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Introduction
Diverse application fields of Hawkes processes (Hawkes, 1971) =
self-exciting point processes:
seismology (Ogata, 1988), genomics (Reynaud-Bouret and Schbath,
2010), neuroscience (Reynaud-Bouret et al., 2013), finance:
microstructure dynamics (Bacry et al., 2012), order arrival rate
modelling and high-frequency data (Bowsher, 2007), , . . .
Stationary linear Hawkes process N:

I its conditional intensity:

λ(t) = λc +

∫ t−

−∞
p(t − s) N(ds) = λc +

∑
Ti<t

p(t − Ti )

I alternatively: description by clusters of point processes: immigrants
(follow a Poisson process and define the centers of clusters) and
offsprings.

Aim of this work: Model and capture time-varying dynamics, i.e. define a
model of point process that can be locally interpreted as a stationary
Hawkes process (such as for "classical" time series by R. Dahlhaus).
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Introduction - cont’d

Existing approaches of time-varying dynamics for Hawkes processes

Essentially only λc = λc(t) (e.g. Chen and Hall, 2013) and
no "locally stationary" approach via rescaling in time (taking u = t/T )

Some notation for this talk
We look at (time-continuous) processes with values in R` (but for
today mostly ` = 1)
A point process is identified with a random measure with discrete
support: N =

∑
k δTk

, where δt is the Dirac measure at point t and
{Tk} is the corresponding (countable) random set of points.
For a test function g , N(g) =

∑
k g(Tk).

(Some) Functional norms:
I Lq-norms | · |q for q ∈ [1;∞], and
I β-norm: |h|(β) :=

∣∣h × | · |β∣∣1 =
∫
|h(s)||s|β ds, for a given β > 0.
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Hawkes processes as cluster processes

Cluster processes = point processes constructed via conditioning on
the realization of a so-called center process, usually a PPP in the
sequel (Daley and Vere-Jones, 2003).
Starting point: Nc a PPP with intensity measure µc and density λc
that represents the immigrants which appear spontaneously.
At each center point t of Nc , a (independent branching) PPP N(·|t)
with finite intensity µ(·|t), generating the offsprings at t.
Cluster process N = all the immigrants + all the offspring of each
immigrant.
Standard Hawkes processes are made stationary by assuming that
Nc is a homogeneous PPP on the whole space R` and t 7→ µ(·|t) is
shift invariant: µ(·|t) = µ ◦ S t , where µ is fixed (i.e.µ = µ(·|0)).
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Dynamics of Hawkes processes

λ(t) = λc +
∫ t−

−∞ p(t − s) N(ds) = λc +
∑

Ti<t p(t − Ti )
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Our work on non- and locally stationary Hawkes processes

Roadmap of our approach on approximation (SPA 2015):

First, we show existence of non-stationary Hawkes processes

Then, we define locally stationary Hawkes processes using a series of
regularity conditions on immigrant intensity λc(t/T ) and fertility
function p(·; t/T )

The key tool for existence of an approximating stationary process:
local approximation of the log Laplace functional

This allows for approximation of the first and second order moment
structure of the non-stationary by the (locally) stationary Hawkes
process

In particular: existence of a local (i.e. time-varying) Bartlett
spectrum (time-frequency analysis)
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Existence of non-stationary Hawkes process

Give up shift invariance of t 7→ µc(t) and t 7→ µ(·|t), i.e. their densities
λc(t) (immigrant intensity) and p(·; t) (fertility function) depend on t.

We can define a non stationary Hawkes process via these t-v densities if

ζ1 := sup
t∈R

µ
(
R`
∣∣t) = sup

t∈R`

∫
p(s; t) ds < 1 and |λc |∞ <∞ .

Theorem 1: The component process N(·|t) has finite moment measure
E[N(R`|t)] 6 1

1−ζ1 and its density is uniformly bounded by |λc |∞
1−ζ1 .

Proof via the cluster construction: each component N(·|t) can be
constructed as the superposition of point processes defined iteratively.

Non-stationary Hawkes processes (under the density assumption) with λc
and p(·; ·) still quite general: can still evolve quite arbitrarily in the space.
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Locally stationary Hawkes processes

Aim: Define a locally stationary approximation - similarly to
autoregressive processes. In the following, to simplify notation,
consider univariate case only, i.e. ` = 1 w.l.o.g.

Definition of a locally stationary Hawkes process

A locally stationary Hawkes process with local immigrant intensity λ<LS>
c

and local fertility function p<LS>(·; ·) is
a collection (NT )T>0 of non-stationary Hawkes processes with
immigrant intensity λcT (t) = λ<LS>

c (t/T ) and
fertility function pT (·; t) = p<LS>(·; t/T ).

