
Adaptive Bandwidth Selection for Locally Stationary
Processes

Stefan Richter (joint work with Rainer Dahlhaus, Jan Johannes)

February 16th, 2016 at CIRM

Heidelberg University Research Training Group 1653

Stefan Richter (joint work with Rainer Dahlhaus, Jan Johannes)adaptive bandwidth selection for locally stationary processes 16. 02. 2016 1 / 35



1 Locally stationary processes
Motivation and Examples
Local conditional maximum likelihood estimators

2 Global bandwidth selection via Cross Validation
Description of method
Results
Simulations

3 Work in progress: Local bandwidth selection via contrast minimisation and
Lepski’s method

Stefan Richter (joint work with Rainer Dahlhaus, Jan Johannes)adaptive bandwidth selection for locally stationary processes 16. 02. 2016 2 / 35



Locally stationary processes - definition

Definition, cf. Dahlhaus, Polonik (2009)
Assume that εt, t ∈ Z are iid with Eεt = 0, Var(εt) = 1 and

Xt,n =
∞∑

k=0

at,n(k)εt−k, t = 1, ..., n

with supt,n |at,n(k)| ≤ C
ℓ(k) , where ℓ(k) = |k| log1+κ |k|, κ > 0.

Assume there are a(·, k) : [0, 1] → R with

sup
k

n∑
t=1

|at,n(k)− a(t/n, k)| ≤ C.

Then (Xt,n)t=1,...,n is called a locally stationary process.
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Locally stationary processes - corresp. stationary process

Xt,n =
∞∑

k=0

at,n(k)εt−k, at,n(k) ≈ a(t/n, k)

Parametric assumption
The time dependence of a(u, k) on u ∈ [0, 1] is solely via a finite dimensional
parameter curve θ0 : [0, 1] → Θ ⊂ Rd, i.e.

a(u, k) = aθ0(u)(k) for all u ∈ [0, 1].

with some a·(k) : Θ → R (k ∈ Z).
We assume θ0 is Hoelder-continuous with some exponent β > 0 and is of bounded
variation.

Remark: This assumption ensures that the locally stationary process is obtained
by a stationary process by replacing the constant parameters θ through parameter
curves θ0.
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Example 1: tvARMA processes

tvARMA(p, q) processes
Let εt

iid∼ (0, 1). If ak, bl : [0, 1] → R have bounded variation and
α(z) :=

∑p
k=0 ak(u)zk, β(z) :=

∑q
l=0 bl(u)zl have only zeros outside the unit circle

uniformly in u ∈ [0, 1], then solutions (Xt,n) of
p∑

k=0

ak
( t

n
)

Xt−k,n =

q∑
l=0

bl
( t

n
)
εt−l

are locally stationary processes.

Here, we assume a0 ≡ b0 ≡ 1. Then
θ0(u) = (a1(u), ..., ap(u), b1(u), ..., bq(u))′ : [0, 1] → Θ ⊂ Rp+q.
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Example 1: Special case tvAR(1)

Xt = 0.5Xt−1 + εt Xt,n = θ0(t/n)Xt−1,n + εt,
θ0(u) = 0.9 · sin(2πu)

εt
iid∼ N(0, 1).
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Example 2: special parametrised tvAR(2) process

Xt,n = 2
r0 cos

(
ϕ
( t

n
))

Xt−1,n − 1
r20

Xt−2,n + σ(t/n)εt,

ϕ(u) = 1.4 + sin(2πu), r0 = 1.05, σ(u) = 1.0, εt
iid∼ N(0, 1).

