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Outline

Quantiles, expectiles & expected-shortfall.

Tail behaviour, application to inference:

Intermediate vs extreme levels,

Asymptotic results,

Illustration on simulations.

Application on a real data example.
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Quantiles

If X is a real-valued random variable, its univariate τ th quantile

qτ := inf{t ∈ R s.t.P(X ≤ t) ≥ τ}

can be obtained by solving the optimisation problem (Koenker & Bassett,
1978)

qτ = arg min
q∈R

E(ϕτ (X − q)− ϕτ (X ))

where ϕτ is the “check function” defined by

ϕτ (x) = (1− τ)|x |I{x < 0}+ τ |x |I{x ≥ 0}.

Remarks:

Subtracting E(ϕτ (X )) makes the cost function well-defined even when
E|X | =∞.

In particular, the median q1/2 of X is obtained by minimising E|X − q|
with respect to q.

qτ is also referred to as the Value-at-Risk (VaR) of level τ .
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Expectiles

If X is a real-valued random variable, its univariate τ th expectile is defined
by the optimisation problem (Newey & Powell, 1987)

ξτ = arg min
θ∈R

E(ητ (X − θ)− ητ (X ))

where ητ is the function defined by

ητ (x) = (1− τ)x2I{x < 0}+ τx2I{x ≥ 0}.

Remarks:

Subtracting E(ητ (X )) makes the cost function well-defined provided
that E|X | <∞.

In particular, the mean ξ1/2 of X is obtained by minimising E(X − θ)2

with respect to θ.
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Comparison of cost functions

Red: expectiles ητ , blue: quantiles ϕτ with τ = 1/3.
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Expectiles vs quantiles

Theoretical point of view

Both families of quantiles and expectiles are embedded in the more
general class of M-quantiles (Breckling & Chambers (1988)) as the
minimizers of an asymmetric convex loss function.

The only M-quantiles that are coherent risk measures are the
expectiles, for τ > 1/2 (Bellini et al. (2014)).

Practical point of view

Expectiles are more sensitive to the magnitude of extremes than
quantiles are.

Sample expectiles provide a class of smooth curves as functions of the
level τ , which is not the case for sample quantiles.

Expectiles do not have an intuitive interpretation as direct as quantiles.
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Expected shortfall

The (quantile-based) expected shortfall, also known under the names
Conditional Value at Risk or Average Value at Risk, is defined as the
average of the quantile function above a given confidence level τ :

QES(τ) :=
1

1− τ

∫ 1

τ

qαdα.

When X is continuous, QES(τ) = E(X |X > qτ ).

Similarly, one may define an alternative expectile-based
expected-shortfall as

XES(τ) :=
1

1− τ

∫ 1

τ

ξαdα.
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Contributions

Let X1, . . . ,Xn be an i.i.d. sample from F . Our aim is to estimate expectiles
ξτn and the associated expectile-based expected-shortfall XES(τn) when
τn → 1 as n→∞ when F is an heavy-tailed distribution. Two situations
are investigated:

Intermediate levels, n(1− τn)→∞,

Extreme levels, n(1− τn)→ c ≥ 0 (extrapolation needed).
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Inference (for intermediate levels)

We assume τn → 1 and n(1− τn)→∞ as n→∞ (intermediate level). Let
k = [n(1− τn)] be an intermediate sequence.

Intermediate quantile (Thm 2.4.1, de Haan & Ferreira (2006)):

q̂τn = Xn−k,n,

Intermediate quantile-based expected-shortfall (Elmethni et al., 2014):

Q̂ES(τn) =
1

k

n∑
i=1

Xi I (Xi > q̂τn) ,

Intermediate expectile:

ξ̃τn = arg min
u∈R

1

n

n∑
i=1

ητn(Xi − u),

Intermediate expectile-based expected-shortfall:

X̃ES(τn) =
1

k

n∑
i=1

Xi I(Xi > ξ̃τn).
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Numerical illustration

Duffie & Pan (1997): X is simulated from the mixture model
X ∼ (1− p)N (0, 1/(1− p)) + pN (c , 1/p) where p = 0.005 and c ∈ [1, 50].
The sample size is n = 1000.
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Horizontally: c , vertically: Monte-Carlo averages (over 1000 replications) of

the estimated risk measures. Blue: quantile q̂τ , violet: expectile ξ̃τ , red:

quantile-ES Q̂ES(τ) and green: expectile-ES X̃ES(τ) for

τ ∈ {0.99, 0.995, 0.999, 0.9995}.
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Heavy-tailed distributions

Definition. The cumulative distribution function F is said to be
heavy-tailed if it belongs to Fréchet Maximum Domain of Attraction i.e.

F (x) = 1− x−1/γ`(x), x > 0

where

γ > 0 is the extreme-value index (or tail index),

` is a slowly-varying function i.e. such that `(tx)/`(t)→ 1 as t →∞
for all x > 0.

Consequences.

γ < 1 implies E |X | <∞ and thus the existence of expectiles.

The survival function F̄ := 1− F is said to be regularly-varying with
index −1/γ i.e. F̄ (tx)/F̄ (t)→ x−1/γ as t →∞ for all x > 0.

Equivalently, the tail quantile function U := (1/F̄ )← is
regularly-varying with index γ.
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Second order condition

The regular-variation property is also referred to as a first order
condition: U(tx)/U(t)→ xγ as t →∞ for all x > 0.

The goal of the second order condition is to quantify the rate of
convergence: there exist γ > 0, ρ ≤ 0, and a function A converging
to 0 at infinity such that for all x > 0,

lim
t→∞

1

A(t)

[
U(tx)

U(t)
− xγ

]
= xγ

xρ − 1

ρ
.

