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@ Locally stationary processes
@ Motivation and Examples
@ Local conditional maximum likelihood estimators

© Global bandwidth selection via Cross Validation
@ Description of method
@ Results
@ Simulations

© Work in progress: Local bandwidth selection via contrast minimisation and
Lepski's method
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Locally stationary processes - definition

Definition, cf. Dahlhaus, Polonik (2009)

Assume that e, t € Z are iid with Ee, = 0, Var(e;) = 1 and

oo
Xt,n = Zat’n(k)gtfk7 t= 1,...,”
k=0

with sup, , [a; (k)| < Ti) where ¢(k) = |k|log ™" |k|, k > 0.
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Locally stationary processes - definition

Definition, cf. Dahlhaus, Polonik (2009)

Assume that e, t € Z are iid with Ee, = 0, Var(e;) = 1 and

Xt,n = Zat’n(k)gtfk7 t= 1,...,”

with sup, ,|agn(k)| < TC) where ¢(k) = |k|log ™" |k|, k > 0.
Assume there are a(-, k) : [0,1] — R with

supZ\at,, —a(t/n, k)| < C.

Then (X¢n)e=1,....n is called a locally stationary process.
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Locally stationary processes - corresp. stationary process

Xen = Z arn(k)ee—k, arn(k) ~ a(t/n, k)
k=0

Parametric assumption
The time dependence of a(u, k) on u € [0,1] is solely via a finite dimensional
parameter curve g : [0,1] — © C RY, i.e.

a(u, k) = agy(uy(k)  forall ue [0,1].

with some a.(k) : © — R (k € Z).
We assume 6 is Hoelder-continuous with some exponent 5 > 0 and is of bounded
variation.

o’

Remark: This assumption ensures that the locally stationary process is obtained
by a stationary process by replacing the constant parameters 6 through parameter
curves 6.
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Example 1: tvARMA processes

tvARMA(p, q) processes

Let &; < (0,1). If a, by : [0,1] — R have bounded variation and

az) ==Y h_y a(u)Z¥, B(z) := D[, bi(u)Z have only zeros outside the unit circle
uniformly in u € [0, 1], then solutions (X;,) of

i ak (%) Xi—ton = i by (%) €1

are locally stationary processes.

Here, we assume ag = by = 1. Then
0o (u) = (a1(v), ..., ap(u), b1 (u), ..., bg(u))" : [0,1] — © C RPFHA.
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Example 1: Special case tvAR(1)

<«
«
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o
T o €
= =
x x o
o Al
@ ©
T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
t=1,..n t=1,.,n
Xe = 0.5Xi—1 + &¢ Xen = ao(t/n)xt—l,n + €4,
Oo(u) = 0.9 - sin(27u)
iid
5[— ~ N(O, 1)
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Example 2: special parametrised tvAR(2) process

Xen = 2 cos (¢ () Xe1,0 — %Xt_g,,, + o(t/n)e,
b(u) =14 +sin(2ru), ro =105 o(u) =10, &2 NO,1).

Here, ry - €4 are the two roots of the characteristic polynomial of the process,
and 0y(u) = (¢(u),0(u)) : [0,1] - 6 C R2

realization of X

0.0 0.2 0.4 0.6 0.8 1.0

t/n
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Estimation of parameter curves

Definition of estimator 0(-)
We define

A

On(u) := argmingcg Ly n(u,0),

where

L
Lnn(u,0) hZK<" )/t,n(e)
is a local likelihood (kernel K, bandwidth h) at time u € [0, 1] and
/t,n(e) = |Og pﬁo(‘):G(Xt,n|Xt—1,n7 ---;XI,naXO,n = O7X—1,n = 0, )

is a negative log infinite past conditional Gaussian Likelihood, where the curve
0o(-) is replaced by a constant parameter 6.
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Discussion: /; ()

Proposition
Define

Ap(N) = Zag(k)e*')\k’ ~o(K) ::/” Ag(—)‘)ileb\kd/\’
k=0
den(8) = QL

If [Ag(A)| > 6 > 0 uniformly in A, 6, then

lon(6) = — 5 o (%07)2) + 2 [den®)]
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Discussion: /; ()

Define
Ag(N\) = Zag(k)e*i/\k’ Yo (k) ::/ Ae(_)\)—le;,\kd/\’
k=0 -
=
Goll) = 5> KXok
k=0

If [Ag(A)| > 6 > 0 uniformly in A, 6, then

le,n(0) = —% log (792(2)2> + % {dt,n(e)r.