Here, r0 · e±iϕ(u) are the two roots of the characteristic polynomial of the process,
and θ0(u) = (ϕ(u), σ(u))′ : [0, 1] → Θ ⊂ R2.
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Estimation of parameter curves

Definition of estimator θ̂h(·)
We define

θ̂h(u) := argminθ∈ΘLn,h(u, θ),
where

Ln,h(u, θ) :=
1

nh

n∑
t=1

K
( t

n − u
h

)
lt,n(θ)

is a local likelihood (kernel K, bandwidth h) at time u ∈ [0, 1] and

lt,n(θ) := log pθ0(·)=θ(Xt,n|Xt−1,n, ...,X1,n,X0,n = 0,X−1,n = 0, ...)

is a negative log infinite past conditional Gaussian Likelihood, where the curve
θ0(·) is replaced by a constant parameter θ.
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Discussion: lt,n(θ)

Proposition
Define

Aθ(λ) :=
∞∑

k=0

aθ(k)e−iλk, γθ(k) :=
∫ π

−π

Aθ(−λ)−1eiλkdλ,

dt,n(θ) :=
1

2π

t−1∑
k=0

γθ(k)Xt−k,n

If |Aθ(λ)| ≥ δ > 0 uniformly in λ, θ, then

lt,n(θ) = −1

2
log

(
γθ(0)

2

2π

)
+

1

2

[
dt,n(θ)

]2
.

A finite past likelihood would have coefficients which are harder to calculate
and to investigate theoretically (that is why we use infinite past).
tvAR(1) : Xt,n = θ0(t/n)Xt−1,n + εt has lt,n(θ) ∼ (Xt,n − θXt−1,n)2.
tvMA(1) : Xt,n = εt + θ0(t/n)εt−1 has lt,n(θ) ∼

(∑t−1
k=0 θ

kXt−k,n
)2

.
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Adaptive bandwidth selection of h

There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes

The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve θ0.
Example: Xt,n = θ0(t/n)Xt−1,n + εt,
Estimators usually have a more complicated structure which forces us to use
(Taylor) approximations and carefully inspect convergence rates of the
remaining terms
Example: θ̂h(u) = ĉ1,h(u)

ĉ0,h(u) , E[(θ̂h(u)− θ0(u))2] harder to calculate.
Plugin estimators need strong smoothness assumptions on the unknown
parameter curve θ0 and good pre-estimators for the unknown terms occuring
in the MSE-asymptotic optimal bandwidth
We will focus on adaptive methods which work under Hoelder-continuity
assumptions on θ0

Stefan Richter (joint work with Rainer Dahlhaus, Jan Johannes)adaptive bandwidth selection for locally stationary processes 16. 02. 2016 10 / 35



Adaptive bandwidth selection of h

There is a huge literature about adaptive bandwidth selection in the iid
regression case, but up to our knowledge no general theoretical results are
available for locally stationary processes
The main difficulty: Statistical properties of the locally stationary process (like
variance) usually are strongly connected to the unknown parameter curve θ0.
Example: Xt,n = θ0(t/n)Xt−1,n + εt,

Estimators usually have a more complicated structure which forces us to use
(Taylor) approximations and carefully inspect convergence rates of the
remaining terms
Example: θ̂h(u) = ĉ1,h(u)
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Cross validation in the general setting

Cross validation
Now define Ln,h,−t(u, θ) := 1

nh
∑n

s=1,s ̸=t K
( s

n−u
h

)
ls,n(θ) and the leave-one-out

estimate
θ̂h,−t(u) := argminθ∈ΘLn,h,−t(u, θ).

The global cross validation function is defined via

CV(h) := 1

n

n∑
t=1

lt,n(θ̂h,−t(t/n)),

with a set of bandwidths Hn, and

ĥ = argminh∈HnCV(h).

Final estimator of θ0(u): θ̂ĥ(u).
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Results

Distance measure
Define a Kullback-Leiber-type distance measure (∥x∥2A := ⟨x,Ax⟩)

dA(θ̂h, θ0) :=
1

n

n∑
t=1

∥θ̂h(t/n)− θ0(t/n)∥2I(θ0(t/n))

with a weight matrix I(·), the local Fisher information

I(θ) := 1

4π

∫ π

−π

(∇θ log fθ(λ)) · (∇θ log fθ(λ))′dλ, fθ(λ) :=
1

2π
|Aθ(λ)|2.