This condition is denoted by C2(γ, ρ,A). Note that (xρ − 1)/ρ is to
be understood as log x when ρ = 0.
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First order expansions

Proposition 1

For all heavy-tailed distribution such that 0 < γ < 1, when τ → 1, one has

XES(τ)

QES(τ)
∼ ξτ

qτ
∼ (γ−1 − 1)−γ ,

XES(τ)

ξτ
∼ QES(τ)

qτ
∼ 1

1− γ
.

Second order approximations have been established under C2(γ, ρ,A)
(Daouia et al., 2016).

If γ < 1/2 then, asymptotically, XES(τ) < QES(τ) and ξτ < qτ .
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Inference for heavy-tailed distributions

The order statistics are denoted by X1,n ≤ · · · ≤ Xn,n. Let τn be an
intermediate level, n(1− τn)→∞, and let τ ′n be an extreme level,
n(1− τ ′n)→ c ≥ 0.

Hill estimator for the tail index (Hill, 1975)

γ̂H =
1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
,

Weissman estimator for extreme quantiles (Weissman, 1978)

q̂?τ ′
n

= q̂τn

(
1− τn
1− τ ′n

)γ̂H
,

Estimator of the quantile-ES (Elmethni et al., 2014)

Q̂ES
?
(τ ′n) = Q̂ES(τn)

(
1− τn
1− τ ′n

)γ̂H
.
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Asymptotic distribution of ξ̃τn

From the continuity and the convexity of ητn and a result of Geyer (1996):

Theorem 1

If F is heavy-tailed with 0 < γ < 1/2 and τn → 1 is such that
n(1− τn)→∞, then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N (0,V1(γ)) with V1(γ) =

2γ3

1− 2γ
.

No need for a second-order condition,

Restriction on the extreme-value index.
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An alternative estimator of the (intermediate) expectile

The property ξτ ∼ qτ (γ−1 − 1)−γ as τ → 1 suggests an estimator based on
an intermediate quantile:

ξ̂τn = Xn−k,n(γ̂−1
H − 1)−γ̂H

Theorem 2

If F verifies C2(γ, ρ,A) with 0 < γ < 1 and τn → 1 is such that
n(1− τn)→∞,

√
n(1− τn)q−1

τn → 0 and
√

n(1− τn)A((1− τn)−1)→ 0,
then √

n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ N (0,V2(γ))

with V2(γ) = 1 +
(

γ
1−γ − γ log

(
1
γ − 1

))2

.

Need for a second-order condition,

Bias conditions on τn.
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Comparison of asymptotic variances

Horizontally: γ ∈ (0, 1/2), Vertically: asymptotic variances V1(γ) in blue

and V2(γ) in red.
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Estimation of extreme expectiles

Let τ ′n → 1 and n(1− τ ′n)→ c ≥ 0 as n→∞ (extreme level).

The property ξτ ∼ qτ (γ−1 − 1)−γ as τ → 1 also entails ξτ ′/ξτ ∼ qτ ′/qτ as
both τ → 1 and τ ′ → 1. Thus, the same extrapolation factor can be applied
for expectiles and quantiles leading to two possible estimators for extreme
expectiles:

ξ̃?τ ′
n

= ξ̃τn

(
1− τn
1− τ ′n

)γ̂H
and

ξ̂?τ ′
n

= ξ̂τn

(
1− τn
1− τ ′n

)γ̂H
= Xn−k,n(γ̂−1

H −1)−γ̂H
(

1− τn
1− τ ′n

)γ̂H
= q̂?τ ′

n
(γ̂−1

H −1)−γ̂H .

In the following slide, we focus on the first estimator.
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Asymptotic distribution of ξ̃?τ ′n

Theorem 3

If F verifies C2(γ, ρ,A) with 0 < γ < 1/2, ρ < 0 and τn → 1, τ ′n → 1 are
such that n(1− τn)→∞, n(1− τ ′n)→ c ≥ 0,

√
n(1− τn)q−1

τn → 0 and√
n(1− τn)A((1− τn)−1)→ 0, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′

n

ξτ ′
n

− 1

)
d−→ N

(
0, γ2

)
.

A similar asymptotic result is available for ξ̂?τ ′
n

(Daouia et al., 2016).
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Numerical illustration
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Estimation of the extreme expectile-based
expected-shortfall

The property XES(τ) ∼ ξτ/(1− γ) as τ → 1 suggests two possible
estimators for the extreme expectile-based expected-shortfall:

X̃ES
?
(τ ′n) = ξ̃?τ ′

n
/(1− γ̂H) and X̂ES

?
(τ ′n) = ξ̂?τ ′

n
/(1− γ̂H).

In the following theorem, we focus on the first estimator.

Theorem 4

Under the assumptions of Theorem 3,√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̃ES

?
(τ ′n)

XES(τ ′n)
− 1

)
d−→ N

(
0, γ2

)
.

A similar asymptotic result is available for X̂ES
?
(τ ′n) (Daouia et al., 2016).
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Illustration on real data

The Society of Actuaries Group Medical Insurance Large Claims Database

records all the claim amounts exceeding 25,000 USD over the period

1991-92. As in Beirlant et al. (2004), we only deal here with the n = 75, 789

claims for 1991. Moreover, we focus on the extreme level τ ′n = 1− 10−5.
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Results
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Horizontally: k, vertically: expectiles ξ̂?τ ′
n

in yellow and ξ̃?τ ′
n

in orange,

expectile-based expected-shortfall X̂ES
?
(τ ′n) in gray and X̃ES

?
(τ ′n) in cyan,

quantile q̂?τ ′
n

as a rainbow curve, Q̂ES
?
(τ ′n) in black, sample maximum Yn,n

as an horizontal pink line. The estimated sample fraction is k̂ = 486

(Beirlant et al. (2004)).
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