based expected-shortfall (Elmethni et al., 2014):
QES(r,) = ZXH(X >4,

@ Intermediate expectile:
&, = arg min — Zmﬂ — u),

@ Intermediate expectile-based expected-shortfall:

XES(7,) = ZXHX > ).
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Quantiles, expectiles & expected-shortfall

Numerical illustration

Duffie & Pan (1997): X is simulated from the mixture model
X ~(1=p)N(0,1/(1 - p))+ pN(c,1/p) where p =10.005 and ¢ € [1,50].
The sample size is n = 1000.

Horizontally: ¢, vertically: Monte-Carlo averages (over 1000 replications) of
the estlmated risk measures. Blue: quantile § Gr. \ violet: expectile 57, red:
quantile-ES QES( ) and green: expectile-ES XES(7) for

7 € {0.99,0.995,0.999,0.9995}.
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Tail behaviour, application to inference

Heavy-tailed distributions

Definition. The cumulative distribution function F is said to be
heavy-tailed if it belongs to Fréchet Maximum Domain of Attraction i.e.

F(x)=1—-x"Y7(x), x>0
where
@ 7 > 0 is the extreme-value index (or tail index),

@ / is a slowly-varying function i.e. such that ¢(tx)/{(t) — 1 as t — o0
for all x > 0.

Consequences.
@ v < 1 implies E|X| < oo and thus the existence of expectiles.

@ The survival function I_-__:: 1 — F is said to be regularly-varying with
index —1/v i.e. F(tx)/F(t) — x~Y7 as t — oo for all x > 0.

@ Equivalently, the tail quantile function U := (1/F)* is
regularly-varying with index ~.
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Tail behaviour, application to inference

Second order condition

@ The regular-variation property is also referred to as a first order
condition: U(tx)/U(t) — x7 as t — oo for all x > 0.

@ The goal of the second order condition is to quantify the rate of
convergence: there exist 7 > 0, p <0, and a function A converging
to 0 at infinity such that for all x > 0,

1 [U(tx) —x“’} :vaf’ — 1_

M A [ UG 7

This condition is denoted by Ca(7, p, A). Note that (x” —1)/p is to
be understood as log x when p = 0.
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Tail behaviour, application to inference

First order expansions

For all heavy-tailed distribution such that 0 < v < 1, when 7 — 1, one has

XES(T) - 577- -~ S —
s~ e 0O
XES(T) N QFES(T) 1

gT aqr = v .

@ Second order approximations have been established under Cx(7, p, A)
(Daouia et al., 2016).

@ If v < 1/2 then, asymptotically, XES(7) < QES(7) and &, < g;.
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Tail behaviour, application to inference

Inference for heavy-tailed distributions

The order statistics are denoted by X; , < --- < X, . Let 7, be an
intermediate level, n(1 — 7,) — oo, and let 7, be an extreme level,
n(l—r7})—c>0.

@ Hill estimator for the tail index (Hill, 1975)

k
~ 1 Xn—i+1 n
Y= ) log ——=—
k ; ankm ’

@ Weissman estimator for extreme quantiles (Weissman, 1978)

ax A 1_Tn aH
q-r,;_q‘f'n 1— 7/ )

n

@ Estimator of the quantile-ES (Elmethni et al., 2014)

QES' () = Q) (177 ) -
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Tail behaviour, application to inference

Asymptotic distribution of an

From the continuity and the convexity of 7,, and a result of Geyer (1996):

If F is heavy-tailed with 0 < v < 1/2 and 7, — 1 is such that
n(1 —7,) = oo, then

n(l—7,) (gn _ 1) i}/\/’(o, Vi(y)) with Vi(y) = 12_72’7.

