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The empirical copula process



The empirical copula

• Let X1, . . . ,Xn with Xi = (Xi1, . . . ,Xid)′ be identically distributed with
unknown copula C and unknown continuous marginal cdfs F1, . . . ,Fd .
In particular: C (u) = P(Ui ≤ u) where Ui = (F1(Xi1), . . . ,Fd(Xid))′.

The empirical copula:

Ĉn(u) =
1
n

n∑
i=1

1{Ûi ≤ u}, u = (u1, . . . , ud)′ ∈ [0, 1]d ,

where Ûi = n
n+1 (F̂n1(Xi1), . . . , F̂nd(Xid))′ are (observable) pseudo-obser-

vations from C .

• Properties of Ĉn: a cdf, not a copula, jumps of size of at most d/n (if
there are no ties), . . .
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where Ûi = n
n+1 (F̂n1(Xi1), . . . , F̂nd(Xid))′ are (observable) pseudo-obser-

vations from C .
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Appearance of the empirical copula in statistics
for copulas

• Tests of independence. Deheuvels, 1979, . . .

• Testing for structural assumptions. Example: symmetry (Genest,
Nešlehová, Quessy, 2012), H0 : C (u, v) = C (v , u) for all u, v .

Tn = n

∫
{Ĉn(u, v)− Ĉn(v , u)}2 du dv

• (Minimum-distance) estimators of parametric copulas (Tsukahara,
2005). {Cθ | θ ∈ Θ} class of parametric models. Estimator:

θ̂ := argminθ

∫
{Cθ(u)− Ĉn(u)}2 du

• Goodness-of fit tests, Asymptotics of estimators for Pickands
dependence function, . . .
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The empirical copula process

• Ĉn plays a similar role for inference on the copula as the (marginal)
empirical cdf does for inference on the marginal cdf.

• Asymptotics: consider the standardized version

The empirical copula process:

u 7→ Cn(u) =
√
n{Ĉn(u)− C (u)}

and investigate its functional weak convergence
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A toy example on the usage of the empirical
copula process

Suppose we knew that Cn  CC . Consider Spearman’s rho:

• population version ρ = Cor(F1(U1),F2(U2)) = 12
∫
[0,1]2 C (u)du − 3

• sample version ρn = 12
∫
[0,1]2 Ĉn(u)du − 3 + oP(n−1/2).

By the continuous mapping theorem:

√
n(ρn − ρ) = 12

∫
[0,1]2

Cn(u)du + oP(1) 12
∫
[0,1]2

CC (u)du
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The general workhorses when working with
empirical (copula) processes

Continuous mapping theorem:

• Provided Ψ : (D1, d1)→ (D2, d2) is continuous:

Tn = Ψ
(
Cn

)
 Ψ(CC ) = T .

Functional delta method:

• Provided Φ : (D1, d1)→ (D2, d2) is (Hadamard)-differentiable at C :

√
n{Φ(Ĉn)− Φ(C )} Φ′C (CC )

General observation: The stronger the metric on D1, the more
functions are continuous (and differentiable), the more useful a weak
convergence result.
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Functional weak convergence of the empirical
copula process

Pointwise consideration suggests a Gaussian limit:

Cn(u) CC (u) = BC (u)−
∑d

j=1 C
[j](u)BC (u(j))

where BC a C -Brownian bridge (i.i.d. case), the limit of the standard
empirical process.

• Rüschendorf, 1976, . . . , Segers, 2012: If C [j] exists and is
continuous on {u ∈ [0, 1]d : uj ∈ (0, 1)}, then

Cn  CC in (`∞([0, 1]d), ‖ · ‖∞)

• B., Segers, Volgushev, 2014: If C [j] exists and is continuous almost
everywhere, then

Cn  CC in (Lp([0, 1]d , ‖ · ‖p)

(in fact even with respect to dhypi)
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Implications and possible Limitations (?)

Previous results: proved useful in a countless number of applications
(KS-tests, Cramér-von-Mises tests, general asymptotics, . . . )

However, there are limitations:

Anderson-Darling-type goodness-of-fit statistic for H0 : C = C0:

Tn =

∫
(0,1)2

n{Ĉn(u)− C0(u)}2

min(u1, u2)
du  H0

∫
(0,1)2

CC (u)2

min(u1, u2)
du ?