Remark: dA(θ1, θ0) is the leading term of a taylor expanded empirical
Kullback-Leibler divergence log pθ1

(X1,n,...,Xn,n)
pθ1

(X1,n,...,Xn,n)
.
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Result

Theorem 1
Assume that the kernel K ≥ 0 is Lipschitz continuous, and

Parameter space Θ is compact, θ is identifiable from Aθ, θ0(u) ∈ int(Θ) for
all u ∈ [0, 1].
Aθ(λ) is twice differentiable in θ. Aθ(λ)

−1 and the components of the first
two derivatives are uniformly bounded in λ, θ and are uniformly
Hoelder-continuous in λ with some exponent β > 1.
The minimal eigenvalue of I(θ) is bounded away from 0 uniformly in θ.
All moments of ε0 exist.
Hn = [hn, hn] with hn ≥ c0nδ−1, hn ≤ c1n−δ for some c0, c1, δ > 0.
θ0 has bounded variation and θ0 is β-Hoelder-continuous with β > 0

Then
lim

n→∞

dA(θ̂ĥ, θ0)

infh∈Hn dA(θ̂h, θ0)
= 1 a.s.

i.e., ĥ is asymptotically optimal with respect to dA.
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Result

Theorem 2
Let the assumptions of Theorem 1 hold. Assume that θ0 is twice continuously
differentiable. Define

d∗∗
M (h) := V0

nh +
h4

4
B0,

B0,V0 complicated terms, dependent on θ0. If B0 > 0, we have

sup
h∈Hn

∣∣∣∣∣dA(θ̂h, θ0)− d∗∗
M (h)

d∗∗
M (h)

∣∣∣∣∣ → 0,
ĥ
h∗ → 1,

where h∗ =
(

V0

B0

)1/5

n−1/5 is the unique minimizer of d∗∗
M (h) and can be seen as

the MSE-asymptotic optimal bandwidth.

Remark: This means that dA(θ̂h, θ0) asymptotically allows for a usual
bias-variance-decomposition.
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Proof idea of Theorem 1:

One main step of the proof is to show suph∈Hn |diff(h)| → 0 a.s. (*), where

diff(h) :=
CV(h)− 1

n
∑n

t=1 lt,n(θ0(t/n))− dA(θ̂h, θ0)

d∗
M(θ̂h, θ0)

,

dA(θ̂h, θ0) =
1

n

n∑
t=1

∥∥∥θ̂h,−t(t/n)− θ0(t/n)
∥∥∥2

I(θ0(t/n))
,

d∗
M(θ̂h, θ0) = E

1

n

n∑
t=1

∥∇θLn,h(t/n, θ0(t/n))∥2I(θ0(t/n))−1

By using Hoelder-continuity in h we can discretize Hn. By the Borel Cantelli
lemma, (*) is proved if (fixed K > 0, ε > 0)

nK · sup
h∈Hn

P(|diff(h)| > ε) → 0. (∗∗)

To verify (**), we use Markov’s inequality, Taylor expansions of lt,n and bounds
for moments of martingale difference sequences by Rio (2009).
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Simulations: tvAR(1)
n = 100, Xt,n = θ0(t/n)Xt−1,n + εt with εt

iid∼ N(0, 1), θ0(u) = 0.9 sin(2πu).

red: θ̂ĥ (CV), green: θ̂h∗ (MSE optimal bandwidth), blue: true θ0
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Simulations: tvAR(1)
n = 500

red: θ̂ĥ (CV), green: θ̂h∗ (MSE optimal bandwidth), blue: true θ0
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Simulations: tvAR(1)
n = 500.
Plot: Cross validation bandwidth ĥ (histogram, 500 reps), the bandwidth h∗ (red)
which minimizes d∗∗

M (h)
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Simulations: tvAR(1)

n = 500.
Boxplot (500 reps) of dA(θ̂h, θ) =

1
n
∑n

t=1(θ̂h(t/n)− θ0(t/n))2 · I(θ0(t/n))
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Simulations: tvMA(1)
n = 500, Xt,n = εt − θ0(t/n)εt−1 with εt

iid∼ N(0, 1), θ0(u) = 0.4 + 0.3 · sin(2π · u).