@ No need for a second-order condition,

@ Restriction on the extreme-value index.
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Tail behaviour, application to inference

An alternative estimator of the (intermediate) expectile

The property &, ~ q-(y~! —1)77 as 7 — 1 suggests an estimator based on
an intermediate quantile:

gfn = n—k,n(’A}’ﬁl - 1)7%

Theorem 2

If F verifies Ca(y, p, A) with 0 < v < 1 and 7, — 1 is such that

n(1 —1,) = 00, /n(1 = 7,)q; ! = 0 and /n(1 = m)A((1 — 7)) =0,

then

n(1— 1) (2 - 1) —%5 N (0, Va(y))

Th

with Va(7) = 1 + (ﬁ ~ ~log (% -~ 1))2.

@ Need for a second-order condition,
@ Bias conditions on 7.
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Tail behaviour, application to inference

Comparison of asymptotic variances

Horizontally: v € (0,1/2), Vertically: asymptotic variances V4(7) in blue
and V5(y) in red.
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Tail behaviour, application to inference

Estimation of extreme expectiles

Let 7/ — 1 and n(1 — 7)) — ¢ > 0 as n — oo (extreme level).

The property & ~ gq-(y~ " —1)77 as 7 — 1 also entails £/ /& ~ g,/ /q; as
both 7 — 1 and 7/ — 1. Thus, the same extrapolation factor can be applied
for expectiles and quantiles leading to two possible estimators for extreme

expectiles: -
2 . 1— Th TH
f‘f‘é = ng 1 o T,/1
AH

— Ty n o o (1—=T, e .
£Tn< ) = Xo—in(75" 1) ””( ,) = (3t -1)

1—-17 1—17)

and

In the following slide, we focus on the first estimator.
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Tail behaviour, application to inference

Asymptotic distribution of 57*_,

Theorem 3

If F verifies Co(y, p, A) with0 < v <1/2, p<0 and 1, =1, 7/, — 1 are
such that n(1 —7,) — oo, n(1—17}) = ¢ >0, \/n(1 —7,)g;." — 0 and

V@ — )AL — 7,)71) = 0, then

n(1—72) ) e 2
g (1 — 7)/(1 — 77)] <5T; 1) —NOT).

A similar asymptotic result is available for £*, (Daouia et al., 2016).
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Tail behaviour, application to inference

Numerical illustration

Sudnt3), <1000 Stdent 1), <1000 Stuent (1), <1000 Stulent 1), <1000
H H w3 w3 s
e § e P

Seve ik Sang ok Sl tacionk Sang

Horizontally: k, vertically: root MSE estimates (over 10,000 replications)
for the t3, t5, t7 and tg-distributions, with sample size n = 1000. Red: f:,,

blue: 57*_,
n
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Tail behaviour, application to inference

Estimation of the extreme expectile-based

expected-shortfall

The property XES(7) ~ &, /(1 — ) as 7 — 1 suggests two possible
estimators for the extreme expectile-based expected-shortfall:

XES (1) = €5 /(1 —4n) and XES () = €5 /(1 —An).
In the following theorem, we focus on the first estimator.

Theorem 4

Under the assumptions of Theorem 3,

(T o

log[(1 —74)/(1 — )] \ XES(7;)

A similar asymptotic result is available for )(E\S*(T,’,) (Daouia et al., 2016).
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Application

[llustration on real data

The Society of Actuaries Group Medical Insurance Large Claims Database
records all the claim amounts exceeding 25,000 USD over the period
1991-92. As in Beirlant et al. (2004), we only deal here with the n = 75,789
claims for 1991. Moreover, we focus on the extreme level 7, =1 —107°.

count

ooooo

.| R A i 110101 [
1o > 14

1%
log(Claims)
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Application

Results

7e+06 -

Tail index
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Horizontally: k, vertically: expectiles in yellow and in orange,

expectile-based expected-shortfall X/ES*(T,Q) in gray and XTZS*(T,Q) in cyan,
——%

quantile §*, as a rainbow curve, QES (7}) in black, sample maximum

as an horizontal pink line. The estimated sample fraction is k = 486
(Beirlant et al. (2004)).
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Application
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