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Introduction

• Consider a stationary process X = {Xt , t ∈ Z},

Xt =
∞∑

j=−∞
a(j)εt−j ,

with innovations {εt , t ∈ Z} ∼ I .I .D.(0, 1),
∑

j |a(j)| <∞.

Its covariance structure is fully described by the spectral
density f (·), which, for γ(h) = Cov(Xt ,Xt+h), h ∈ Z, is
defined by

f (λ) :=
1

2π

∞∑
h=−∞

γ(h)e−ihλ

=
1

2π
|A(e−iλ)|2, λ ∈ [−π, π],

where A(z) =
∑

j∈Z a(j)z j , z ∈ C.
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• We allow for a time varying spectral density (i.e., a time
varying autocovariance structure) by using the framework of
locally stationary processes; Dahlhaus (1997), ...

• These are triangular arrays of stochastic processes,
{Xn}n∈N = {X1,n,X2,n, . . . ,Xn,n}n∈N, where

Xt,n =
∞∑

j=−∞
at,n(j)εt−j

with at,n(j) time varying coefficients.

To make such a class rich enough and mathematically
tractable, it is commonly assume that smooth functions
α(·, j) : (0, 1]→ R and a non-negative sequence {l(j), j ∈ Z}
exist such that

sup
u
|α(u, j)| ≤ K

l(j)
,

∑
j∈Z
|j | 1

l(j)
<∞ and

sup
1≤t≤n

|at,n(j)− α(
t

n
, j)| ≤ K

nl(j)
.
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• The locally stationary processes {Xn}n∈N possesses a time
varying spectral density denoted by f (u, λ) where u ∈ [0, 1] is
the time parameter and λ ∈ [−π, π] the frequency.

• f (u, λ) is called the local spectral density and is defined by

f (u, λ) =
1

2π
|A(u, e−iλ)|2, u ∈ [0, 1], λ ∈ (−π, π],

where A(u, z) =
∑

j∈Z α(u, j)z j , z ∈ C, and α(u, j) the time
varying coefficient functions.

• For FLS the class of locally stationary processes,

the linear stationary class FS where at,n(j) are time invariant,
that is at,n(j) = a(j) for all t, n and j , is a subclass of FLS .



• The locally stationary processes {Xn}n∈N possesses a time
varying spectral density denoted by f (u, λ) where u ∈ [0, 1] is
the time parameter and λ ∈ [−π, π] the frequency.

• f (u, λ) is called the local spectral density and is defined by

f (u, λ) =
1

2π
|A(u, e−iλ)|2, u ∈ [0, 1], λ ∈ (−π, π],

where A(u, z) =
∑

j∈Z α(u, j)z j , z ∈ C, and α(u, j) the time
varying coefficient functions.

• For FLS the class of locally stationary processes,

the linear stationary class FS where at,n(j) are time invariant,
that is at,n(j) = a(j) for all t, n and j , is a subclass of FLS .



• The locally stationary processes {Xn}n∈N possesses a time
varying spectral density denoted by f (u, λ) where u ∈ [0, 1] is
the time parameter and λ ∈ [−π, π] the frequency.

• f (u, λ) is called the local spectral density and is defined by

f (u, λ) =
1

2π
|A(u, e−iλ)|2, u ∈ [0, 1], λ ∈ (−π, π],

where A(u, z) =
∑

j∈Z α(u, j)z j , z ∈ C, and α(u, j) the time
varying coefficient functions.

• For FLS the class of locally stationary processes,

the linear stationary class FS where at,n(j) are time invariant,
that is at,n(j) = a(j) for all t, n and j , is a subclass of FLS .



• The locally stationary processes {Xn}n∈N possesses a time
varying spectral density denoted by f (u, λ) where u ∈ [0, 1] is
the time parameter and λ ∈ [−π, π] the frequency.

• f (u, λ) is called the local spectral density and is defined by

f (u, λ) =
1

2π
|A(u, e−iλ)|2, u ∈ [0, 1], λ ∈ (−π, π],

where A(u, z) =
∑

j∈Z α(u, j)z j , z ∈ C, and α(u, j) the time
varying coefficient functions.