@ A finite past likelihood would have coefficients which are harder to calculate
and to investigate theoretically (that is why we use infinite past).
(] tVAR(l) : Xt,n = eo(t/n)Xt_17n + Et has /t7n(9) ~ (Xt,n - 9Xt—1,n)2-
2
o tvMA() : Xon = £¢+ 00(t/n)er_1 has lyn(6) ~ ( ;;gekxt,k,n) .
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Adaptive bandwidth selection of h

@ There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes
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Adaptive bandwidth selection of h

@ There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes

@ The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve 6.
Example: X;, = 0o(t/n) Xe—1,n + €,
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Adaptive bandwidth selection of h

@ There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes

@ The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve 6.
Example: Xt,n = 90(1./">Xt—1,n + €4,

@ Estimators usually have a more complicated structure which forces us to use
(Taylor) approximations and carefully inspect convergence rates of the
remaining terms

Example: Op(u) = &9 E[(f,(u) — 00(u))?] harder to calculate.

- &()Yh(u) !
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Adaptive bandwidth selection of h

@ There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes

@ The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve 6.
Example: X;, = 0o(t/n) Xe—1,n + €,

@ Estimators usually have a more complicated structure which forces us to use
(Taylor) approximations and carefully inspect convergence rates of the
remaining terms

Example: Op(u) = &9 E[(f,(u) — 00(u))?] harder to calculate.

&th(u)’
@ Plugin estimators need strong smoothness assumptions on the unknown
parameter curve 0y and good pre-estimators for the unknown terms occuring
in the MSE-asymptotic optimal bandwidth
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Adaptive bandwidth selection of h

@ There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes

@ The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve 6.
Example: X;, = 0o(t/n) Xe—1,n + €,

@ Estimators usually have a more complicated structure which forces us to use
(Taylor) approximations and carefully inspect convergence rates of the
remaining terms

Example: Op(u) = &9 E[(f,(u) — 00(u))?] harder to calculate.

&th(u)’
@ Plugin estimators need strong smoothness assumptions on the unknown
parameter curve 0y and good pre-estimators for the unknown terms occuring
in the MSE-asymptotic optimal bandwidth

@ We will focus on adaptive methods which work under Hoelder-continuity
assumptions on 6
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Cross validation in the general setting

Cross validation

2—u

Now define Ly p —¢(u, ) := X Zg=1,s¢tK("T> Is n(0) and the leave-one-out
estimate A
On,—t(u) := argmingcg Lnp —¢(u, 0).

The global cross validation function is defined via

CV(h) := %Z len(On,—e(t/ 1)),
t=1

with a set of bandwidths H,, and

h= argmin, .y CV(h).

Final estimator of 6y(u): é;)(u).
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Results

Distance measure

Define a Kullback-Leiber-type distance measure (||x||3 := (x, Ax))

da(0n, 00) : Z 10n(t/n) — 00 (t/m)1100 (2/n))

with a weight matrix /(-), the local Fisher information

©) =4 [ " (Volog (V) - (Volog ), () == [ AsW)P.

o 2

Remark: da(61,80) is the leading term of a taylor expanded empirical

Kullback-Leibler divergence log %
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Result

Assume that the kernel K > 0 is Lipschitz continuous, and

@ Parameter space O is compact, 6 is identifiable from Ay, 6y(u) € int(©) for
all ue [0,1].

@ Ay()) is twice differentiable in 6. Ag(A\)~! and the components of the first
two derivatives are uniformly bounded in A, 6 and are uniformly
Hoelder-continuous in A\ with some exponent 5 > 1.

The minimal eigenvalue of /(6) is bounded away from 0 uniformly in 6.
All moments of g exist.
H, = [h,, hn] with h, > con®~!, h, < c;n° for some ¢y, c1,6 > 0.

@ 0y has bounded variation and 6 is 3-Hoelder-continuous with 5 > 0
Then

da(0:,0
lim —A( 240) =1 as.

=00 infue . da(0h, 00)

ie., his asymptotically optimal with respect to da.
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Result

Theorem 2

Let the assumptions of Theorem 1 hold. Assume that 6 is twice continuously

differentiable. Define
M O nh 4 05

By, Vy complicated terms, dependent on 6. If By > 0, we have

dA(éhv 60) — d*A;Ik(h)

h
— =1
— 0, e — 1,

sup
he Hy dy (h)
s\ /5
where h* = ( g n~1/5 is the unique minimizer of d};(h) and can be seen as

the MSE-asymptotic optimal bandwidth.

Remark: This means that da(fp, 6) asymptotically allows for a usual
bias-variance-decomposition.
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Proof idea of Theorem 1:

One main step of the proof is to show suppc, |diff(h)| — 0 a.s. (*), where

CV(h) = 3 3201 len(B0(/n)) — da(9, bo)

diff(h) = ’
d*M 9h>90)
o AT 2
0n,00) = - - -0
da (6, 0o) n ; H9h, «(t/n) O(t/n)H/(eo(r/n)) ’
R 1 —
diy(0n,00) = EE E IVoLnn(t/n, 90(1'/”))||/2(90(t/n))*1

t=1

By using Hoelder-continuity in h we can discretize H,. By the Borel Cantelli
lemma, (*) is proved if (fixed K> 0, € > 0)

nk. sup P(|diff(h)| > &) = 0. (%*)
heH,

To verify (**), we use Markov's inequality, Taylor expansions of I, and bounds
for moments of martingale difference sequences by Rio (2009).