(particularly sensitive to departures from H0 for points close to the axes
through 0)

Question: Is Ψ : F 7→
∫
(0,1)2

F (u)2

min(u1,u2)
du continuous?
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The Anderson-Darling map is not continuous (wrp to ‖ · ‖∞)

A simplified (univariate) version of the problem:

Considered as map on the set of functions such that F (u)
u is integrable,

F 7→
∫ 1

0

F (u)

u
du

is not continuous.

Example: Fn(u) = 1
n1(u ≥ e−n). Then Fn → 0 uniformly, but∫ 1

0

Fn(u)

u
du =

1
n

∫ 1

e−n

1
u
du =

1
n
{− log(e−n)} = 1 6→ 0.
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Way out? Convergence with respect to weighted metrics

Considered as map on the set of functions such that F (u)
u is integrable,

equipped with the metric

d(F ,G ) = sup
u∈(0,1]

|F (u)− G (u)|
uω

with some ω > 0,

F 7→
∫ 1

0

F (u)

u
du

is continuous.

Proof:
∣∣∣∣ ∫ 1

0

Fn(u)

u
du −

∫ 1

0

F (u)

u
du

∣∣∣∣ ≤ ∫ 1

0

1
u1−ω du · d(Fn,F ).
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Weighted weak convergence



Weighted supremum distances

• Let f1, f2 be functions, continuous in u0 with fj(u0) = 0. (keep in mind
the standard empirical process and the standard Brownian bridge):

Bn(u) = n−1/2
n∑

i=1

{1(Ui ≤ u)− u} B(u), u ∈ [0, 1]d

• Heuristically: The more weight is attached to |f1(u)− f2(u)| in the
neighbourhood of u0, the more accurate a measure for the distance
between f1 and f2.

Weighted supremum distance:

d(f1, f2) =

∥∥∥∥ f1 − f2
g

∥∥∥∥
∞

= sup
u

|f1(u)− f2(u)|
g(u)

,

g some positive weight function that is approaching 0 at u0.
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Weighted convergence of empirical processes

Univariate empirical process:

• Chibisov, 1964, . . . (i.i.d.); Shao, Yu, 1996 (weakly dependent):

gω(u) = min{u, 1− u}ω, ω ∈ [0, b)

(with b ≤ 1/2 depending on the serial dependence)

Bivariate empirical process:

• Genest, Segers, 2009 (i.i.d.), relying on Van der Vaart and Wellner,
1996:

gω(u, v) = min{u, v , 1−min{u, v}}ω, ω ∈ [0, 1/2)

Recall that BC (u, v) = 0 iff {u = 0} or {v = 0} or {(u, v) = (1, 1)}.
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Weighted convergence of empirical copula
processes

Empirical copula process:

• Rüschendorf, 1976 (under restrictive conditions on C ):

gω(u) = 0 on the lower boundary of [0, 1]d and in 1

• Improvable? Possibly yes, since CC (u) = 0 (a.s.) if uj = 0 for some j

or if at least d − 1 components are equal to 1 [for d = 2: if
u ∈ ∂[0, 1]2].

• Suggested weight function:

d = 2 : gω(u, v) = min{u, v , 1− u, 1− v}ω

d > 2 : gω(u) = min{∧dj=1uj ,∧dj=1(1−min
j′ 6=j

uj′)}ω
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Graphs of weight functions
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• Left: graph of ḡ1(u, v) = min{u, v , 1−min(u, v)}
• Right: graph of g1(u, v) = min{u, v , (1− u), (1− v)}.
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Stronger conditions on the copula

• C [j] = ∂C
∂uj

exists and is continuous on Vj = {u ∈ [0, 1]d : uj ∈ (0, 1)}.

• C [j1,j2] = ∂2C
∂uj1∂uj2

exists and is continuous on Vj1 ∩ Vj2 , for all j1, j2.