• For FLS the class of locally stationary processes,

the linear stationary class FS where at,n(j) are time invariant,
that is at,n(j) = a(j) for all t, n and j , is a subclass of FLS .



• Given an observed time series X1,X2, . . . ,Xn, we want to test
the hypothesis that the spectral density of the underlying
process remains constant over time.

• To state precisely the null and alternative hypothesis of
interest, we define

g(λ) =

∫ 1

0

f (u, λ)du, λ ∈ [−π, π],

which is the ”time averaged” local spectral density (Notice:
g(·) is symmetric and non-negative-definite, i.e., it is itself a
spectral density).
Observe that f (u, ·) = g(·) for every λ ∈ [−π, π], if f (u, λ) is
a constant function of the time variable u ∈ [0, 1].

• The null and alternative hypothesis of interest can then be
stated as:

H0 : f (u, ·) = g(·) for almost all u ∈ [0, 1]
H1 : f (u, ·) 6= g(·) for u ∈ A ⊆ [0, 1] with λ(A) > 0.
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Basic Statistics and Properties

• Consider the periodogram based on the entire time series, i.e.,
In(λ) = (2πn)−1|

∑n
t=1 Xt,ne

−iλt |2, λ ∈ [0, π],

and its kernel smoothed version

ĝ(λ) = n−1
∑

j

Kh(λ− λj)In(λj),

where λj = 2πj/n are the Fourier frequencies,
Kh(·) = h−1K (·/h) a smoothing kernel and 0 < h = h(n) a
smoothing bandwidth.

• It yields that if {Xn}n∈N is locally stationary with time varying
spectral density f (u, λ) and h→ 0, nh2 →∞, as n→∞,
then

sup
λ∈[0,π]

∣∣ĝ(λ)−
∫ 1

0
f (u, λ)du

∣∣ P−→ 0.
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• Consider next periodograms based on segments of the time
series. In particular, for u ∈ (0, 1) define the local periodogram

IN(u, λ) =
1

2πN

∣∣∣ N∑
t=1

Xt+[un]−N/2−1,ne
−iλt

∣∣∣2,
where 0 < N � n is a time window width. IN(u, λ) is the
periodogram calculated over a window of N observations
around the time point [un].

• Then,

E
( IN(u, λ)

g(λ)

)
=

f (u, λ)

g(λ)
+ O(N−1)

N→∞−→


1 if H0 true

f (u, λ)
/

g(λ) if H1 true,

recall g(λ) =
∫ 1
0 f (u, λ)du.
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• Thus the mean function m : [0, 1]× [−π, π]→ R defined by

m(u, λ) = E
( IN(u, λ)

g(λ)

)
− 1,

is (asymptotically) equal to the zero function if H0 is true and
is different from the zero function under H1.

• We can estimate m(u, λ) nonparametrically by means of the
kernel smoother

m̂(u, λ) =
1

N

∑
k

Kb(λ− λk)
( IN(u, λk)

ĝ(λk)
− 1
)
,

where λk = 2πk/N and b is a bandwidth.
• Then, we can evaluate for every u ∈ [0, 1], the L2-distance of

the estimator m̂(u, ·) to the zero function, i.e.,

Qn(u) =

∫ π

−π

[
m̂(u, λ)

]2
dλ.

Qn(u), u ∈ [0, 1], can be interpreted as an estimated measure
of second order stationarity of a time series; P. (2009).
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ĝ(λk)
− 1
)
,

where λk = 2πk/N and b is a bandwidth.

• Then, we can evaluate for every u ∈ [0, 1], the L2-distance of
the estimator m̂(u, ·) to the zero function, i.e.,

Qn(u) =

∫ π

−π

[
m̂(u, λ)

]2
dλ.

Qn(u), u ∈ [0, 1], can be interpreted as an estimated measure
of second order stationarity of a time series; P. (2009).



• Thus the mean function m : [0, 1]× [−π, π]→ R defined by

m(u, λ) = E
( IN(u, λ)

g(λ)

)
− 1,

is (asymptotically) equal to the zero function if H0 is true and
is different from the zero function under H1.