16.02. 2016 15 /35
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Simulations: tvAR(1)

n =100, X¢n = 0o(t/n)Xe—1,n + €¢ with &; fi‘j N(0, 1), 6o(u) = 0.9sin(27u).

realization of X

o
x i
o ]
T T T T T T
0.0 0.2 0.4 0.6 0.8 10
theta(u) and estimates
e

tin

red: 0; (CV), green: Oy (MSE optimal bandwidth),  blue: true 6o
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Simulations: tvAR(1)

n =500
realization of X
© —
<
~ 4
x o
=" -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
e
e
(=]
e |
v T T T T T T
0.0 0.2 04 0.6 0.8 1.0
tin

red: 0}1 (CV), green: - (MSE optimal bandwidth),  blue: true 6,
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Simulations: tvAR(1)

n = 500.
Plot: Cross validation bandwidth h (histogram, 500 reps), the bandwidth h* (red)
which minimizes d}; (h)

histogram of hat h

70
|

|

|

30 50 60
| |
|

Frequency

20

10

0.05 0.10 0.15 0.20

hat h
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Simulations: tvAR(1)

n = 500.
Boxplot (500 reps) of da(fn,0) = L S°1_ (Ba(t/n) — 0o(t/n))? - I(Bo(t/n))

o
[=+]
[=J—
S
g )
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° g 8
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g | ! '
o 1 1
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cv MSE optimal
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Simulations: tvMA(1)

n =500, X, = et — Oo(t/n)er_1 with &, X N(0,1), 6p(u) = 0.4+ 0.3 -sin(27 - u).

realization of X

o]
x 24
o]
N T T T T T T
0.0 0.2 04 0.6 0.8 1.0
theta(u) and estimates
©
=]

mﬁ
(

0.0

tin

red: 0; (CV), green: Oy (MSE optimal bandwidth),  blue: true 6
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Simulations: tvMA(1)

n = 500.
Plot: Cross validation bandwidth h (histogram, 500 reps), the bandwidth h* (red)
which minimizes d}; (h)

histogram of hat h

70
|

Frequency
30
]

20
|

10
|

0.0 0.1 0.2 0.3 0.4 05

hat h
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Simulations: tvMA(1)

n = 500. A R
Boxplot (500 reps) of da(6h,0) for h= h, h= h*
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Conclusion - Crossvalidation

@ We have proposed kernel density estimators and an adaptive bandwidth
selection procedure via cross validation for unknown parameter curves in
locally stationary processes

@ We have shown that the proposed estimators are asymptotically optimal

@ Simulations show good behaviour of the estimators, in particular in the tvAR
case

Future work:

@ Nonlinear processes and local bandwidth selection
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Part 2: Locally adaptive bandwidth selection via contrast

minimisation

@ Work in progress (joint with Jan Johannes)

@ Instead of linear processes we assume a recursive Markov structure of the
process Xt ,, again depending on an unknown parameter curve 6

@ We use a general method which was first applied to the iid regression model
in Lepski, Mammen and Spokoinij (1997) and Goldenshluger and Lepski
(2011) to get locally adaptive bandwidth selectors for kernel estimators of 6,
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Model

Assume that

t
Xt,n - Get (Xt—l,ny ~-~7Xt—p,n790(; \ 0))7 tS n (1)

where G:(x,0) = u(x,0) + o(x,0)e; with
@ Deterministic functions p,0 : RP X © — R,
@ Parameter curve 6y : [0, 1] — © (Hoelder-continuous with exponent 5 > 0)

o (&t)tez is an iid sequence with Ee; = 0 and Var(e;) = 1.

Remarks:
@ G has to fulfil some (weak) assumptions such that X , exists.
o Examples: as tvTAR, tvexpAR, tvARCH, ...

Stefan Richter (joint work with Rainer Dahlhaus, Jan .adaptive bandwidth selection for locally stationary proc 16.02. 2016 25 /35



Estimation of parameter curves

Definition of estimator @(-)
We define

On(u) := argmingeg Lo n(u,0),

where

Lon(u,0) = = Z K<7t'_ )lt,n(O)

t—p+1
is a local likelihood (kernel K, bandwidth h) at time v € [0,1] and
len(0) =108 Pgy (=0 (Xe,n| Ye-1.n)

(Xt,n - /L(Yt—l,na 9))2
20’(\/13_].,"7 9)2

is a negative log conditional Gaussian Likelihood (Yi—1,5 := (Xi—1,n,...; Xe—p.n))-

1
+3 log o (Ye_1.n,0)?
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Contrast minimisation / Lepski's method

Local bandwidth selection procedure
Let H, be a (discrete) set of bandwidths. Define Lepski's contrast function

-—_ ) — ) 7 2 —_— !
Yiu b= max_ {[104(u) — B ()| — pen(u. 1) .

and the local bandwidth selector

h(u) := arg p;il_?n{Y(u, h) + pen(u, h)}.