• Moreover, there exists a constant K > 0 such that

|C [j1,j2](u)| ≤ K min
{

1
uj1(1− uj1)

,
1

uj2(1− uj2)

}
, ∀u ∈ Vj1 ∩ Vj2 .

Can be shown to be satisfied for many common copula families.

Also sufficient for an almost sure error bound on the Stute representation
of Cn (Segers, 2012) and for weak convergence of kernel based
estimators (Omelka, Gijbels, Veraverbeke, 2009)

16 / 24



Stronger conditions on the copula

• C [j] = ∂C
∂uj

exists and is continuous on Vj = {u ∈ [0, 1]d : uj ∈ (0, 1)}.

• C [j1,j2] = ∂2C
∂uj1∂uj2

exists and is continuous on Vj1 ∩ Vj2 , for all j1, j2.

• Moreover, there exists a constant K > 0 such that

|C [j1,j2](u)| ≤ K min
{

1
uj1(1− uj1)

,
1

uj2(1− uj2)

}
, ∀u ∈ Vj1 ∩ Vj2 .

Can be shown to be satisfied for many common copula families.

Also sufficient for an almost sure error bound on the Stute representation
of Cn (Segers, 2012) and for weak convergence of kernel based
estimators (Omelka, Gijbels, Veraverbeke, 2009)

16 / 24



Stronger conditions on the copula

• C [j] = ∂C
∂uj

exists and is continuous on Vj = {u ∈ [0, 1]d : uj ∈ (0, 1)}.

• C [j1,j2] = ∂2C
∂uj1∂uj2

exists and is continuous on Vj1 ∩ Vj2 , for all j1, j2.

• Moreover, there exists a constant K > 0 such that

|C [j1,j2](u)| ≤ K min
{

1
uj1(1− uj1)

,
1

uj2(1− uj2)

}
, ∀u ∈ Vj1 ∩ Vj2 .

Can be shown to be satisfied for many common copula families.

Also sufficient for an almost sure error bound on the Stute representation
of Cn (Segers, 2012) and for weak convergence of kernel based
estimators (Omelka, Gijbels, Veraverbeke, 2009)

16 / 24



Stronger conditions on the copula

• C [j] = ∂C
∂uj

exists and is continuous on Vj = {u ∈ [0, 1]d : uj ∈ (0, 1)}.

• C [j1,j2] = ∂2C
∂uj1∂uj2

exists and is continuous on Vj1 ∩ Vj2 , for all j1, j2.

• Moreover, there exists a constant K > 0 such that

|C [j1,j2](u)| ≤ K min
{

1
uj1(1− uj1)

,
1

uj2(1− uj2)

}
, ∀u ∈ Vj1 ∩ Vj2 .

Can be shown to be satisfied for many common copula families.

Also sufficient for an almost sure error bound on the Stute representation
of Cn (Segers, 2012) and for weak convergence of kernel based
estimators (Omelka, Gijbels, Veraverbeke, 2009)

16 / 24



Main result

Theorem (Berghaus, B., Volgushev, 2016+, Bernoulli):

Let X1,X2, . . . be stationary and geometric alpha-mixing. If the marginals
of the stationary distribution are continuous and if the copula C satisfies
the above Condition, then, for any c ∈ (0, 1) and any ω ∈ (0, 1/2),

sup
u∈[ cn ,1−

c
n ]

d

∣∣∣∣Cn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣ = oP(1).

[C̄n(u) = Bn(u)−
∑d

j=1 C
[j](u)Bn(u(j)) and Bn(u) = 1√

n

∑n
i=1{1(Ui ≤ u)− C(u)}]

Moreover,
C̄n  CC in (`∞([0, 1]d), dgω ).
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Applications



Estimation of tail dependence via block maxima

Object of interest: tail dependence (finance, actuarial science,
hydrology, . . . )

Two general methods to assess tail dependence:

• POT-method: only consider observations that are larger than some
threshold

• Block maxima method: only consider largest observations in blocks
of finite length
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The multivariate case: componentwise block
maxima
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The multivariate case: componentwise block
maxima
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Extreme value copulas and Pickands dependence
functions

• A variant of the extremal types theorem: for increasing block sizes, the
copula of the block maxima converges to an extreme value copula.