• We can estimate m(u, λ) nonparametrically by means of the
kernel smoother

m̂(u, λ) =
1

N

∑
k

Kb(λ− λk)
( IN(u, λk)
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Data Example: Consider the series of n=3072 observations of
a set of tremor data (first differences) recorded in the
Cognitive Neuroscience Laboratory, Univ. of Quebec,
Montreal. Compare different regions of tremor activity coming
from a subject with Parkinson’s disease (Data has been
analyzed by von Sachs and Neumann (2000)).



Data example 1 (con.): Tremor series.
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Data example 1 (con.): Tremor series and statistic Qn(t/n),
t = [N/2] + 1, [N/2] + 2, . . . , n − [N/2], (red line). Time
window width N = 256, Bandwidths h, b chosen by CV.
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Data example 2 (Egg price series) : n=1201 observations of
weekly egg prices (first differences) at a German agriculture
market between April 1967 and May 1990 (Fan and Yao
(2003)).



Data example 2 (con.): Egg price series.
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Data example 2 (con.): Egg price series and statistic Qn(t/n),
t = [N/2] + 1, [N/2] + 2, . . . , n − [N/2], (red line). Time
window width N = 128.
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• Consider first the limiting distribution of Qn(u) under H0.

• For any fixed number of M ∈ N time points
0 < u1 < u2 < · · · < uM < 1 we have (under certain technical
conditions) that, as n→∞, (N →∞, N/n→ 0)

N
√

b
(
Qn(u1)− µn, . . . ,Qn(uM)− µn

)′

⇒ NM(0,ΣQ),

where

µn = b−1/2

∫ π

−π
K 2(x)dx

and

ΣQ = σ2
Q IM , σ2

Q =
1

2π2

∫ 2π

−2π

(∫ π

π
K (x)K (x + y)dx

)2
dy .

Limiting distribution of Qn(u) does not dependent on
characteristics or parameters of the underlying process Xn.



• Consider first the limiting distribution of Qn(u) under H0.

• For any fixed number of M ∈ N time points
0 < u1 < u2 < · · · < uM < 1 we have (under certain technical
conditions) that, as n→∞, (N →∞, N/n→ 0)

N
√

b
(
Qn(u1)− µn, . . . ,Qn(uM)− µn

)′

⇒ NM(0,ΣQ),

where

µn = b−1/2

∫ π

−π
K 2(x)dx

and

ΣQ = σ2
Q IM , σ2

Q =
1

2π2

∫ 2π

−2π

(∫ π

π
K (x)K (x + y)dx

)2
dy .

Limiting distribution of Qn(u) does not dependent on
characteristics or parameters of the underlying process Xn.



• Consider first the limiting distribution of Qn(u) under H0.

• For any fixed number of M ∈ N time points
0 < u1 < u2 < · · · < uM < 1 we have (under certain technical
conditions) that, as n→∞, (N →∞, N/n→ 0)

N
√

b
(
Qn(u1)− µn, . . . ,Qn(uM)− µn

)′

⇒ NM(0,ΣQ),

where

µn = b−1/2

∫ π

−π
K 2(x)dx

and

ΣQ = σ2
Q IM , σ2

Q =
1

2π2

∫ 2π

−2π

(∫ π

π
K (x)K (x + y)dx

)2
dy .

Limiting distribution of Qn(u) does not dependent on
characteristics or parameters of the underlying process Xn.



• For any two fixed time points u1 6= u2, the random variables
Qn(u1) and Qn(u2) are asymptotically independent.

• However, for a given sample size n and for |u1 − u2| < N/n,
there is obviously nonnegligible dependence between Qn(u1)
and Qn(u2) due to the overlap of the segments of random
variables used to calculate the corresponding local
periodograms IN(u1, λ) and IN(u2, λ).

• To appropriately describe this local dependence structure, we
consider the random variables

Qn(x ; u0) = N
√

b

∫ π

−π

(
m̂(u0+xδn, λ)

)2
dλ, for x ∈ [−1/2, 1/2],

where u0 ∈ (0, 1) and δn = N/n.