The penalisation term pen(u, h) has still to be defined.

Remark: Y{(u, h) mimics the bias part, pen(u, h) the variance part of the MSE
decomposition E||0,(u) — 0o(u)]|3
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Contrast minimisation / Lepski's method

Key argument

Assume that pen(u, h) is monotone in h € H,. For all h € H,, it holds

1830 (6) — Bo(w)]3 < 85 - max{bias(u, h)?, pen(u, h)}

) - / 2_ /
+42 h,erpnﬁgsgh{lloh/(u) O (u)||2 = pen(u, h )}

Here,
o Ou(u) is a theoretical approximation of 6y (u),

o bias(u, h) := supy ey, w<p 0w (1) — 0o (u)| is the approximation error.
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Special case: tvAR(1)

Special case: X;, = 0o(t/n)Xe—1,n + ¢
We choose H, = {a=*: a=* > C; log®(n)n~!, k € Ny} and

A ?:Lh(LI)
Hh(u) — ?:07h(u)]l{60’h(u)2n_1}7

R 1 & t/n—u
Ci,h(u) = % Z K( / h ) thl’nthlJri’n.
t=1

We set
bias(u, h) = E[d?h@)c;f(OLE)U)ACQh(U)] = 0(h°),  con(u) :=E[en(u)].
On(u) = 6o(u) + bias(u, h),
pen(u7 h) = G- |Og2(n) ) Var(Cl,h(U) = Go(u)co’,,(u)) .

co,h(u)?
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Special case: tvAR(1)

Theorem 3 (for X, = 0o(t/n)Xe—1,n + €¢)

Assume that e, -5 (0,1), Eek < Ck for all ke N, 6y : [0,1] = [-1+ 5,1 — 4]
(6 > 0) is Hoelder-continuous with exponent 3 > 0. Then for some Gy > 0
independent of n and 6,

E|05,) (1) — Bo(0)]® < Co(log?(n)n~1) 7o

)

i.e. it is asymptotically minimax up to a log factor since (Arkoun et al. 2014):

inf sup  Eg,|0n(u) — Oo(u)|®> > co - n T
6 9oex(B,L)

Conjecture 3 (for X;, = 0o(t/n) Xe—1., + €t)

Theorem 3 holds true if we replace pen(u, h) by its empirical counterpart

1 F T K (L) X,

pen(u, h

)= h &0 n(u)2
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Simulations: tvAR(1)

n =500, X¢n = 00(t/n)Xe—1,n + €¢ with &; fi‘j N(0,0.52), 8p(u) = 0.7 sin(87u).

realization of X

00 05 10 15
| |

-0.5
|

-1.0

-1.5

(1:n)in

red: é;,(u) (adaptive bandwidth estimate),  brown: éh*(u) (Optimal estimate),
black: true 6y, green: QB(U) € H,={1.57%:1.57% > 0.02}.
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Simulations: tvAR(1)

n =500, X¢n = 00(t/n)Xe—1,n + €¢ with &; fi‘j N(0,0.52), Og(u) = 0.7 sin(87w).

realization of X

00 05 10 15

-0.5
|

-1.0

-1.5

(1:n)/in

red: éh(u) (adaptive bandwidth estimate),  brown: éh*(u) (Optimal estimate),
black: true 6y, green: 2h(u) € H, = {1.57%: 1.5k > 0.002 = n~'}.
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Simulations: tvAR(1) - Comparison of methods

n =500, X¢n = 00(t/n)Xe—1,n + €¢ with &; fi‘j N(0,0.52), Og(u) = 0.7 sin(87w).

Pointwise 90% confidence bands
N=1000 replications

1.0

0.5

0.0
1

-0.5
1

-1.0

(1:n)in

red: é,;(u) (contrast local),  orange: 6 (contrast global),

blue: é;, (crossval. global),  brown: éh*(u) (optimal),  black: true 6.
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Conclusion - Contrast Minimisation

@ We proposed an adaptive bandwidth selection procedure via a combination of
contrast minimisation and Lepski's method for unknown parameter curves in
locally stationary processes

@ We conjecture that under mild assumptions on the unknown parameter curve,
the proposed estimators are asymptotically minimax in the tvAR(1) case

@ Simulations show good behaviour in the case of tvAR processes

@ Contrary to the Crossvalidation method, the contrast minimisation method
depends on constants C;, Co which have to be chosen suitably.
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