For a given real location t, the scaled location t/T is typically called an
absolute location in [0; 1] and denoted by u.
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Analogy with locally stationary AR-processes
Note the similarities/differences with an AR(p)-process (p = 1 w.l.o.g.):

Dahlhaus (SPA 1996) shows that ( t = 1, . . . ,T , T > 1)

Xt,T = a(t/T ) Xt−1,T + εt , εt ∼ (0, 1) ,

has a representation

Xt,T =

∫ π

−π
Ao
t,T (ω) exp(iωt) dξ(ω)

with the existence of an A(u, ω) = (1− a(u) exp(−iω))−1

such that supt,ω |Ao
t,T (ω)− A(t/T , ω)| = O(T−1) .

Here, Ao
t,T (ω) =

∑
`>0(−1)`

∏`−1
j=0 a( t−j

T ) exp(−iω`) .

Unfortunately, this is not possible for the more elaborated recursive
dynamics of a Hawkes process.
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Under assumption (LS-1):

ζ<LS>
1 := sup

u∈[0,1]

∫
p<LS>(t; u) dt < 1 and

∣∣λ<LS>
c

∣∣
∞ <∞ ,

for all T > 0, the non-stationary Hawkes process NT admits a uniformly
bounded intensity function.

Under (LS-1), moreover, for each u ∈ R`, the function
t 7→ p<LS>(t; u) satisfies the required condition for the fertility
function of a stationary Hawkes process.
Notation: N(·; u) = a "stationary" Hawkes process with immigrant
intensity λ<LS>

c (u) and fertility function t 7→ p<LS>(t; u).
More regularity assumptions:

I (LS-2): smoothness conditions on λc
<LS>(u)

I (LS-3): smoothness conditions on p<LS>(t, u) w.r.t. its second
argument u

I (LS-4): some uniform decay condition on p<LS>(·, ·) w.r.t. its first
argument

11 / 31



Introduction Approximation results TF analysis Numerical experiments Estimation theory

Local approximation of the log Laplace functional

The process NT ◦ S−Tu, i.e. NT shifted at the real location Tu, follows
approximately the distribution of a stationary Hawkes process N(·; u) .

Proof: via Convergence of the log-Laplace function of NT

(i.e. log of LT (g) = E [expNT (g)]):

Theorem 2
Under Ass. (LS-1:4), for β ∈ (0; 1] and an appropriate test-function g

the log-Laplace transform logLT (S−Tug) of NT ◦ S−Tu, converges
to the log-Laplace logL(g ; u) of N(·; u),
with rate T−β and with explicit bounds for the constants depending
only on the ("functional") β− and `1−norms of the test function g .

Corollary 3
As application, for any u ∈ [0, 1], as T →∞, the point process
NT ◦ S−Tu converges in distribution to N(·; u).
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Local approximation of the cumulants

Apply Theorem 2 to LT (S−Tug) : z 7→ E [expNT (g(· − Tu, z))].

Key result for treatment of "all" moments (used in estimation theory) via

Cum (N(g1), . . . ,N(gm)) = ∂1m |z=0m logL(z1g1 + · · ·+ zmgm) ,

Theorem 4
Let β ∈ (0, 1]. Assume (LS-1:4).
Let for any m > 1, g1, . . . , gm be real valued bounded integrable.

Then for any T and any u ∈ [0, 1], we have∣∣∣Cum
(
NT (S−Tug1), . . . ,NT (S−Tugm)

)
− Cum (N(g1; u), . . . ,N(gm; u))

∣∣∣
6

2m−1C1 T
−β

(− log ζ<LS>
1 )

m−1

{ ∑
j=1,...,m

(
|gj |(β) + C2|gj |1

)}{ ∑
j=1,...,m

(
|gj |∞ + C3|gj |1

)}m−1

.
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First Application: Convergence of local mean density

Theorem 4 with m = 1 implies:
For any T , NT admits a uniformly bounded density function m1T (t).
The intensity measure of the (approximating) stationary Hawkes
process admits a time-constant mean density:

m<LS>
1 (u) =

λ<LS>
c (u)

1−
∫
p<LS>(·; u)

→ local mean density at absolute location u.
Convergence of m1T (t) to m<LS>

1 (·; u) with rate T−β in a local
neighbourhood of Tu
(and explicit bounds on the constants depending only on the β−
and `1−norms of the test function g).
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Second application: Local Bartlett spectrum

Locally stationary time series provide a nonparametric statistical
framework for time-frequency analysis of time series (Dahlhaus,
2009).
Such ideas can now be applied to locally stationary Hawkes
processes.
Stationary case

I The Bartlett spectrum Γ of a second order point process N on R is
defined as the (unique) nonnegative measure on R s.t., for any
bounded and compactly supported function f on R,

Var
(
N(f )

)
= Γ(|f̂ |2) =

∫ ∣∣∣f̂ (ω)
∣∣∣2 γ(ω) dω ,

where f̂ (ω) =
∫
f (t) e−itω dt.