• Notice: For x1 6= x2 ∈ [−1/2, 1/2] the time distance between
the random variables Qn(x1; u0) and Qn(x2; u0) is |x2 − x1|δn.
Thus we allow the time distance between Qn(x1; u0) and
Qn(x2; u0) to shrink to zero at the rate δn = N/n as n→∞.
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• We then have the following result for the process
{Qn(x ; u0), x ∈ [−1/2, 1/2]}, P. (2010):

Theorem: Under H0 and as n→∞,

{Qn(x ; u0)−b−1/2

∫ π

−π
K 2(y)dy}x∈[−1/2,1/2] ⇒ {G (x)}x∈[−1/2,1/2],

where G is a zero mean Gaussian process on [−1/2, 1/2] with

Cov(G (x1),G (x2)) =
1

π

(
1− |x1 − x2|

)4
∫

(K ∗ K )2(y)dy .
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A L2-type Test

• To construct a test statistic for the null hypothesis that the
spectral density remains constant over time, we evaluate the
closeness of Qn(u) to zero for values of u in the interval [0, 1].

• This can be done as follows:
• Let 0 < u1 < u2 < · · · < uM < 1 be a set of M = M(n) ∈ N

distinct and equidistant time points in the interval (0, 1) given
by

uj =
tj
n
, where tj = S(j − 1) + N/2,

j = 1, 2, . . . ,M.
The positive integer S = S(n) denotes the shift from time
point to time point and n = S(M − 1) + N.
(Simple case: The shift S is equal the time window width N.
Then M = n/N).

• The proposed test statistic, P. (2009), is then given by

Tn =
1

M

M∑
s=1

Qn(us).
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• Limiting distribution under the null

Theorem: If nh2 →∞, Nb2 →∞, Nb/(nh2)→ 0 and
Nhb →∞, then, as n→∞,

N
√

Mb Tn − µn
D→ N(0, τ2

0 ),

where

µn =
[√M

b

∫ π

−π
K 2(x)dx +

√
M b

( 1

4π

∫ 2π

−2π

(K ∗K )(y)dy +2πκ4

)]
,

τ 2
0 =

2

π2

∫ 2π

−2π

(K ∗ K )2(y)dy ,

κ4 = E (ε41)/σ4
ε − 3 and K ∗ K (·) denotes convolution of the

kernel K .

• The centering sequence µn depends on the rescaled fourth
order cumulant of the innovation process κ4 = E (ε41)/σ4

ε − 3.
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• A nonparametric, and consistent estimator of κ4 can be
constructed; see Grenander and Rosenblatt (1956), Janas and
Dahlhaus (1994) and Kreiss and P. (2012). An improved
estimator has been proposed by Frangeskou and P. (2015).

• The test Tn rejects the null hypothesis H0 if

(N
√

MbTn − µ̂n)/τ0 > zα,

where µ̂n is obtained by replacing κ4 in µn by a consistent
estimator κ̂4, and, zα is the upper α-percentage point of the
standard Gaussian distribution.

• Convergence against the limiting Gaussian distribution is slow
(common for L2-tests). Bootstrapping the distribution of the
test statistic Tn (under the null) is possible using an AR-sieve
bootstrap with wild bootstrapped i.i.d. pseudo-innovations;
Frangeskou and P. (2016).
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• Consistency of the test can be established if
{Xt,n, t = 1, 2, . . . , n}n∈N possesses a local spectral density
f (u, λ), f ∈ L2([0, 1]× [−π, π]) such that λ(A) > 0 where
A = {u : f (u, λ) 6= g(λ)} ⊆ [0, 1]. In this case,

Tn
P→
∫ 1

0

∫ π

−π

( f (u, λ)

g(λ)
− 1
)2

dλdu,

that is N
√

MbTn − µn →∞ as n→∞.