red: θ̂ĥ (CV), green: θ̂h∗ (MSE optimal bandwidth), blue: true θ0
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Simulations: tvMA(1)
n = 500.
Plot: Cross validation bandwidth ĥ (histogram, 500 reps), the bandwidth h∗ (red)
which minimizes d∗∗

M (h)
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Simulations: tvMA(1)
n = 500.
Boxplot (500 reps) of dA(θ̂h, θ) for h = ĥ, h = h∗
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Conclusion - Crossvalidation

We have proposed kernel density estimators and an adaptive bandwidth
selection procedure via cross validation for unknown parameter curves in
locally stationary processes
We have shown that the proposed estimators are asymptotically optimal
Simulations show good behaviour of the estimators, in particular in the tvAR
case

Future work:
Nonlinear processes and local bandwidth selection
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Part 2: Locally adaptive bandwidth selection via contrast
minimisation

Work in progress (joint with Jan Johannes)
Instead of linear processes we assume a recursive Markov structure of the
process Xt,n, again depending on an unknown parameter curve θ0

We use a general method which was first applied to the iid regression model
in Lepski, Mammen and Spokoinij (1997) and Goldenshluger and Lepski
(2011) to get locally adaptive bandwidth selectors for kernel estimators of θ0
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Model

Model
Assume that

Xt,n = Gεt

(
Xt−1,n, ...,Xt−p,n, θ0

( t
n ∨ 0

))
, t ≤ n (1)

where Gε(x, θ) = µ(x, θ) + σ(x, θ)εt with
Deterministic functions µ, σ : Rp ×Θ → R,
Parameter curve θ0 : [0, 1] → Θ (Hoelder-continuous with exponent β > 0)
(εt)t∈Z is an iid sequence with Eεt = 0 and Var(εt) = 1.

Remarks:
G has to fulfil some (weak) assumptions such that Xt,n exists.
Examples: as tvTAR, tvexpAR, tvARCH, ...
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Estimation of parameter curves

Definition of estimator θ̂h(·)
We define

θ̂h(u) := argminθ∈ΘLn,h(u, θ),
where

Ln,h(u, θ) :=
1

nh

n∑
t=p+1

K
( t

n − u
h

)
lt,n(θ)

is a local likelihood (kernel K, bandwidth h) at time u ∈ [0, 1] and

lt,n(θ) := log pθ0(·)=θ(Xt,n|Yt−1,n)

=

(
Xt,n − µ(Yt−1,n, θ)

)2
2σ(Yt−1,n, θ)2

+
1

2
logσ(Yt−1,n, θ)

2

is a negative log conditional Gaussian Likelihood (Yt−1,n := (Xt−1,n, ...,Xt−p,n)).
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Contrast minimisation / Lepski’s method

Local bandwidth selection procedure
Let Hn be a (discrete) set of bandwidths. Define Lepski’s contrast function

Y(u, h) := max
h′∈Hn,h′≤h

{
∥θ̂h(u)− θ̂h′(u)∥22 − pen(u, h′)

}
,

and the local bandwidth selector

h̃(u) := arg min
h∈Hn

{Y(u, h) + pen(u, h)}.

The penalisation term pen(u, h) has still to be defined.

Remark: Y(u, h) mimics the bias part, pen(u, h) the variance part of the MSE
decomposition E∥θ̂h(u)− θ0(u)∥22
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Contrast minimisation / Lepski’s method

Key argument
Assume that pen(u, h) is monotone in h ∈ Hn. For all h ∈ Hn, it holds

∥θ̂h̃(u)(u)− θ0(u)∥22 ≤ 85 ·max{bias(u, h)2, pen(u, h)}

+42 max
h′∈Hn,h′≤h

{
∥θ̂h′(u)− θh′(u)∥22 − pen(u, h′)

}
Here,

θh(u) is a theoretical approximation of θ0(u),
bias(u, h) := suph′∈Hn,h′≤h ∥θh′(u)− θ0(u)∥ is the approximation error.
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Special case: tvAR(1)

Special case: Xt,n = θ0(t/n)Xt−1,n + εt

We choose Hn = {a−k : a−k ≥ C1 log2(n)n−1, k ∈ N0} and

θ̂h(u) :=
ĉ1,h(u)
ĉ0,h(u)

1{ĉ0,h(u)≥n−1},

ĉi,h(u) :=
1

nh

n∑
t=1

K
(

t/n − u
h

)
Xt−1,nXt−1+i,n.