I For Hawkes processes, the density of the Bartlett spectrum is given
by

γ(ω) =
λc

2π(1−
∫
p)
|1− p̂(ω)|−2 .
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Under (LS-1), applying this result to the stationary Hawkes process
N(·; u), we have, for any bounded and compactly supported function f ,

Var
(
N(f ; u)

)
= Γ<LS>

(
|f̂ |2; u

)
=

∫ ∣∣∣f̂ (ω)
∣∣∣2 γ<LS>(ω; u) dω ,

where

γ<LS>(ω; u) =
m<LS>

1 (u)

2π

∣∣1− p̂<LS>(ω; u)
∣∣−2 , with

p̂<LS>(ω; u) =

∫
p<LS>(t; u) e−itω dt.

Γ<LS>(·; u) and γ<LS>(ω; u) are called the local Bartlett spectrum
and the local spectral density, respectively, at absolute location u.
Corollary 6: Under (LS-1:4), for β ∈ (0, 1] and bounded functions f
supported inside [−b, b], for some b > 0:

Convergence of Var
(
NT (S−Tuf )

)
to Γ<LS>(|f̂ |2; u) with rate of

order T−β (and again, explicit bounds on constants ..)
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Kernel estimation of the local Bartlett spectrum

f a test function and m a moment function (such as m(x) = x ,
m(x) = x2, . . . ).
b1 a given time bandwidth and u0 a fixed time in [0; 1] (namely,
u0 = t0/T with t0 ∈ [0;T ]).
We build an estimator of E[m(N(f ; u0))] based on the empirical
observations of NT and defined by

Ê [m◦NT (S−Tu0 f );Wb1 ] :=
1
T

∫
m◦NT (f (·−t−Tu0))Wb1(t/T ) dt,

for some fixed kernel function W .
In practice, f should be compactly supported, so that this integral
can be computed from a finite set of observations in [0,T ].
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Localisation (smoothing) in frequency by a real valued kernel K ,
compactly supported, with Fourier transform K̂ such that∫
|K̂ (ω)|2 dω = 1.

b2 a given frequency bandwidth and ω0 a fixed frequency.
We wish to estimate the quantity

γb2(ω0; u0) :=

∫
1
b2
|K̂ ((ω − ω0)/b2)|2 Γ<LS>(dω; u0),

which in turn is an approximation of the local spectral density
γ<LS>(ω0; u0) of Γ<LS>(·; u0) at ω0.
f = Kb2,ω0 is the kernel having Fourier transform
ω 7→ b

−1/2
2 K̂ ((ω − ω0)/b2).

Consequently, we get that Kb2,ω0(t) = b
1/2
2 eiω0tK (b2t).

Finally, take m(x) = x2 and m(x) = x to define: γ̂b2,b1(ω0; u0) =

= Ê
(
|NT (S−Tu0Kb2,ω0)|2;Wb1

)
−
∣∣∣Ê (NT (S−Tu0Kb2,ω0);Wb1

)∣∣∣2 .
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Numerical experiments
Specific class of Gamma-shaped local fertility functions p<LS>(·; u) and
time-constant immigrant intensity λ<LS>

c (u) = 1/2.

Example 1 [Exponential without delay]:

p<LS>(s; u) = ζ(u)
θ(u)e−θ(u)s

Γ(1)
1s>0 , ζ(u), θ(u) of cosine form.

Example 2 [Gamma with varying delay δ(u) and constant ζ(u)]:

p<LS>(s; u) =
1
2

(s − δ(u))
e−(s−δ(u))

Γ(2)
1s>δ(u)

with δ(u) = (6− 10u)× 1[0;1/2](u) + (10u − 4)× 1(1/2;1](u)

inducing a periodic phenomenon in the self-excitation.

Here, ζ(u), θ(u) and δ(u) are Lipschitz β = 1, and one gets explicit
formulas for the local mean density

m<LS>
1 (u) = m<LS>

1 (ζ(u)) =
λc

1− ζ(u)
.

and local Bartlett spectrum Γ<LS>(dω; u) = Γ<LS>(dω; δ(u), ζ(u), θ(u)).
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Simulation of locally stationary Hawkes processes

Use time-varying conditional intensity

λT (t) := λ<LS>
c (t/T ) +

∑
Ti<t

p<LS>(t − Ti ; t/T ) ,

where (Ti )i∈Z denote the points of NT .