• The asymptotic distribution of Tn under fixed (locally
stationary) alternatives has been also established. While under
H0 the variance of Tn is of order O(N−2M−1b−1), under H1

and, in particular, under fixed locally stationary alternatives,
the variance of Tn is of order O(N−1M−1) = O(n−1).
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• The asymptotic results concerning the limiting distribution of
Tn under fixed alternatives allow for an approximative
expression of the power function of the test Tn. In particular,

P(Tn rejects H0 | Xn is loc. stat.) ≈ 1 − Φ
(
−
√

NM

τ1
D2

n

)
,

where N−1M−1 = O(n−1),

D2
n =

1

M

M∑
s=1

∫ π

−π

( f (us , λ)

g(λ)
− 1
)2

dλ,

f (u, λ) the local spectral density of the locally stationary

process g(λ) =
∫ 1
0 f (u, λ)du. and τ1 is the variance of the

limiting distribution of Tn under fixed locally stationary
alternatives which depends on f (u, λ), g(λ), κ4 ... .



Data example 1 (Tremor Series continued): Consider again
the n = 3072 observations of tremor data (first differences)
recorded in the Cognitive Neuroscience Laboratory, Univ. of
Quebec, Montreal.

Value of the test statistic (N
√

MbTn − µ̂n)/τ0 = 21.16 which
leads to a rejection of the null hypothesis of autocovariance
stationarity. A window size of N = 256 observations (which
implies S = N and M = 12) and the Bartlett-Priestley kernel,
have been used).
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Data example 1 (con.): Tremor series and statistic Qn(·) (red
line). Time window width N = 256, Bandwidths h, b chosen
by CV.
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Data example 1 (con.): Estimated spectral density:
Whole series.
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Data example 1 (con.): Estimated spectral densities:
Whole series (black) and first segment (blue).
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Blue: Refers to the observations Xt , t ∈ {1760, 1761, . . . , 2170}.



Data example 1 (con.): Estimated spectral densities:
Whole series (black), first segment (blue), second segment
(red).

frequency

po
w

er

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
00

02
0.

00
04

0.
00

06

Blue: Refers to the observations Xt , t ∈ {1760, 1761, . . . , 2170}
Red: Refers to the observations Xt , t ∈ {2350, 2351, . . . , 2840}



Data example 2 (Egg price series continued) : n=1201
observations of weekly egg prices (first differences) at a
German agriculture market between April 1967 and May 1990
(Fan and Yao (2003)).



Data example 2 (con.): Egg price series: Test results.

time

pr
ic

e 
di

ff.

0 200 400 600 800 1000 1200

-4
-2

0
2

4

Value of the test statistic (N
√

MbTn − µ̂n)/τ0 = 12.95 leads to
rejection of the null hypothesis (N = 128, M = 9,
Bartlett-Priestley kernel).



Data example 2 (con.): Estimated spectral densities of
Egg-Price Data: Whole series 1 ≤ t ≤ 1200, black.
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Data example 2 (con.): Estimated spectral densities of
Egg-Price Data: Whole series 1 ≤ t ≤ 1200, black. First
segment 1 ≤ t ≤ 350, blue.
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Data example 2 (con.): Estimated spectral densities of
Egg-Price Data: Whole series 1 ≤ t ≤ 1200, black. First
segment 1 ≤ t ≤ 350, blue. Last segment 500 ≤ t ≤ 1200,
red.
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Alternative Tests and Power Comparisons

• Other periodogram-based tests for stationarity have been also
proposed in the literature:

(i) L2-type tests based on integrated local periodograms without
smoothing; Dette, Preuss and Vetter (2011).

(ii) Kolmogorov-Smirnov type tests based on integrated local
periodograms; Dahlhaus (2009), Preuss, Vetter and Dette
(2013).
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• L2-type tests based on integrated local periodograms.

Idea: Consider the L2-distance

D2 =

∫ 1

0

∫ π

−π

(
f (u, λ)− g(λ)

)2
dλdu

=

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu −

∫ π

−π
g2(λ)dλ.