• If C is an extreme-value copula then

C (u) = exp

(
d∑

j=1

log uj
)
A
( log u1∑d

j=1 log uj
, . . . ,

log ud−1∑d
j=1 log uj

) ,

for a function A : ∆d−1 → [1/d , 1] (Pickands dependence function).

• If the data generating process is some block maxima scheme, then
model by extreme value copulas (annual maximal water levels, . . . )
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Estimation of Pickands dependence function

(Nonparametric) estimation for i.i.d. observations:

• Known marginals: Pickands, 1981, Deheuvels, 1991, Capéràa,
Fougères and Genest, 1997, Hall and Tajvidi, 2000, Jiménez,
Villa-Diharce and Floers, 2001, Zhang, Wells and Peng, 2008, . . .

• Unknown marginals: Genest and Segers, 2009, B., Dette and
Volgushev, 2011, Gudendorf and Segers, 2012, Cormier, Genest and
Nešlehová, 2014, . . .

• Example: the Pickands-estimator (with estimated marginals)

ÂP
n (w) =

[
1
n

n∑
i=1

min
{− log(Ûi1)

w1
, . . . ,

− log(Ûid)

wd

}]−1

.
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Asymptotics: the empirical copula process comes
into play

Genest and Segers, 2009, AoS:

√
n(ÂP

n − A) = −A2Kn/(1 + n−1/2AKn)

where

Kn(w) =

∫ 1

0
Cn(uw1 , . . . , uwd )

du
u
.

No direct application of the continuous mapping theorem possible.

Asymptotics in Genest and Segers, 2009: use Stute’s representation
for the empirical copula process based on i.i.d. observations. Weighted
convergence of the standard empirical process becomes available. Careful
case-by-case study of appearing integrals necessary.
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A greatly simplified approach to the asymptotics
based on weighted convergence

• For any ω > 0,

Ψ : f 7→
{

w 7→
∫ 1

0
f (uw1 , . . . , uwd )

du
u

}
is continuous with respect to the weighted supremum distance.

• By the continuous mapping theorem

Kn = Ψ(Cn) = Ψ(C̄n) + oP(1) Ψ(CC ) in (`∞(∆d−1), ‖ · ‖∞),

the same limit as in Genest and Segers, 2009.

• Note: This approach is not restricted to the i.i.d. case.
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Summary



Wrapping up

The empirical copula process:

• if first order partial derivatives exist almost everywhere, then
convergence wrt. ‖ · ‖p (or dhypi)

• if first order partial derivatives exist on the entire interior, then
convergence wrt. ‖ · ‖∞

• if second order partial derivatives exist and do not explode too heavily,
then convergence wrt. weighted supremum distances

The stronger the metric, the more applications through the continuous
mapping theorem and the functional delta method.
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Thank you!

B. Berghaus, A. Bücher, S. Volgushev (2016+): Weak convergence of
the empirical copula process with respect to weighted metrics. To appear
in Bernoulli. Arxiv:1411.5888.
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Appendix



A: Some comments on the main result

• The restriction to [ cn , 1−
c
n ]d is necessary: Consider d = 2, then for

any (u1, u2) such that u2 > n/(n + 1)

Ĉn(u1, u2) = Ĉn(u1, 1) =
1
n

n∑
i=1

1(i/(n + 1) ≤ u1).

For such u2 and all u1 ∈ (0, 1)

|Cn(u1, u2)|
gω(u1, u2)

≥ |Cn(u1, u2)|
(1− u2)ω

=

∣∣∣√n{Ĉn(u1, 1)− C(u1, u2)}
∣∣∣

(1− u2)ω
u2→1→ ∞

i.e., Ĉn/gω is not even an element of (`∞((0, 1)2), ‖ · ‖∞).

• Also holds under more general high level conditions on the serial
dependence
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1
n

n∑
i=1

1(i/(n + 1) ≤ u1).

For such u2 and all u1 ∈ (0, 1)

|Cn(u1, u2)|
gω(u1, u2)

≥ |Cn(u1, u2)|
(1− u2)ω

=
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