Use Ogata’s modified thinning algorithm (Ogata, 1981) to simulate the
non-stationary Hawkes process NT on the interval [0,T ].
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Figure 1 : Theoretical local mean density (top) and Bartlett spectrum
(bottom) for Example 1.
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Figure 2 : Conditional intensity function of a simulated Hawkes process
following Example 1, with T = 10000.

22 / 31



Introduction Approximation results TF analysis Numerical experiments Estimation theory

Figure 3 : Estimation of the local mean density (top) and of the local Bartlett
spectrum (bottom) for Example 1.
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Figure 4 : Theoretical local Bartlett spectrum for Example 2 (local mean
density being constant over time).
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Figure 5 : Conditional intensity function of a simulated Hawkes process
following Example 2, with T = 10000.
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Figure 6 : Estimation of the local Bartlett spectrum for Example 2.
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Some asymptotic estimation theory (work in progress)
Estimation of the local mean intensity
A straightforward estimator of

m<LS>
1 (u0) =

λ<LS>
c (u0)

1−
∫
p<LS>(·; u0)

.

is

m̂1(u0) := NT (S−Tu0Wb1T ) =

∫
Wb1T (s − Tu0) NT (ds) ,

with time-kernel Wb1T (·) =
1

b1T
W (

·
b1T

).

Under suitable conditions (of Theorem 4, integrability of W ), with
β ∈ (0, 1], we have

Bias: O
(
bβ1 + T−β

)
Variance: O

(
(Tb1)−1 + bβ1 + T−β

)
This gives an MSE-rate of convergence of order T−

β
β+1 .

27 / 31



Introduction Approximation results TF analysis Numerical experiments Estimation theory

Principle of proof, using Theorem 4 with g = Wb1T

Bias (Thm 4 with m = 1):

Em̂1(u0)−m1(u0) . T−β
(
|Wb1T |1 + |Wb1T |(β)

)
. T−β

(
1 + (b1T )β

)
. bβ1 + T−β .

Variance (Thm 4 with m = 2 and g1 = g2 = g):

Var(m̂1(u0)) . Var((N(Wb1T ,u0)) +

+ T−β(|Wb1T |1 + |Wb1T |(β))× (|Wb1T |∞ + |Wb1T |1) .

. (Tb1)−1+ T−β
(
1 + (b1T )β

)
×
(
(b1T )−1 + 1

)
. (Tb1)−1+bβ1 +T−β .
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Asymptotic estimation theory for local Bartlett spectrum

Employed technique:
Control of the expectation and the variance of

Ê [NT (f );w ] :=
1
T

∫
NT (f (· − t))w(t/T ) dt

estimator of first moment of "stationary" Hawkes process N(f ; u0).
Control of the expectation and the variance of

Ê [N2
T (f );w ] :=

1
T

∫
N2

T (f (· − t))w(t/T ) dt

estimator of the second moment of N(f ; u0).

Here again with the time-kernel w = Wb1,u0 and now with a
"test-function" f = Kb2,ω0 , i.e. the kernel in frequency direction.

Again use Theorem 4, similarly to the proof of consistency of the local
mean density estimator (but MUCH more involved).

Possibility of a CLT (future work)....
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Bias of the estimator γ̂b2,b1(ω0; u0)

Recall: Estimation of γb2(ω0; u0) via

γ̂b2,b1(ω0; u0) = Ê
(
|NT (S−Tu0Kb2,ω0)|2;Wb1

)
−
∣∣∣Ê (NT (S−Tu0Kb2,ω0);Wb1

)∣∣∣2 .
Under suitable conditions (of Theorem 4, integrability of K and W ), with
β ∈ (0, 1], and for a Bartlett spectrum sufficiently regular in frequency,
we have for the Bias a rate of order

1
Tb1b2

+ b−1
2

(
(Tb2)−β + bβ1

)
+ b2

2

(The behaviour of the Variance has still to be worked out.)

Convergence of the bias under conditions for the two bandwidths:

Tb1b2 →∞, Tb
1+ 1

β

2 →∞ and
bβ1
b2
→ 0 ,

plus a traditional bias-condition b2 → 0 for the convergence of γb2(ω0; u0)
to the "point" spectral density γ<LS>(·; u0) in ω0 (for a given u0).
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Conclusion

Self-exciting point processes ("Hawkes" processes) show a far more
evolved dynamics over time than, e.g., autoregressive processes.
Consequently, locally stationary approximations are more difficult to
derive.
Unfortunately, unlike "classical" time series (under usual conditions)
no spectral representation exists that would render the approach
more "direct".
The key to success: approximation theory for local Laplace
transforms and its derivatives (control of cumulants):
Existence of (local) mean density (no "explosive" behaviour) and
local Bartlett spectrum via
control of convergence of first and second moment structure
Work in progress: Asymptotic estimation theory (control of
convergence of first and second empirical moments);
real data analysis
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