D2 can by consistently estimated by

D2
n = πF̂1,n − 2πF̂2,n,

where

F̂1,n = n−1
M∑

s=1

[N/2]∑
j=1

IN(us , λj)
2

and

F̂2,n = N−1

[N/2]∑
j=1

(
M−1

M∑
s=1

IN(us , λj)
)2
.
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• A test is then constructed by using the test statistic

D̃n =
√

n
D̂2

n + 2πN/nF̂1,n

τ̂0
,

where τ̂2
0 = 4π2(6n)−1

∑M
s=1

∑[N/2]
j=1 I 4

N(us , λj) and the
property that under H0 and some technical conditions,

D̃n
d→ N(0, 1).

See Dette, Preuss and Vetter (2011). Notice that no kernel
smoothing is used.



• Kolmogorov-Smirnov-type tests are based on integrated local
periodograms.

Idea: Consider

KS = sup
(v ,w)∈[0,1]2

∣∣∣ ∫ v

0

∫ πw

0
f (u, λ)dλdu − v

∫ πw

0
g(λ)dλ

∣∣∣
and observe that under H0, KS = 0.

An estimator of KS is given by

KSn = sup
(v ,w)∈[0,1]2

∣∣∣2π
n

[vM]∑
s=1

[wN/2]∑
j=1

IN(us , λj)−
[vM]

M

2π

n

M∑
s=1

w [N/2]∑
j=1

IN(us , λj)
∣∣∣.

• Under H0, KSn
d→ supv ,w∈[0,1]2 |G0(v ,w)|, where G0 a zero

mean Gaussian process on [0, 1]2 with covariance function

Cov(G0(v1,w1),G0(v2,w2) = 2π[min{v1, v2}−v1v2]

∫ πmin{w1,w2}

0

g2(λ)dλ;

see Dahlhaus (2009) and Preuss, Vetter and Dette (2013).
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• All three tests considered, i.e., Tn, Dn and KSn are consistent.
We compare them by investigating their local power
properties, P. and Preuss (2015).

• That is we consider sequences of (Gaussian) locally stationary
processes {Xn}n∈N = {Xt,n, t = 1, 2, . . . , n}n∈N ∈ FLS that
”converge” to a stationary process X ∈ FS (at some
controlled rate and in some appropriate manner) as the time
series length n→∞.

• Two types of local alternatives to stationarity are considered:
• Global in time local alternatives to stationarity. In this case,

Xn possesses a local spectral density

fn(u, λ) ≈ f (λ) + cnw(u, λ), and cn → 0.

• Local in time local alternatives to stationarity. In this case, Xn

possesses a local spectral density

fn(u, λ) ≈ f (λ) + cnw(
u − u0

γn
, λ), and cn, γn → 0.

(Deviations from null become ”more concentrated” around the
time point u0 ∈ (0, 1) as n increases to infinity.)
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• The aim is to identify the maximal rate at which

cn ∼ n−κ for some κ > 0,

resp.

cn ∼ n−κ and γn ∼ n−ζ for some κ > 0 and ζ > 0,

are allowed to converge to zero such that the test Tn has
power which is bounded away from the level and from unity.

• The following table summarizes our theoretical findings:
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Global in Time Local in Time
cn ∼ n−κ cn ∼ n−κ and γn ∼ n−ζ

Tn-Test κ = 1
4 + 1

4δ(1− ρ) 2κ+ ζ = 1
2 + 1

2δ(1− ρ)
h ∼ n−ρ, M ∼ nδ

Dn-Test κ = 1
4 2κ+ ζ = 1

2
M ∼ nδ

KSn-Test κ = 1
2 κ+ ζ = 1

2
M ∼ nδ

• For global in time local alternatives and because

1

4
<

1

4
+

1

4
δ(1− ρ) <

1

2
,

the Dn-Test is the worst and the KSn-Test the best. The
KSn-Test detects deviations converging at the so-called
”parametric rate”, i.e., n−1/2 while the Tn-test at a slower
rate (0 < δ(1− ρ) < 1) but larger than that of the Dn test.