We set

bias(u, h) :=
E[ĉ1,h(u)− θ0(u)ĉ0,h(u)]

c0,h(u)
= O(hβ), c0,h(u) := E[ĉ0,h(u)].

θh(u) := θ0(u) + bias(u, h),

pen(u, h) := C2 · log2(n) ·
Var

(
ĉ1,h(u)− θ0(u)ĉ0,h(u)

)
c0,h(u)2

.
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Special case: tvAR(1)

Theorem 3 (for Xt,n = θ0(t/n)Xt−1,n + εt)
Assume that εt

iid∼ (0, 1), Eεk
t ≤ Ck

ε for all k ∈ N, θ0 : [0, 1] → [−1 + δ, 1− δ]
(δ > 0) is Hoelder-continuous with exponent β > 0. Then for some C0 > 0
independent of n and θ0,

E|θ̂h̃(u)(u)− θ0(u)|2 ≤ C0(log2(n)n−1)
β

2β+1 ,

i.e. it is asymptotically minimax up to a log factor since (Arkoun et al. 2014):

inf
θ̂

sup
θ0∈Σ(β,L)

Eθ0 |θ̂h(u)− θ0(u)|2 ≥ c0 · n− β
2β+1 .

Conjecture 3 (for Xt,n = θ0(t/n)Xt−1,n + εt)
Theorem 3 holds true if we replace pen(u, h) by its empirical counterpart

p̂en(u, h) := 1

nh ·
1
nh

∑n
t=1 K2

(
t/n−u

h

)
X2

t−1,n

ĉ0,h(u)2
.
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Simulations: tvAR(1)
n = 500, Xt,n = θ0(t/n)Xt−1,n + εt with εt

iid∼ N(0, 0.52), θ0(u) = 0.7 sin(8πu).

red: θ̂h̃(u) (adaptive bandwidth estimate), brown: θ̂h∗(u) (Optimal estimate),
black: true θ0, green: 2h̃(u) ∈ Hn = {1.5−k : 1.5−k ≥ 0.02}.
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Simulations: tvAR(1)
n = 500, Xt,n = θ0(t/n)Xt−1,n + εt with εt

iid∼ N(0, 0.52), θ0(u) = 0.7 sin(8πu).

red: θ̂h̃(u) (adaptive bandwidth estimate), brown: θ̂h∗(u) (Optimal estimate),
black: true θ0, green: 2h̃(u) ∈ Hn = {1.5−k : 1.5−k ≥ 0.002 = n−1}.
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Simulations: tvAR(1) - Comparison of methods
n = 500, Xt,n = θ0(t/n)Xt−1,n + εt with εt

iid∼ N(0, 0.52), θ0(u) = 0.7 sin(8πu).

red: θ̂h̃(u) (contrast local), orange: θ̂h̃ (contrast global),
blue: θ̂ĥ (crossval. global), brown: θ̂h∗(u) (optimal), black: true θ0.
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Conclusion - Contrast Minimisation

We proposed an adaptive bandwidth selection procedure via a combination of
contrast minimisation and Lepski’s method for unknown parameter curves in
locally stationary processes
We conjecture that under mild assumptions on the unknown parameter curve,
the proposed estimators are asymptotically minimax in the tvAR(1) case
Simulations show good behaviour in the case of tvAR processes
Contrary to the Crossvalidation method, the contrast minimisation method
depends on constants C1,C2 which have to be chosen suitably.
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