Global in Time Local in Time
cn ∼ n−κ cn ∼ n−κ and γn ∼ n−ζ

Tn-Test κ = 1
4 + 1

4δ(1− ρ) 2κ+ ζ = 1
2 + 1

2δ(1− ρ)
h ∼ n−ρ, M ∼ nδ

Dn-Test κ = 1
4 2κ+ ζ = 1

2
M ∼ nδ

KSn-Test κ = 1
2 κ+ ζ = 1

2
M ∼ nδ

• For global in time local alternatives and because

1

4
<

1

4
+

1

4
δ(1− ρ) <

1

2
,

the Dn-Test is the worst and the KSn-Test the best. The
KSn-Test detects deviations converging at the so-called
”parametric rate”, i.e., n−1/2 while the Tn-test at a slower
rate (0 < δ(1− ρ) < 1) but larger than that of the Dn test.



• For local in time local alternatives and because

1

2
<

1

2
+

1

2
δ(1− ρ),

the Tn-test is the best detecting deviations converging at a
rate which is even faster than the parametric rate n−1/2 while
for this class of alternatives the Dn-test is the worst (since
2κ+ γ > 1/2 for κ+ γ = 1/2, and therefore in this case the
power of the Dn-test converges against its size).



Some Numerical Results
• We simulated time series of the following two simple models,

for which, however, their deviations from stationarity are
difficult to detect:

Yt,n = σn(t/n)εt ,

resp.
Xt,n = an(t/n)Xt−1,n + εt ,

where εt ∼ I .I .D.− N(0, 1),

σ2
n(u) = 0.5 + n−0.451.5u, u ∈ [0, 1]

resp.

an(u) = 0.5n−0.05e−n0.5(u−0.5)2sin(4πu), u ∈ [0, 1].

• Figure 1 and Figure 2 show plots of a realization of length
n = 256 of the above processes together with the
corresponding time varying functions.
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Time series generated from the first process:
Yt,n = σn(t/n)εt .



Time series generated from the second process:
Xt,n = an(t/n)Xt−1,n + εt .



• Different sample sizes have been considered. Smoothing
parameters have been chosen by cross-validation and
N = [n/8]. Critical points of all tests have been obtained by
the autoregressive-sieve bootstrap with AR-order selected by
AIC. R = 500 simulation runs have been used and the
rejection frequencies have been calculated.

• The numerical results obtained, (α = 5%), coincides with
those predicted by our asymptotic analysis:

Yt,n Xt,n

n Tn Dn KSn Tn Dn KSn

64 0.072 0.094 0.086 0.090 0.080 0.048
256 0.102 0.070 0.202 0.146 0.118 0.076

1024 0.156 0.070 0.266 0.294 0.104 0.084
2048 0.196 0.062 0.320 0.550 0.086 0.082
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Conclusions and Outlook

• We considered tests of (second order) stationarity based on
comparing local with global periodogram properties of a time
series. Three different types of tests have been discussed.

• To better understand the power properties of these tests, their
behavior for different types of local alternatives to stationarity
has been investigated.

• The Kolmogorov-Smirnov-type test, KSn, seems to have
certain advantages when global (in time) deviations from
stationarity are present, while the smoothed L2-type test Tn,
seems to be more powerful for time localized type of
alternatives. The L2-type test Dn is the worst under both
scenarios of local alternatives considered. Our asymptotic
results parallel similar results obtained in the context of
testing the distribution (see Bickel and Rosenblatt (1973) and
Rosenblatt (1975)) or of testing the form of the regression
function (see Härdle and Mammen (1993)), in the i.i.d.
set-up.
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• It will be interesting to look at other types of local alternatives
and compare the power behavior of the different tests.

For instance, consider the simple TvMA(q)- process
Xt,n = εt + cnεt−q, where q ∈ N. Then,

fn(u, λ) =
σ2
ε

2π

(
1 + cn · 2 cos(λ · q)

)
+ O(c2

n),

which belongs to the class of global in time local alternatives.
However, the deviation from stationarity generated by such a
process is located at different frequencies depending on the
value of q. How does this affect the power of the tests?

• It will be important to extend this type of local power
comparisons to other tests of stationarity proposed in the
literature:

• Tests based on properties of the discrete Fourier transform, see
Dwivedi and Subba Rao (2010).

• Tests based on Haar wavelet coefficients, von Sachs and
Neumann (2000) and more recently Nason (2013).
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